diff --git a/CMakeLists.txt b/CMakeLists.txt index 5df83499d5dde29b205ee17fba81a63c9a643235..00996cb7ed5cc573c42b69be6db369c3654d6d1a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -20,8 +20,10 @@ set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}) include(system) project(paddle CXX C Go) -message(STATUS "CXX compiler: " ${CMAKE_CXX_COMPILER} ", version: " ${CMAKE_CXX_COMPILER_VERSION}) -message(STATUS "C compiler: " ${CMAKE_C_COMPILER} ", version: " ${CMAKE_C_COMPILER_VERSION}) +message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: " + "${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION}") +message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: " + "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}") find_package(Sphinx) if(NOT CMAKE_CROSSCOMPILING) diff --git a/benchmark/IntelOptimizedPaddle.md b/benchmark/IntelOptimizedPaddle.md index 6cc9598947acbdacfbf4c4379987bab8ed7611b0..8b7dc5b7db800896eb4de2054ab5e584aed93999 100644 --- a/benchmark/IntelOptimizedPaddle.md +++ b/benchmark/IntelOptimizedPaddle.md @@ -7,11 +7,11 @@ Machine: System: CentOS release 6.3 (Final), Docker 1.12.1. -PaddlePaddle: (TODO: will rerun after 0.11.0) -- paddlepaddle/paddle:latest (for MKLML and MKL-DNN) +PaddlePaddle: +- paddlepaddle/paddle:0.11.0 (for MKLML and MKL-DNN) - MKL-DNN tag v0.11 - MKLML 2018.0.1.20171007 -- paddlepaddle/paddle:latest-openblas (for OpenBLAS) +- paddlepaddle/paddle:0.11.0-openblas (for OpenBLAS) - OpenBLAS v0.2.20 On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. @@ -56,15 +56,15 @@ Input image size - 3 * 224 * 224, Time: images/second -- Alexnet +- AlexNet | BatchSize | 64 | 128 | 256 | |--------------|--------| ------ | -------| -| OpenBLAS | 2.13 | 2.45 | 2.68 | +| OpenBLAS | 45.62 | 72.79 | 107.22 | | MKLML | 66.37 | 105.60 | 144.04 | | MKL-DNN | 399.00 | 498.94 | 626.53 | -chart TBD + #### Inference Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz @@ -72,27 +72,41 @@ Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz | BatchSize | 1 | 2 | 4 | 8 | 16 | |-----------|-------|-------|-------|-------|-------| -| OpenBLAS | 1.07 | 1.08 | 1.06 | 0.88 | 0.65 | +| OpenBLAS | 1.10 | 1.96 | 3.62 | 3.63 | 2.25 | | MKLML | 5.58 | 9.80 | 15.15 | 21.21 | 28.67 | | MKL-DNN | 75.07 | 88.64 | 82.58 | 92.29 | 96.75 | + + - ResNet-50 | BatchSize | 1 | 2 | 4 | 8 | 16 | |-----------|-------|--------|--------|--------|--------| -| OpenBLAS | 3.35 | 3.19 | 3.09 | 2.55 | 1.96 | +| OpenBLAS | 3.31 | 6.72 | 11.59 | 13.17 | 9.27 | | MKLML | 6.33 | 12.02 | 22.88 | 40.53 | 63.09 | | MKL-DNN | 107.83| 148.84 | 177.78 | 189.35 | 217.69 | + - GoogLeNet | BatchSize | 1 | 2 | 4 | 8 | 16 | |-----------|--------|--------|--------|--------|--------| -| OpenBLAS | 12.04 | 11.31 | 10.00 | 9.07 | 4.34 | +| OpenBLAS | 12.06 | 23.56 | 34.48 | 36.45 | 23.12 | | MKLML | 22.74 | 41.56 | 81.22 | 133.47 | 210.53 | | MKL-DNN | 175.10 | 272.92 | 450.70 | 512.00 | 600.94 | + + +- AlexNet + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|--------|--------|--------|--------|--------| +| OpenBLAS | 3.53 | 6.23 | 15.04 | 26.06 | 31.62 | +| MKLML | 21.32 | 36.55 | 73.06 | 131.15 | 192.77 | +| MKL-DNN | 442.91 | 656.41 | 719.10 | 847.68 | 850.51 | + + ### Laptop TBD diff --git a/benchmark/figs/alexnet-cpu-infer.png b/benchmark/figs/alexnet-cpu-infer.png new file mode 100644 index 0000000000000000000000000000000000000000..6215ae4e4288f969a909c258ddd5b5f51e6abb3f Binary files /dev/null and b/benchmark/figs/alexnet-cpu-infer.png differ diff --git a/benchmark/figs/alexnet-cpu-train.png b/benchmark/figs/alexnet-cpu-train.png new file mode 100644 index 0000000000000000000000000000000000000000..b3200bbc049a9d75857fb5692902d7b475aa8f68 Binary files /dev/null and b/benchmark/figs/alexnet-cpu-train.png differ diff --git a/benchmark/figs/googlenet-cpu-infer.png b/benchmark/figs/googlenet-cpu-infer.png new file mode 100644 index 0000000000000000000000000000000000000000..19478d433bae651f4506153ded11a96d5137b409 Binary files /dev/null and b/benchmark/figs/googlenet-cpu-infer.png differ diff --git a/benchmark/figs/googlenet-cpu-train.png b/benchmark/figs/googlenet-cpu-train.png index c3f67faf096fe9b45dd815f294b41679dc7c9e54..4e86e058d0654d02c898bf7f5fe73aa1c7614e20 100644 Binary files a/benchmark/figs/googlenet-cpu-train.png and b/benchmark/figs/googlenet-cpu-train.png differ diff --git a/benchmark/figs/resnet-cpu-infer.png b/benchmark/figs/resnet-cpu-infer.png new file mode 100644 index 0000000000000000000000000000000000000000..bc43d4b8d20c600d6f1046a5986a6c62adfa6b44 Binary files /dev/null and b/benchmark/figs/resnet-cpu-infer.png differ diff --git a/benchmark/figs/resnet-cpu-train.png b/benchmark/figs/resnet-cpu-train.png index b96ecd5ff940c0d000613b1ed1f11fb16796cf47..96746b1759fa17d25ac5f40ed3678e16086364ba 100644 Binary files a/benchmark/figs/resnet-cpu-train.png and b/benchmark/figs/resnet-cpu-train.png differ diff --git a/benchmark/figs/vgg-cpu-infer.png b/benchmark/figs/vgg-cpu-infer.png new file mode 100644 index 0000000000000000000000000000000000000000..3a51ec6c474f0e0f0c4384c8ccd1e08c4382230b Binary files /dev/null and b/benchmark/figs/vgg-cpu-infer.png differ diff --git a/benchmark/figs/vgg-cpu-train.png b/benchmark/figs/vgg-cpu-train.png index f830ca6a87d10b72a5113636dd5686ab25a2e864..6d548cfd59f86f8166c011d71ebde4e4b33ef644 100644 Binary files a/benchmark/figs/vgg-cpu-train.png and b/benchmark/figs/vgg-cpu-train.png differ diff --git a/benchmark/paddle/image/alexnet.py b/benchmark/paddle/image/alexnet.py index 77d130ae34059d1e87040d00346ac1dadd86b0d8..cad6051f1413a5bb95f87a940f3aa81e49e5d282 100644 --- a/benchmark/paddle/image/alexnet.py +++ b/benchmark/paddle/image/alexnet.py @@ -19,7 +19,11 @@ args = { 'num_samples': num_samples } define_py_data_sources2( - "train.list", None, module="provider", obj="process", args=args) + "train.list" if not is_infer else None, + "test.list" if is_infer else None, + module="provider", + obj="process", + args=args) settings( batch_size=batch_size, diff --git a/benchmark/paddle/image/plotlog.py b/benchmark/paddle/image/plotlog.py new file mode 100644 index 0000000000000000000000000000000000000000..8679d4f272d1b7aaf8d5a397f07698a6b70e4fcd --- /dev/null +++ b/benchmark/paddle/image/plotlog.py @@ -0,0 +1,114 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import argparse +import matplotlib.pyplot as plt + + +def parse_args(): + parser = argparse.ArgumentParser('Parse Log') + parser.add_argument( + '--file_path', '-f', type=str, help='the path of the log file') + parser.add_argument( + '--sample_rate', + '-s', + type=float, + default=1.0, + help='the rate to take samples from log') + parser.add_argument( + '--log_period', '-p', type=int, default=1, help='the period of log') + + args = parser.parse_args() + return args + + +def parse_file(file_name): + loss = [] + error = [] + with open(file_name) as f: + for i, line in enumerate(f): + line = line.strip() + if not line.startswith('pass'): + continue + line_split = line.split(' ') + if len(line_split) != 5: + continue + + loss_str = line_split[2][:-1] + cur_loss = float(loss_str.split('=')[-1]) + loss.append(cur_loss) + + err_str = line_split[3][:-1] + cur_err = float(err_str.split('=')[-1]) + error.append(cur_err) + + accuracy = [1.0 - err for err in error] + + return loss, accuracy + + +def sample(metric, sample_rate): + interval = int(1.0 / sample_rate) + if interval > len(metric): + return metric[:1] + + num = len(metric) / interval + idx = [interval * i for i in range(num)] + metric_sample = [metric[id] for id in idx] + return metric_sample + + +def plot_metric(metric, + batch_id, + graph_title, + line_style='b-', + line_label='y', + line_num=1): + plt.figure() + plt.title(graph_title) + if line_num == 1: + plt.plot(batch_id, metric, line_style, label=line_label) + else: + for i in range(line_num): + plt.plot(batch_id, metric[i], line_style[i], label=line_label[i]) + plt.xlabel('batch') + plt.ylabel(graph_title) + plt.legend() + plt.savefig(graph_title + '.jpg') + plt.close() + + +def main(): + args = parse_args() + assert args.sample_rate > 0. and args.sample_rate <= 1.0, "The sample rate should in the range (0, 1]." + + loss, accuracy = parse_file(args.file_path) + batch = [args.log_period * i for i in range(len(loss))] + + batch_sample = sample(batch, args.sample_rate) + loss_sample = sample(loss, args.sample_rate) + accuracy_sample = sample(accuracy, args.sample_rate) + + plot_metric(loss_sample, batch_sample, 'loss', line_label='loss') + plot_metric( + accuracy_sample, + batch_sample, + 'accuracy', + line_style='g-', + line_label='accuracy') + + +if __name__ == '__main__': + main() diff --git a/benchmark/paddle/image/run_openblas_infer.sh b/benchmark/paddle/image/run_openblas_infer.sh index da034f3b9dff794e22086a5295ad2b0c2361c356..a9a7b8a66717c4be0543c3fe2db293fe199e3dc4 100755 --- a/benchmark/paddle/image/run_openblas_infer.sh +++ b/benchmark/paddle/image/run_openblas_infer.sh @@ -8,15 +8,20 @@ function clock_to_seconds() { } function infer() { - unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY + export OPENBLAS_MAIN_FREE=1 topology=$1 layer_num=$2 bs=$3 - thread=`nproc` - if [ $thread -gt $bs ]; then - thread=$bs + trainers=`nproc` + if [ $trainers -gt $bs ]; then + trainers=$bs fi - log="logs/infer-${topology}-${layer_num}-${thread}openblas-${bs}.log" + log="logs/infer-${topology}-${layer_num}-${trainers}openblas-${bs}.log" + threads=$((`nproc` / trainers)) + if [ $threads -eq 0 ]; then + threads=1 + fi + export OPENBLAS_NUM_THREADS=$threads models_in="models/${topology}-${layer_num}/pass-00000/" if [ ! -d $models_in ]; then @@ -28,7 +33,7 @@ function infer() { --config="${topology}.py" \ --use_mkldnn=False \ --use_gpu=False \ - --trainer_count=$thread \ + --trainer_count=$trainers \ --log_period=$log_period \ --config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True,num_samples=256" \ --init_model_path=$models_in \ diff --git a/benchmark/paddle/image/run_openblas_train.sh b/benchmark/paddle/image/run_openblas_train.sh index e9df83fee2a3f796b7234b39619364f6ee4d5dc9..935cff6f2c97d25d6de556cfee25e27dbe49b5b6 100755 --- a/benchmark/paddle/image/run_openblas_train.sh +++ b/benchmark/paddle/image/run_openblas_train.sh @@ -1,7 +1,7 @@ set -e function train() { - unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY + export OPENBLAS_NUM_THREADS=1 topology=$1 layer_num=$2 bs=$3 diff --git a/cmake/external/eigen.cmake b/cmake/external/eigen.cmake index 96fc886a342cae38d5b804266d3af7bc909a4da2..c4712f19eb80b34ffbf713d2b13fc0c775312af1 100644 --- a/cmake/external/eigen.cmake +++ b/cmake/external/eigen.cmake @@ -19,7 +19,7 @@ ExternalProject_Add( if (${CMAKE_VERSION} VERSION_LESS "3.3.0") set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/eigen3_dummy.c) - file(WRITE ${dummyfile} "const char * dummy_eigen3 = \"${dummyfile}\";") + file(WRITE ${dummyfile} "const char *dummy_eigen3 = \"${dummyfile}\";") add_library(eigen3 STATIC ${dummyfile}) else() add_library(eigen3 INTERFACE) diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index 5d24caebdcc5a28823164d718fb1628be5c4179d..89fc34796a03ff3f3e5b022ae10b2646832b1ac7 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -63,9 +63,30 @@ ExternalProject_Add( -DMKLROOT:PATH=${MKLML_ROOT} ) -ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) -SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) -ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) +ADD_LIBRARY(shared_mkldnn SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET shared_mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) +ADD_DEPENDENCIES(shared_mkldnn ${MKLDNN_PROJECT}) MESSAGE(STATUS "MKLDNN library: ${MKLDNN_LIB}") add_definitions(-DPADDLE_WITH_MKLDNN) -LIST(APPEND external_project_dependencies mkldnn) +LIST(APPEND external_project_dependencies shared_mkldnn) + +# generate a static dummy target to track mkldnn dependencies +# for cc_library(xxx SRCS xxx.c DEPS mkldnn) +SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/mkldnn_dummy.c) +FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") +ADD_LIBRARY(mkldnn STATIC ${dummyfile}) +TARGET_LINK_LIBRARIES(mkldnn ${MKLDNN_LIB} ${MKLML_LIB} ${MKLML_IOMP_LIB}) +ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) + +# copy the real so.0 lib to install dir +# it can be directly contained in wheel or capi +SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0) +ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB} + COMMAND cp ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB} + DEPENDS mkldnn) +ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB}) + +IF(WITH_C_API) + INSTALL(FILES ${MKLDNN_SHARED_LIB} DESTINATION lib) +ENDIF() + diff --git a/cmake/external/mklml.cmake b/cmake/external/mklml.cmake index 20dbc32a738d982df2d3f035206279c82c8de264..15a07ea3daf5aa606235f20288a8306966334a1a 100644 --- a/cmake/external/mklml.cmake +++ b/cmake/external/mklml.cmake @@ -66,3 +66,7 @@ ADD_LIBRARY(mklml SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET mklml PROPERTY IMPORTED_LOCATION ${MKLML_LIB}) ADD_DEPENDENCIES(mklml ${MKLML_PROJECT}) LIST(APPEND external_project_dependencies mklml) + +IF(WITH_C_API) + INSTALL(FILES ${MKLML_LIB} ${MKLML_IOMP_LIB} DESTINATION lib) +ENDIF() diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake index 97857a686b38d935b19f510ecdcb66bcca91fe03..0e79c0cc7992060cbe3b668ec927936183389eb6 100644 --- a/cmake/external/openblas.cmake +++ b/cmake/external/openblas.cmake @@ -30,23 +30,21 @@ IF(NOT ${CBLAS_FOUND}) CACHE FILEPATH "openblas library." FORCE) SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -Wno-unused-but-set-variable -Wno-unused-variable") + SET(OPENBLAS_COMMIT "v0.2.20") IF(CMAKE_CROSSCOMPILING) SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER}) GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY) SET(CROSS_SUFFIX ${CROSS_SUFFIX}/) IF(ANDROID) - # arm_soft_fp_abi branch of OpenBLAS to support softfp - # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi - SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") + # use softfp SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0) ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0) ENDIF() ELSEIF(IOS) IF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64") - SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}") SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX}) @@ -56,14 +54,12 @@ IF(NOT ${CBLAS_FOUND}) ENDIF() ELSEIF(RPI) # use hardfp - SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0) ENDIF() ELSE() IF(APPLE) SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}") ENDIF() - SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS "") IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$") SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64) @@ -113,7 +109,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR}) # FIXME(gangliao): generate cblas target to track all high performance # linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas) SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c) -FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") +FILE(WRITE ${dummyfile} "const char *dummy_cblas = \"${dummyfile}\";") ADD_LIBRARY(cblas STATIC ${dummyfile}) TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES}) diff --git a/cmake/external/warpctc.cmake b/cmake/external/warpctc.cmake index a8e1aca49c97df256b1269c286b0bce7732fa932..7cb4efa7bff7164464f1210a2b2188226c219ef6 100644 --- a/cmake/external/warpctc.cmake +++ b/cmake/external/warpctc.cmake @@ -63,7 +63,7 @@ ExternalProject_Add( MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}") INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) -ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL) +ADD_LIBRARY(warpctc SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES}) ADD_DEPENDENCIES(warpctc extern_warpctc) diff --git a/cmake/generic.cmake b/cmake/generic.cmake index 66c8e3ad7ef7c80c1f388c25983425a0db5c0220..585db019d521b1699baadfae31ef95b5059c71b4 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -120,7 +120,7 @@ function(merge_static_libs TARGET_NAME) DEPENDS ${libs}) # Generate dummy staic lib - file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";") add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) @@ -160,7 +160,7 @@ function(merge_static_libs TARGET_NAME) DEPENDS ${libs} ${target_OBJS}) # Generate dummy staic lib - file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";") add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) @@ -324,7 +324,7 @@ function(go_library TARGET_NAME) ) # Add dummy code to support `make target_name` under Terminal Command - file(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") + file(WRITE ${dummyfile} "const char *dummy_${TARGET_NAME} = \"${dummyfile}\";") if (go_library_SHARED OR go_library_shared) add_library(${TARGET_NAME} SHARED ${dummyfile}) else() diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index d81481ca819c13ee0e299c204f998f3915c34bd4..ddf0b055a92d80295b24255a5462d477e0d9c796 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -252,6 +252,11 @@ first_seq .. autoclass:: paddle.v2.layer.first_seq :noindex: +sub_seq +--------- +.. autoclass:: paddle.v2.layer.sub_seq + :noindex: + concat ------ .. autoclass:: paddle.v2.layer.concat diff --git a/doc/api/v2/fluid/layers.rst b/doc/api/v2/fluid/layers.rst index 939731c0f3438a702e947ba1a7abeb5e3e6a8f53..a7c8670f66cc7f319e41155211ead2d89126117f 100644 --- a/doc/api/v2/fluid/layers.rst +++ b/doc/api/v2/fluid/layers.rst @@ -68,12 +68,6 @@ scale :noindex: -reshape ---------- -.. autofunction:: paddle.v2.fluid.layers.reshape - :noindex: - - transpose --------- .. autofunction:: paddle.v2.fluid.layers.transpose @@ -313,6 +307,12 @@ sequence_expand :noindex: +gru_unit +-------- +.. autofunction:: paddle.v2.fluid.layers.gru_unit + :noindex: + + lstm_unit --------- .. autofunction:: paddle.v2.fluid.layers.lstm_unit diff --git a/doc/design/backward.md b/doc/design/backward.md new file mode 100644 index 0000000000000000000000000000000000000000..20fda7a98f514a3f1c1c2d0ba7447ec954b21d5a --- /dev/null +++ b/doc/design/backward.md @@ -0,0 +1,158 @@ +# Backward Building + +## Motivation + +In Neural Network, most models are solved by the backpropagation algorithm(known as **BP**) at present. Technically, BP calculates the gradient of the loss function, then propagates it back through the networks following the chain rule. However, when configuring the model structure, users do not need to define the backward part. So a mechanism is required by the framework which can complete the model's backward part automatically according to the given forward part. + +When implementing a specific `op`, the developer is also asked to implement its backward version, called `grad_op`. A `grad_op` takes gradients of its corresponding `op`'s outputs, and calculate gradients of the `op`'s inputs. During the building of a model's backward part, the framework creates each forward `op`'s `grad_op`, and then string them together in reverse order of forwarding part. In this way, gradients spread from the end to the beginning of the model, in another word, from the loss to parameters. + +## Challenges + +The motivation of backward building is apparent. However, implementation it correctly is not so easy. In the **Fluid** design, a deep learning model is described by `Program`, `Block`, `Op` and `Variable`. The `Block` itself can be nested. It means that the `op`s and `variable`s are scattered across different blocks rather than all be gathered in a single graph. Our backward building algorithm shall visit blocks in recursive order and be able to insert `grad_op`s and new created `variable`s into the right place. + +## Usage + +Although the whole algorithm is comprised of many functions, only one is exposed as API: + +```python +def append_backward(loss, parameter_list=None, no_grad_set=None): + """ + Append backward part to main_program + + Args: + loss(Variable): The variable generated by the cost function. + parameter_list(list): Parameters that need to be updated by optimizers. + If None, it means all parameters need to be updated. + + no_grad_set(set): Variables that have no gradients in Block 0. + If None, the set will be generated inside the function and + contains all variables with `step_gradient=True` from all blocks. + + Return: + (list[Variable]): list of (parameters, gradients) pair. + """ +``` + +By invoking this API, the framework appends backward part of the program where the `loss` is. It takes three arguments. `loss` means the final loss value. It must be a scalar and is usually the output of the loss layer. It is also where the gradient generated and backpropagation starts. `parameter_list` marks all parameters needs updating. If it's `None`, all parameter will be updated by optimizers. `no_grad_set` marks variables without gradient. if all outputs of some `grad_op` are in `no_grad_set`, the `grad_op` will not be run. + +This API will be invoked automatically before optimizer building. +As a result, in most cases, users do not need to invoke the API by themselves to append backward part. + +## Implementation + +The implementation of backward building algorithm is in `backward.py` file. The whole algorithm can be divided into two independent parts: creating `grad_op`s and creating new variables. + +### Creating `grad_op`s + +The creating of `grad_op`s is implemented by: + +```python +def _append_backward_ops_(target, + block, + target_block, + no_grad_dict, + grad_to_var): + """ + Create all grad ops, and insert them into given block + + Args: + target(Variable): the target variable of forward pass + block(Block): the block where forward ops are + target_block(Block): the block which is going to hold new generated grad ops + no_grad_dict(dict): + key(int) block index + val(set) a set of varibale names. These varibales have no gradient + grad_to_var(dict)(output argument): + key(str): grad variable name + val(str): corresponding forward variable name + """ +``` + +Given a `block`, the function will traverses all `op`s in this block in reverse order, gets corresponding `grad_op` from the C++ core via `core.get_grad_op_desc()`, then append it to `target_block`. + +However, some specific `op`(e.g. `while_op`, `if_else_op`) can hold its own sub-block. For these sub-blocks contains `op`s as well, the `grad_op` creating should be recursive. + +During the reverse traversal, we check each `op` whether it has an attribute named `sub_block`. If so, it means there is a sub-block and we need to deal with it first. After creating a new block whose father is the one in `op`'s attribute, we invoke `_append_backward_ops_()` recursively, assigning the new block to parameter `target_block` and the one in `op`'s attribute to `block`. The *pseudo-code* shows this process: + +``` +******* pseudo-code ******** +for op in reversed(block.ops): + if op has an attribute named 'sub_block': + Get the sub-block(`s_block`) from op's attribute. + Create a new block(`grad_s_block`), whose father is `s_block`. + Invoke _append_backward_ops_(), with `block=s_block` and `target_block=grad_s_block` + + Invoke `core.get_grad_op_desc()` to get op's grad_op. + Insert name correspondings between variables and their gradients of the grad_op to grad_to_var + Assign grad_s_block to grad_op as it's 'sub_block' attribute. + Append grad_op to current target_block. +``` + +The first invoking of `_append_backward_ops_()` is initiated by `append_backward()`, in which parameters `block` and `target_block` are all assigned with root block(the block with index 0). + +### Corner Cases of `grad_op` Creating + +In the previous section, we show the regular process of `grad_op` creating. However, in some corner cases, the conventional algorithm is not enough to get the correct result and appending handling is required. These additional processes run after the algorithm mentioned above and do some special adjusts on its output `grad_op`s. + +#### Shared Variables + +If a variable is read by more than one `op` in the forward pass, its gradient is likely to be written by more than one `grad_op`s in the next backward pass. To make the gradient result being the sum of all `grad_op`s' outputs instead of the last running one, we assign each output with a temporary variable and then add a `sum_op` to add them up. + +For the debug convenience, if the final gradient name is `w@GRAD`, it's corresponding temporary variables will be named as `w@GRAD@RENAME@0`, `w@GRAD@RENAME@1`... + +See function `_addup_repetitive_outputs_` in `backward.py` for implementation details. + +#### No Gradient Variables + +In our framework, variables can be marked as *no_gradient*, it means that the gradient of this variable is unnecessary and can be considered as zero in model training. Apparently, when all the outputs of some `grad_op` are marked as *no_gradient*, the `grad_op` itself can be skipped in backward pass. + +Another situation is all the gradient inputs of some `grad_op` are marked as *no_gradient*, which means all of them can be considered as zeros. For `grad_op`s are in essence the propagation of gradients, all the outputs are definitely zeros when all gradient inputs are zeros. Therefore the `grad_op` can also be skipped. + +It should be noted that all these zero gradients still need to be creating and initialized by something, otherwise following `grad_op`s who take these gradients as inputs take the risk of using uninitialized memory. In our code, we employ `fill_zeros_like_op` to initialize them as all zeros. + +This features are implemented in function `_remove_no_grad_branch_`. It checks new created `grad_op`s one-by-one, removes who can be skipped and inserts `fill_zeros_like_op` when its necessary. We can get the `no_grad_set` from the `_append_backward_ops_` argument `no_grad_dict` or generate it on the fly by scanning all variables' `no_gradient` attribute(True or False). + +### Creating Backward Variables + +Up to now, we have completed all creating and adjusting jobs of `grad_op`s. However, backward variables have not been created. Now they are only represented by `grad_op`'s input and output arguments. The backward variable creating job will be done by: + +```python +def _append_backward_vars_(block, + start_op_idx, + grad_to_var, + grad_info_map): + """ + Create new variables required by backward pass. + + Args: + block(Block): the block where new variables will be created + start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created + grad_to_var(dict): + key(str): grad variable name + val(str): corresponding forward variable name + In most cases, this dict is generated by _append_backward_ops_() + grad_info_map(dict)(output argument): + key(str): forward variable name + val(tuple): a tuple of (str, int), str is the corresponding grad name, int is the block index + """ +``` + +Given a `block`, this function traverses all the `grad_op`s in it(The argument `start_op_idx` indicates where the grad_op sequence starts.) and creates all the uncreated outputs. The *pseudo-code* shows this process: + +``` +for op in block.ops[start_op_idx : ]: + + if op has an attribute named 'sub_block': + Get the sub-block(`s_block`) from op's attribute. + Invoke _append_backward_vars_(), with `block=s_block` + + for var_name in op.all_output_names(): + if block.has_var_recursive(var_name) or var_name is the name of empty variable: + continue + create a new variable named 'var_name' in block + if grad_to_var.has_key(var_name): + set grad_info_map[grad_to_var[var_name]] as a tuple of (var_name. block) + + do op's var type inference + do op's shape inference +``` diff --git a/doc/design/ci_build_whl.png b/doc/design/ci_build_whl.png new file mode 100644 index 0000000000000000000000000000000000000000..232762b82a9ae3e979a1f38a7beb715c87438f40 Binary files /dev/null and b/doc/design/ci_build_whl.png differ diff --git a/doc/design/concurrent_programming.md b/doc/design/concurrent_programming.md new file mode 100644 index 0000000000000000000000000000000000000000..afc65e831d58ff427663806e56294292ccbef85b --- /dev/null +++ b/doc/design/concurrent_programming.md @@ -0,0 +1,163 @@ +# Design Doc: Concurrent Programming with Fluid + +With PaddlePaddle Fluid, users describe a program other than a model. The program is a [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto) protobuf message. TensorFlow/MxNet/Caffe2 applications generate protobuf messages too, but their protobuf messages represent the model, a graph of operators, but not the program that trains/uses the model. + +Many know that when we program TensorFlow, we can specify the device on which each operator runs. This allows us to create a concurrent/parallel AI application. An interesting questions is **how does a `ProgramDesc` represents a concurrent program?** + +The answer relies on the fact that a `ProgramDesc` is similar to an abstract syntax tree (AST) that describes a program. So users just program a concurrent program that they do with any concurrent programming language, e.g., [Go](https://golang.org). + +## An Analogy + +The following table compares concepts in Fluid and Go + +| Go | Fluid | +|----|-------| +|user-defined functions | [layers](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/v2/fluid) | +| control-flow and built-in functions | [intrinsics/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) | +| goroutines, channels | [class ThreadPool](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h) | +| runtime | [class Executor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) | + +## An Example Concurrent Program + +To review all above concepts in an example, let us take a simple program and writes its distributed version. + +Suppose that we want to parallelize a naive Fluid program (written in Go and calling Fluid's Go binding) that multiplies two tensors. + +```go +import "fluid" + +func paddlepaddle() { + X = fluid.read(...) + W = fluid.Tensor(...) + Y = fluid.mult(X, W) +} +``` + +Please be aware that the Fluid's Go binding provides the default `main` function, which calls the `paddlepaddle` function, which, in this case, is defined in above program and creates the following `ProgramDesc` message. + +```protobuf +message ProgramDesc { + block[0] = Block { + vars = [X, W, Y], + ops = [ + read(output = X) + assign(input = ..., output = W) + mult(input = {X, W}, output = Y) + ], + } +} +``` + +Then, the default `main` function calls `fluid.run()`, which creates an instance of the [`class Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) and calls `Executor.Run(block[0])`, where `block[0]` is the first and only block defined in above `ProgramDesc` message. + +The default `main` function is defined as follows: + +```go +func main() { + paddlepaddle() + fluid.run() +} +``` + +## The Concurrent Version + +By parallelizing the above program, we could support very big tensor X by splitting into small pieces {x_1, x_2, ...} and sent each piece to worker process/node for parallel multiplication. + +In this case, we can write a transpiler that takes a `ProgramDesc` message that represents the above example program and outputs two `ProgramDesc` messages, one for running on the master process/node, and the other one for worker processes/nodes. + +### The Master Program + +The master program could look like the following: + +```protobuf +message ProgramDesc { + block[0] = Block { + vars = [X, L, Y], + ops = [ + read(output = X) + kube_get_workers_addrs(output = L) + Y = tensor_array(len(L)) + parallel_for(input = X, output = Y, + attrs = {L, block_id(1)}) # referring to block 1 + ] + } + + block[1] = Block { + parent = 0, + vars = [x, y, index], + ops = [ + slice(input = [X, index], output = x) # index is initialized by parallel_for + send(input = x, attrs = L[index]) + recv(outputs = y, attrs = L[index]) + assign(input = y, output = Y[index]) + ] + } +} +``` + +The equivalent Fluid program (calling the Go binding) is: + +```go +func main() { //// block 0 + X = fluid.read(...) + L = fluid.k8s.get_worker_addrs() + Y = fluid.tensor_array(len(L)) + fluid.parallel_for(X, L, + func(index int) { //// block 1 + x = X[index] + fluid.send(L[index], x) + y = fluid.recv(L[index]) + Y[index] = y + }) +} +``` + +An explanation of the above program: + +- `fluid.k8s` is a package that provides access to Kubernetes API. +- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod). +- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed, + + 1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and + 2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread + 1. creates an Executor instance, and + 2. calls `Executor.Run(block)`, where `block` is block 1 as explained above. +1. Please be aware that block 1 is a sub-block of block 0, so ops in block 1 could refer to variables defined in block 0. + +### The Worker Program + +The worker program looks like + +```go +func main() { + W = Tensor(...) + x = fluid.listen_and_do( + fluid.k8s.self_addr(), + func(input Tensor) { + output = fluid.mult(input, W) + }) +} +``` + +where + +- `fluid.listen_and_do` creates a `ListenAndDo` intrinsic, which, when executed, + 1. listens on the current pod's IP address, as returned by `fliud.k8s.self_addr()`, + 2. once a connection is established, + 1. creates a scope of two parameters, "input" and "output", + 2. reads a [Fluid variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h) and saves it into "input", + 3. creates an Executor instance and calls `Executor.Run(block)`, where the block is generated by running the lambda specified as the second parameter of `fluid.listen_and_do`. + +## Summarization + +From the above example, we see that: + +1. Fluid enables the imperative programming paradigm by: + 1. letting users describe a program, but not a model (a sequence of layers, or a graph of operators), and + 2. call the `fluid.run` function that runs the program implicitly. +1. The program is described as a `ProgramDesc` protobuf message. +2. Function `Executor.Run` takes a block, instead of a `ProgramDesc`, as its parameter. +3. `fluid.run` calls `Executor.Run` to run the first block in the `ProgramDesc` message. +4. `Executor.Run`'s implementation is extremely simple -- it doesn't plan the execution nor create threads; instead, it runs on the current thread and execute intrinsics/operators' `Run` method sequentially as they appear in the `Block.ops` array. +5. Intrinsics/operators' `Run` method might create threads. For example, the `ListenAndDo` operator creates a thread to handle each incoming request. +6. Threads are not necessarily OS thread; instead, they could be [green threads](https://en.wikipedia.org/wiki/Green_threads) managed by ThreadPool. Multiple green threads might run on the same OS thread. An example green threads is Go's [goroutines](https://tour.golang.org/concurrency/1). diff --git a/doc/design/refactor/distributed_architecture.md b/doc/design/dist_refactor/distributed_architecture.md similarity index 52% rename from doc/design/refactor/distributed_architecture.md rename to doc/design/dist_refactor/distributed_architecture.md index d9fe7d6bbb0eeb73fcdca3ee749a4f10bcdda682..3a741f95866fb6c301ca9097af7916281f2278cf 100644 --- a/doc/design/refactor/distributed_architecture.md +++ b/doc/design/dist_refactor/distributed_architecture.md @@ -52,8 +52,9 @@ The IR for PaddlePaddle after refactoring is called a `Block`, it specifies the The user can not directly specify the parameter update rule for the parameter server in the Python module, since the parameter server does not use the same computation definition as the trainer. Instead, the update rule is baked inside the parameter server. The user can not specify the update rule explicitly. -This could be fixed by making the parameter server run the same computation definition as the trainer (the user's Python module). For a detailed explanation, refer to this document - -[Design Doc: Operation Graph Based Parameter Server](./parameter_server.md) +This could be fixed by making the parameter server also run an IR, which can be different to the trainer side +For a detailed explanation, refer to this document - +[Design Doc: Parameter Server](./parameter_server.md) ## Distributed Training Architecture @@ -61,68 +62,111 @@ The revamped distributed training architecture can address the above discussed l -The major components in the architecture are: *PaddlePaddle Python*, *PaddlePaddle converter* and *PaddlePaddle runtime*. +The major components are: *Python API*, *Distribute Transpiler* and *Remote Executor*. -### PaddlePaddle Python +### Python API -PaddlePaddle Python is the Python library that user's Python code invokes, to read the data. build the neural network topology, start training, etc. +Python API is the Python library that user's Python code invokes, to read the data, build the neural network topology, and start training, etc. ```Python -paddle.init() -input = paddle.op.recordIO("/home/data/mnist.recordio") # file stored on the cluster -img, label = input[0], input[1] -hidden = paddle.layer.fc(input=img, size=200, act=paddle.activation.Tanh()) -prediction = paddle.layer.fc(input=img, size=10, act=paddle.activation.Softmax()) -cost = paddle.layer.classification_cost(input=prediction, label=label) -optimizer = paddle.optimizer.SGD(cost, learning_rate=0.01) -session = paddle.session.NewRemote(num_trainer=3, num_ps=2, GPU_per_trainer=1) -for i in range(1000): - _, cost_val = session.eval(targets=[cost, optimizer]) - print cost_val +images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype='float32') +label = fluid.layers.data(name='label', shape=[1], dtype='int64') +... +predict = fluid.layers.fc(input=conv_pool_2, size=10, act="softmax") +cost = fluid.layers.cross_entropy(input=predict, label=label) +avg_cost = fluid.layers.mean(x=cost) +optimizer = fluid.optimizer.Adam(learning_rate=0.01) +optimizer.minimize(avg_cost) + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) + +for pass_id in range(10): + for data in train_reader(): + loss, acc = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost]) ``` -The above code is what a typical Python trainer code is, the neural network topology is built using the helper functions such as `paddle.layer.fc`. Training is done by calling `session.eval` iteratively. - -#### session.eval - -As shown in the graph, `session.eval` sends the IR and the evaluation inputs or targets to the PaddlePaddle cluster for evaluation. -The targets can be any variable in the computation graph. When the target is say, the `optimizer` variable, the neural network will be optimized once. When the target is the `cost` variable, `session.eval` returns the cost value. Based on what the target is, an appropriate action is taken. - -The Python `session` is a wrapper of the C++ `Session` class. For more information about `Session`, refer to this document - [Design Doc: Session](./session.md). - -### PaddlePaddle Converter - -The PaddlePaddle converter automatically converts the IR in the request (IR and evaluation inputs/targets) from PaddlePaddle Python to partitioned IRs and dispatches the new IRs and evaluation inputs/targets to different PaddlePaddle runtimes. Below are the steps that are followed : - -1. Add a `feed` OP that feeds the eval inputs, and a `fetch` OP that fetches the eval targets to the IR. - -2. Extract a new computation (sub)graph with the `feed` and `fetch` OPs as the boundary. The runtime does not need to run the OP that is not dependent on the `fetch` OP. - -3. Optimize the computation graph. - -4. Place the OPs in the graph onto different devices on different PaddlePaddle runtime according to a placement algorithm and the device constraints specified by the user. - -5. Partition the graph according to runtime boundaries and add `send` / `recv` OP pair on the runtime boundaries. +The code above is a typical local training program, the "Training Program" is built using helper functions such as +`fluid.layer.fc`. The training is done by calling `Executor.run` +iteratively. + +For more details, the implementation of IR is [Program](../program.md), and `ProgramDesc` is the protobuf type. + +[Executor](../executor.md) simply runs the `ProgramDesc`. For local training you generally use +`Executor` to run the program locally. For any kind of distributed training, you can use +`RemoteExecutor` to specify desired distributed training method with some optional arguments. + +### Distributed Transpiler + +The Distributed Transpiler automatically converts the IR (in protobuf format) to partitioned IRs. Then +the Remote Executor dispatches the new IRs to Remote Executors across the cluster. +Below are the steps that are followed : + +1. User only need to change `Executor` to `RemoteExecutor` to change local program to distributed program. +1. `RemoteExecutor` calls `Distributed Transpiler` to "transpile" user's program to several IRs representing a + distributed training program: + 1. Parse configurations from `RemoteExecutor`. + 1. Determine the type of distributed program, can be DataParallelism, ModelParallelism or Streaming. + 1. Partition the `ProgramDesc` according to type and add `send` / `recv` OP pair on the boundaries. Take + DataParallelism type for example, it removes the optimization operators and add a `send` OP to the + "trainer" role, then add the optimization operators to the parameter server role within the `recv` OP. +1. Dispatch the partitioned graph to different `RemoteExecutor` in the cluster. +1. `RemoteExecutor` on each node run the received `ProgramDesc` utill the end. + + +### RemoteExecutor + +As shown in the graph, `RemoteExecutor.run` sends the IR to the cluster for Execution. +You can also use parameter `fetch_list` to interactively fetch variable back to local for +log printing. + +The Python `RemoteExecutor` is derived from `Executor` class. + +```python +exe = RemoteExecutor( + feed=feeder.feed(data), + fetch_list=[avg_cost], + job_desc=JobDesc( + jobname, + num_trainer, + num_pserver, + cpu_per_trainer, + gpu_per_trainer, + mem_per_trainer, + cpu_per_pserver, + mem_per_pserver + )) +for data in train_reader(): + loss, acc = exe.run(trainer_prog, + feed=feeder.feed(data), + fetch_list=[avg_cost]) +``` -6. Dispatch the partitioned graph to different PaddlePaddle runtimes. +`JobDesc` object describe the distributed job resource specification to run on +Cluster environment. -7. PaddlePaddle runtimes with the `fetch` OP reports evaluation results back to the converter, the converter reports the evaluation results back to the PaddlePaddle Python. + -The output IRs will be cached to optimize the conversion latency. +`RemoteExecutor.run` sends the `ProgramDesc` and +[TrainingJob](https://github.com/PaddlePaddle/cloud/blob/develop/doc/autoscale/README.md#training-job-resource) +to a server in the cluster which executes `RemoteExecutor.listen`. This server is responsible +to start the final Kubernetes Jobs to run the different role of `ProgramDesc`. -#### Placement Algorithm +### Placement Algorithm Our first implementation will only support "trainer-parameter server" placement: the parameters, initializers, and optimizers are all placed on the PaddlePaddle runtimes with the parameter server role. Everything else will be placed on the PaddlePaddle runtimes with the trainer role. This has the same functionality as the "trainer-parameter server" architecture of PaddlePaddle v0.10.0, but is more generic and flexible. In the future, a more general placement algorithm should be implemented, which makes placements according to the input IR, and a model of device computation time and device communication time. Model parallelism requires the generic placement algorithm. -### PaddlePaddle Runtime - -The PaddlePaddle runtime owns multiple devices (e.g., CPUs, GPUs) and runs the IR. The runtime does not need to do OP placement since it is already done by the converter. - - ### Local Training Architecture The local training architecture will be the same as the distributed training architecture, the difference is that everything runs locally, and there is just one PaddlePaddle runtime: @@ -132,9 +176,18 @@ The local training architecture will be the same as the distributed training arc ### Training Data -In PaddlePaddle v0.10.0, training data is typically read with a [data reader](../reader/README.md) from Python. This approach is no longer efficient when training in a distributed fashion since the Python process no longer runs on the same node with the trainer processes. The Python reader will need to read from the distributed filesystem (assuming it has the required access) and send to the trainers, doubling the network traffic. - -When doing distributed training, the user can still use Python data reader: the training data are sent with `session.eval`. However this should be used for debugging purpose only. The users are encouraged to use the read data OPs. +In PaddlePaddle v0.10.0, training data is typically read +with [data reader](../reader/README.md) from Python. This approach is +no longer efficient when training distributedly since the Python +process no longer runs on the same node with the trainer processes, +the Python reader will need to read from the distributed filesystem +(assuming it has the access) and send to the trainers, doubling the +network traffic. + +When doing distributed training, the user can still use Python data +reader: the training data are sent with `Executor.run`. However, should +be used for debugging purpose only. The users are encouraged to use +the read data OPs. ## References: diff --git a/doc/design/refactor/multi_cpu.md b/doc/design/dist_refactor/multi_cpu.md similarity index 100% rename from doc/design/refactor/multi_cpu.md rename to doc/design/dist_refactor/multi_cpu.md diff --git a/doc/design/refactor/parameter_server.md b/doc/design/dist_refactor/parameter_server.md similarity index 76% rename from doc/design/refactor/parameter_server.md rename to doc/design/dist_refactor/parameter_server.md index fa3c5d7990213cf2b0d236e66e592dd2699da876..1094f06d461275a9ad4034d5e48b39856d967b71 100644 --- a/doc/design/refactor/parameter_server.md +++ b/doc/design/dist_refactor/parameter_server.md @@ -1,4 +1,4 @@ -# Design Doc: Operation Graph Based Parameter Server +# Design Doc: Parameter Server ## Abstract @@ -10,7 +10,7 @@ different purposes. ## Background The previous implementations of the parameter server does not run a -subgraph. parameter initialization, optimizer computation, network +fluid sub-program. Parameter initialization, optimizer computation, network communication and checkpointing are implemented twice on both the trainer and the parameter server. @@ -23,10 +23,10 @@ server becomes a natural extension. ## Design -### Graph Converter +### Distributed Transpiler -The *graph converter* converts the user-defined operation (OP) graph -into subgraphs to be scheduled on different nodes with the following +The *Distributed Transpiler* converts the user-defined fluid program +into sub-programs to be scheduled on different nodes with the following steps: 1. OP placement: the OPs will be placed on different nodes according @@ -34,7 +34,6 @@ steps: time. Currently we will use a simple heuristic that puts parameter varable on parameter server workers and everything else on trainer workers. - 1. Add communication OPs to enable the communication between nodes. We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*. @@ -48,8 +47,8 @@ After converting: -1. The parameter variable W and it's optimizer subgraph are placed on the parameter server. -1. Operators are added to the subgraphs. +1. The parameter variable W and it's optimizer program are placed on the parameter server. +1. Operators are added to the program. - *Send* sends data to the connected *Recv* operator. The scheduler on the receive node will only schedule *Recv* operator to run when the *Send* operator has ran (the *Send* OP will mark @@ -64,39 +63,30 @@ After converting: ### Benefits - Model parallelism become easier to implement: it's an extension to - the trainer - parameter server approach. we already have the - communication OPs, but need to extend the graph converter's - placement functionality. - + the trainer - parameter server approach. We can have several "Transpilers" + to achieve different goals. - User-defined optimizer is easier to add - user can now express it as - a subgraph. - + a sub-program. - No more duplication logic inside the trainer and the parameter server mentioned in the background section. ### Challenges -- It might be hard for the graph converter to cut a general graph - (without any hint for which subgraph is the optimizer). We may need - to label which subgraph inside the OP graph is the optimizer. - - It's important to balance the parameter shards of on multiple parameter server. If a single parameter is very big (some word-embedding, fully connected, softmax layer), we need to automatically partition the single parameter onto different parameter servers when possible (only element-wise optimizer depends on the parameter variable). +- In the "Aync SGD" figure, the "W" variable on the parameter server + could be read and wrote concurrently. See + [here](https://github.com/PaddlePaddle/Paddle/pull/6394) for more + details about concurrent program in fluid. ### Discussion -- In the "Aync SGD" figure, the "W" variable on the parameter server - could be read and wrote concurrently, what is our locking strategy? - E.g., each variable have a lock cpp method to be invoked by every - OP, or, have a lock OP. - - Can the Enqueue OP be implemented under our current tensor design (puts the input tensor into the queue tensor)? - - *Dequeue* OP will have variable numbers of output (depends on the `min_count` attribute), does our current design support it? (similar question for the *Add* OP) diff --git a/doc/design/refactor/src/compiler.graffle b/doc/design/dist_refactor/src/compiler.graffle similarity index 100% rename from doc/design/refactor/src/compiler.graffle rename to doc/design/dist_refactor/src/compiler.graffle diff --git a/doc/design/refactor/src/compiler.png b/doc/design/dist_refactor/src/compiler.png similarity index 100% rename from doc/design/refactor/src/compiler.png rename to doc/design/dist_refactor/src/compiler.png diff --git a/doc/design/refactor/src/dist-graph.graffle b/doc/design/dist_refactor/src/dist-graph.graffle similarity index 100% rename from doc/design/refactor/src/dist-graph.graffle rename to doc/design/dist_refactor/src/dist-graph.graffle diff --git a/doc/design/refactor/src/dist-graph.png b/doc/design/dist_refactor/src/dist-graph.png similarity index 100% rename from doc/design/refactor/src/dist-graph.png rename to doc/design/dist_refactor/src/dist-graph.png diff --git a/doc/design/dist_refactor/src/distributed_architecture.graffle b/doc/design/dist_refactor/src/distributed_architecture.graffle new file mode 100644 index 0000000000000000000000000000000000000000..d1b60141342232e06227c2d430ebc60ec349a907 Binary files /dev/null and b/doc/design/dist_refactor/src/distributed_architecture.graffle differ diff --git a/doc/design/dist_refactor/src/distributed_architecture.png b/doc/design/dist_refactor/src/distributed_architecture.png new file mode 100644 index 0000000000000000000000000000000000000000..29c7b0c0783f97c6d33b1db1ed484d6a2b9dd356 Binary files /dev/null and b/doc/design/dist_refactor/src/distributed_architecture.png differ diff --git a/doc/design/refactor/src/local-graph.graffle b/doc/design/dist_refactor/src/local-graph.graffle similarity index 100% rename from doc/design/refactor/src/local-graph.graffle rename to doc/design/dist_refactor/src/local-graph.graffle diff --git a/doc/design/refactor/src/local-graph.png b/doc/design/dist_refactor/src/local-graph.png similarity index 100% rename from doc/design/refactor/src/local-graph.png rename to doc/design/dist_refactor/src/local-graph.png diff --git a/doc/design/dist_refactor/src/local_architecture.graffle b/doc/design/dist_refactor/src/local_architecture.graffle new file mode 100644 index 0000000000000000000000000000000000000000..49fcc663ebe3824aa234e3a67aadf285cb417877 Binary files /dev/null and b/doc/design/dist_refactor/src/local_architecture.graffle differ diff --git a/doc/design/dist_refactor/src/local_architecture.png b/doc/design/dist_refactor/src/local_architecture.png new file mode 100644 index 0000000000000000000000000000000000000000..14adc9fd72b855bb9f74fbf2c84ac9ec0cf2b122 Binary files /dev/null and b/doc/design/dist_refactor/src/local_architecture.png differ diff --git a/doc/design/refactor/src/multi-threads.graffle b/doc/design/dist_refactor/src/multi-threads.graffle similarity index 100% rename from doc/design/refactor/src/multi-threads.graffle rename to doc/design/dist_refactor/src/multi-threads.graffle diff --git a/doc/design/refactor/src/multi-threads/multi-threads@3x.png b/doc/design/dist_refactor/src/multi-threads/multi-threads@3x.png similarity index 100% rename from doc/design/refactor/src/multi-threads/multi-threads@3x.png rename to doc/design/dist_refactor/src/multi-threads/multi-threads@3x.png diff --git a/doc/design/refactor/src/multi-threads/single-thread@3x.png b/doc/design/dist_refactor/src/multi-threads/single-thread@3x.png similarity index 100% rename from doc/design/refactor/src/multi-threads/single-thread@3x.png rename to doc/design/dist_refactor/src/multi-threads/single-thread@3x.png diff --git a/doc/design/refactor/src/paddle-compile.graffle b/doc/design/dist_refactor/src/paddle-compile.graffle similarity index 100% rename from doc/design/refactor/src/paddle-compile.graffle rename to doc/design/dist_refactor/src/paddle-compile.graffle diff --git a/doc/design/refactor/src/paddle-compile.png b/doc/design/dist_refactor/src/paddle-compile.png similarity index 100% rename from doc/design/refactor/src/paddle-compile.png rename to doc/design/dist_refactor/src/paddle-compile.png diff --git a/doc/design/dist_refactor/src/remote_executor.graffle b/doc/design/dist_refactor/src/remote_executor.graffle new file mode 100644 index 0000000000000000000000000000000000000000..ce2c18fee5687732053c48af9c8c290a994a8090 Binary files /dev/null and b/doc/design/dist_refactor/src/remote_executor.graffle differ diff --git a/doc/design/dist_refactor/src/remote_executor.png b/doc/design/dist_refactor/src/remote_executor.png new file mode 100644 index 0000000000000000000000000000000000000000..6be4b1841b99efdb59557975485d0387f422308c Binary files /dev/null and b/doc/design/dist_refactor/src/remote_executor.png differ diff --git a/doc/design/error_clip.md b/doc/design/error_clip.md new file mode 100644 index 0000000000000000000000000000000000000000..8e845462cce2a29556bcb6010b08f00fbc3d99d7 --- /dev/null +++ b/doc/design/error_clip.md @@ -0,0 +1,87 @@ +# Error Clip + +## Overview + +Error clip is widely used in model training to prevent gradient exploding. It takes some specific rules to adjust variables' gradients and prevent them from being too large. With it, values of a gradient will be checked before they are taken by the next `grad_op` and be shrunk if necessary. +## Usage + +Users are allowed to assign different error clip methods or attributes to different `Variable`s. Users can specify it as a parameter of `Variable`'s constructor: + +```python +var = framework.Variable(..., error_clip=myErrorClip, ...) +``` + +The default value of `error_clip` is `None`, which means no error clip is employed. When it's not `None`, it should take an object of `BaseErrorClipAttr`'s derived class. So far, `BaseErrorClipAttr` has only one derived class: `ErrorClipByValue`, whose constructor is: + +```python +ErrorClipByValue(max, min=None) +``` + +`max` and `min` represent the maximal and minimal clip threshold respectively. In backward pass, all values of `var`'s gradient greater than `max` or less than `min` will be clipped to `max` and `min` respectively. When the `min` is None, the minimal threshold will be assigned with `-max` automatically. + +So we can enable the error clip with threshold `[-5.0, 5.0]` for variable `var` by: + +```python +var = framework.Variable(..., error_clip=ErrorClipByValue(max=5.0), ...) +``` + +## Implementation + +The `BaseErrorClipAttr` and its derived class `ErrorClipByValue` are defined in *clip.py*. + +```python +class BaseErrorClipAttr(object): + def append_clip_op(self, block, grad_name): + raise NotImplementedError() + + +class ErrorClipByValue(BaseErrorClipAttr): + def __init__(self, max, min=None): + max = float(max) + if min is None: + min = -max + else: + min = float(min) + self.max = max + self.min = min + + def append_clip_op(self, block, grad_name): + block.append_op( + type="clip", + inputs={"X": grad_name}, + outputs={"Out": grad_name}, + attrs={"min": self.min, + "max": self.max}) +``` + +The `BaseErrorClipAttr` have one main member functions: `append_clip_op(self, block, grad_name)`. + +This function is used to create a `clip_op` and append it to the end of given `block`. For different error clip algorithm require different `clip_op`, the function is defined as virtual in the base class. All derived classes must implement their own versions of this function. + +These `clip_op`s should be inserted after `grad_op`s whose output gradients need to be clipped. It is equivalent to appending some `clip_op`s to the end of the target block every time a new `grad_op` is added. + +```python +for op_desc in grad_op_descs: + new_op_desc = target_block.desc.append_op() + new_op_desc.copy_from(op_desc) + callback(block=target_block, context=grad_to_var) +``` + +Here we employ a callback function to complete this kind of jobs. In `_append_backward_ops_` function, each time after a `grad_op` is added to the `target_block`, a callback function is invoked. The logic of `clip_op` appending can be implemented inside the callback function. + +The callback function for `clip_op` appending is defined in *clip.py*: + +```python +def error_clip_callback(block, context): + # the context is a grad_to_var map + grad_to_var = context + op_desc = block.desc.op(block.desc.op_size() - 1) + for grad_n in filter(lambda n: grad_to_var.has_key(n), + op_desc.output_arg_names()): + fwd_var = block.var_recursive(grad_to_var[grad_n]) + error_clip = getattr(fwd_var, "error_clip", None) + if error_clip is not None: + error_clip.append_clip_op(block, grad_n) +``` + +This function takes a `block` and a `context`(which is actually a grad\_to\_var map) as inputs. It checks each output of the last `OpDesc` in the `block`. Notice that the last `OpDesc` of the `block` must be a `grad_op` and its outputs must be some forward variables' gradients. If an output gradient's corresponding forward variable has an attribute of `error_clip`, `error_clip_callback` will call the `error_clip`'s `append_clip_op` function to append the required `clip_op` into the `block`. diff --git a/doc/design/images/control_flow_graph.png b/doc/design/images/control_flow_graph.png new file mode 100644 index 0000000000000000000000000000000000000000..3579998e58d07abc50bd3332128d4733a391cb3b Binary files /dev/null and b/doc/design/images/control_flow_graph.png differ diff --git a/doc/design/images/dataflow_equations.png b/doc/design/images/dataflow_equations.png new file mode 100644 index 0000000000000000000000000000000000000000..c10f7f69f4007952e5b0394edaa04efa1cfbb658 Binary files /dev/null and b/doc/design/images/dataflow_equations.png differ diff --git a/doc/design/images/deep_learning.png b/doc/design/images/deep_learning.png new file mode 100644 index 0000000000000000000000000000000000000000..026becc4d94e01e407dacb2a5314a0e5723334ff Binary files /dev/null and b/doc/design/images/deep_learning.png differ diff --git a/paddle/framework/images/duplicate_op.graffle b/doc/design/images/duplicate_op.graffle similarity index 100% rename from paddle/framework/images/duplicate_op.graffle rename to doc/design/images/duplicate_op.graffle diff --git a/paddle/framework/images/duplicate_op.png b/doc/design/images/duplicate_op.png similarity index 100% rename from paddle/framework/images/duplicate_op.png rename to doc/design/images/duplicate_op.png diff --git a/paddle/framework/images/duplicate_op2.graffle b/doc/design/images/duplicate_op2.graffle similarity index 100% rename from paddle/framework/images/duplicate_op2.graffle rename to doc/design/images/duplicate_op2.graffle diff --git a/paddle/framework/images/duplicate_op2.png b/doc/design/images/duplicate_op2.png similarity index 100% rename from paddle/framework/images/duplicate_op2.png rename to doc/design/images/duplicate_op2.png diff --git a/doc/design/images/profiler.png b/doc/design/images/profiler.png new file mode 100644 index 0000000000000000000000000000000000000000..d57b71ca88aaba5d05584a6219d84214e285a1e1 Binary files /dev/null and b/doc/design/images/profiler.png differ diff --git a/doc/design/memory_optimization.md b/doc/design/memory_optimization.md new file mode 100644 index 0000000000000000000000000000000000000000..00f514711a46bfd5af3bae51e0d9225ecc4c8998 --- /dev/null +++ b/doc/design/memory_optimization.md @@ -0,0 +1,217 @@ +# Memory Optimization + + +## Problem + +In a lecture from Andrew Ng, he attributes the recent sucess of AI due to a combination of these: + +- availability of Big Data +- supercomputing power to process this Big Data over very large neural networks +- modern algorithms + +Following graph shows the details: + +![](images/deep_learning.png) + +Larger model usually brings better performance. However, GPU memory is certain limited. For example, the memory size of a GTX TITAN X is only 12GB. To train complex and large model, we have to take care of memory using. Besides, memory optimization is also necessary in both online/mobile inference. + +## Solution + +### Basic Strategy + +There are some basic strategies to make memory optimization, including in-place operation and memory sharing. + +#### In-place Operation +In a relu activation operator: + +$y = \max(x, 0)$ + +If the variable x is not used in any other operator, we can make an in-place operation. In other words, the memory block of variable y and variable x are the same. In-place operation will save 50% memory occupancy immediately. + +#### Memory Sharing + +Not all operators support in-place operations. Memory sharing is a more general strategy. + +Following is an example: + +``` +a = op1(b, c); +d = op2(a) +e = op3(d, f) +``` + +In this case, variable a is no longer used, and op2 does not support in-place operation. After op2 finished, we can put the memory of variable a to a memory pool. Then, variable e can share the memory of variable a from the pool. + + +### Live Variable Analysis + +It's not enough to only have some basic strategies. The prerequisite of memory optimization is to know if a variable is still "live" after an operation. + +In our design, the neural network topology is defined as a program. Luckily, [live variable analysis](https://en.wikipedia.org/wiki/Live_variable_analysis) is a classic problem in compilers which can be used in many stages, such as register allocation. + +In compilers, the front end of the compilers translates programs into an intermediate language with an unbounded number of temporaries. This program must run on a machine with a bounded number of registers. Two temporaries a and b can fit into the same register, if a and b are never "in use" at the same time. Thus, many temporaries can fit in few registers; if they don't all fit, the excess temporaries can be kept in memory. + +Therefore, the compiler needs to analyze the intermediate-representation program to determine which temporaries are in use at the same time. We say a variable is "live" if it holds a value that may be needed in the future, so this analysis is called liveness analysis. + +We can leran these techniques from compilers. There are mainly two stages to make live variable analysis: + +- construct a control flow graph +- solve the dataflow equations + + +#### Control Flow Graph +To preform analyses on a program, it is often useful to make a control flow graph. A [control flow graph](https://en.wikipedia.org/wiki/Control_flow_graph) (CFG) in computer science is a representation, using graph notation, of all paths that might be traversed through a program during its execution. Each statement in the program is a node in the flow graph; if statemment x can be followed by statement y, there is an egde from x to y. + +Following is the flow graph for a simple loop. + +![](images/control_flow_graph.png) + +#### Dataflow Analysis + +liveness of variable "flows" around the edges of the control flow graph; determining the live range of each variable is an example of a dataflow problem. [Dataflow analysis](https://en.wikipedia.org/wiki/Data-flow_analysis) is a technique for gathering information about the possible set of values calculated at various points in a computer program. + +A simple way to perform data-flow analysis of programs is to set up dataflow equations for each node of the control flow graph and solve them by repeatedly calculating the output from the input locally at each node until the whole system stabilizes. + +- Flow Graph Terminology + +A flow graph node has out-edges that lead to sucessor nodes, and in-edges that come from presucessor nodes. The set *pred[n]* is all the predecessors of node n, and *succ[n]* is the set of sucessors. +In former control flow graph, the out-edges of node 5 are 5 --> 6 and 5 --> 2, and *succ[5]* = {2, 6}. The in-edges of 2 are 5 --> 2 and 1 --> 2, and *pred[2]* = {1, 5}. + +- Uses and Defs + +An assignmemt to a variable or temporary defines that variable. An occurence of a variable on the right-hand side of an assginment(or in other expressions) uses the variable. We can speak the *def* of a variable as the set of graph nodes that define it; or the *def* of a graph node as the set of variables that it defines; and the similarly for the *use* of a variable or graph node. In former control flow graph, *def(3)* = {c}, *use(3)* = {b, c}. + +- Liveness + +A variable is *live* on an edge if there is a directed path from that edge to a *use* of the variable that does not go through any *def*. A variable is *live-in* at a node if it is live on any of the in-edges of that node; it is *live-out* at a node if it is live on any of the out-edges of the node. + + +The calcution of liveness can be solved by iteration until a fixed pointer is reached. Following is the recursive formula: + +![](images/dataflow_equations.png) + +### Memory optimization transpiler + +At last, we take basic strategy and liveness analysis techniques learning from compilers to implement our memory optimization transpiler. + +#### add in-place attribute + +In-place is a built-in attribute of an operator. Since we treat in-place and other operators differently, we have to add an in-place attribute for every operator. + + +#### contruct control flow graph + +Following is the ProgramDesc protobuf of [machine translation](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book/test_machine_translation.py) example. + +- Block0: + +``` +lookup_table +mul +... +while(sub-block idx 1) +... +array_to_lod_tensor +cross_entropy +... +while_grad(sub-block idx 2) +read_from_array +array_to_lod_tensor +... +``` + +- Block1 + +``` +read_from_array +read_from_array +... +write_to_array +increment +write_to_array +less_than +``` + +- Block2 + +``` +read_from_array +increment +... +write_to_array +write_to_array +``` + +We can transfer all the operators and variables in ProgramDesc to build a control flow graph. + +```python +class ControlFlowGraph(object): + def __init__(self, Program): + self._sucessors = defaultdict(set) + self._presucessors = defaultdict(set) + self._uses = defaultdict(set) + self._defs = defaultdict(set) + self._live_in = defaultdict(set) + self._live_out = defaultdict(set) + self._program = Program + + def build(self): + pass + + def dataflow_analysis(self): + pass + + def memory_optimization(self): + pass + + def get_program(self): + return self._program +``` + +#### make dataflow analysis + +We follow guide from compilers and try to solve the dataflow equation to get liveness of every variable. If the live-in of an operator node is different from the live-out, then we can make memory sharing. + +For example: + +``` +a = op1(b, c); +d = op2(a) +e = op3(d, f) +``` + +The dataflow analysis result is: + +``` +live_in(op1) = {b, c, f} +live_out(op1) = {a, f} + +live_in(op2) = {a, f} +live_out(op2) = {d, f} + +live_in(op3) = {d, f} +live_out(op3) = {} +``` + +After op1, we can process variable b and variable c; After op2, we can process variable a. After op3, we can process variable d and variable f. + +#### memory sharing policy + +A memory pool will be mantained in the stage of memory optimization. Each operator node will be scanned to determine memory optimization is done or not. If an operator satifies the requirement, following policy will be taken to handle input/output variables. + +``` +if op.support_inplace(): + i --> pool + pool --> o +else: + pool --> o + i --> pool +``` + + + +## Reference + +- [Lecture Notes From Artificial Intelligence Is The New Electricity By Andrew Ng](https://manavsehgal.com/lecture-notes-from-artificial-intelligence-is-the-new-electricity-by-andrew-ng-4712dcbf26e5) +- Modern compiler implementation in ML, by Andrew W. Appel +- [Optimizing Memory Consumption in Deep learning](https://mxnet.incubator.apache.org/architecture/note_memory.html) diff --git a/doc/design/profiler.md b/doc/design/profiler.md new file mode 100644 index 0000000000000000000000000000000000000000..b20b5efdc1f1f10ce7cec835adcc6fb374ed4e20 --- /dev/null +++ b/doc/design/profiler.md @@ -0,0 +1,97 @@ +## Introduction + +There are many performance analysis tools for [different programming languages and different software frameworks](https://en.wikipedia.org/wiki/List_of_performance_analysis_tools). For most popular deep learning frameworks, they use several programming languages and adapt to heterogeneous platforms. Similar to most of the deep learning frameworks, PaddlePaddle also uses C++, CUDA and Python as the basic programming languages to adapt to run on CPU and GPU devices. The [`nvprof` tools](http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview) is usually used to analyse the CUDA program. We have [a document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/optimization/cpu_profiling.md) to profile CPU and Python program by [yep](https://pypi.python.org/pypi/yep) and [Google's perftools](https://github.com/google/pprof) to profile only the CPU and Python program. But for [PaddlePaddle fluid](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/fluid.md), the operator is the basic computing unit. The developers usually want to collect the time of each operator and locate bottlenecks. The `nvprof` usually collect the timeline of CUDA-related activities on both CPU and GPU, including kernel execution, memory transfers, memory set and CUDA API calls and events or metrics for CUDA kernels. And the `yep` and `Google's perftools` can't collect the timeline for CUDA program. All these tools can't collect time in the operator level. So we design this profiling tool. + +## Architecture + +The work flow for most task is as follows. Each operator will run many times in the all iterations. So the profiler must collect the total time of each operator during the iteration. For more, sometimes, the developers may want to collect more detailed time span inside the operator or record time span for elsewhere, this requires that the profiler must support to record the nested time span. And in order to speedup training, all the deep learning frameworks support parallel computing, including multiple threads on CPU and multiple GPUs. So the profiler must be able to collect the timeline for each thread. In addition, the profiler also occupies certain resources. It must can be easily to be enabled or disabled by the developers. At last, the profiler should present a human-readable report. + +```python +for i in xrange(M): # M is the iteration number + for op in operator_lists: # The `operator_lists` contains all the operators in the network. + op.run(); +``` + +In summary, the proflier should have following features: + +- records time span in loop. +- supports nested time span. +- supports multiple threads/multiple GPUs. +- supports to be enabled and disabled by users. + +But how to record the time for the mixed C++ and CUDA program? There many C++ APIs to get the current calendar time in host program. But for GPU, the CUDA kernels may be executed concurrently if they are in different [streams](http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams) and the CUDA kernels is asynchronous with the host program if there is no the synchronous aftern the CUDA kernels. CUDA provides [event](http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#events) to monitor the device and perform accurate timing. Inspired by PyTorch and CUDA event, we also design and apply the events to record the timeline. Then summarize and present statistics based on these events. + +The overall flow is shown as the following figure. + +
+ +### Event + +In above work flow, a pair of events are needed before and after the piece of code to collect time. So the event has a flag to mark whether it is a starting event or an ending event. Except this two kinds of event, sometime, a only marker with a text message is needed, for example, a marker to specify the profiling start or end. There are three kinds of event: + +```c++ +enum EventKind { + kMark, + kPushRange, + kPopRange}; +``` +- kMark: only a marker without time range. +- kPushRange: mark the starting event for time range. +- kPopRange: mark the ending event for time range. + +For the CPU code, the events only need to record the current time. For the CUDA code, the [event management functions of CUDA](http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT) are used. For many pieces of code, an event lists are used to record each piece. + +```c++ +class Event { + public: + // The DeviceContext is used to get current CUDA stream. + Event(EventKind kind, std::string name, uint32_t thread_id, + const platform::DeviceContext* dev_ctx = nullptr); + double CpuElapsedUs(const Event& e) const; + double CudaElapsedUs(const Event& e) const; + + private: + EventKind kind_; + std::string name_; + uint32_t thread_id_; + int64_t cpu_ns_; +#ifdef PADDLE_WITH_CUDA + cudaEvent_t event_ = nullptr; + int device_ = -1; +#endif +}; + +struct EventList { + std::forward_list> event_blocks; +}; +``` + +As mentioned above, there is no need to record the timeline when disabling the profiler. So there is a global state to enable or disable the profiler. + +```c++ +enum ProfilerState { + kDisabled, + kCPU, + kCUDA +}; +ProfilerState g_state; +``` +- kDisabled: the disabled state. +- kCPU: CPU profiling state. +- kCUDA: GPU profiling state. + +A pair of starting and ending events are pushed to event lists in constructor and destructor of `RecordEvent`. So the timeline is recorded for the code in the lifecycle of an object of `RecordEvent`. + +```c++ +struct RecordEvent { + explicit RecordEvent(const std::string name, + platform::DeviceContext* dev_ctx = nullptr) { + if (kState == ProfilerState::kDisabled) return; + // push the starting event to the event lists. + } + ~RecordEvent() { + if (kState == ProfilerState::kDisabled) return; + // push the ending event to the event lists. + } +}; +``` diff --git a/doc/design/refactor/session.md b/doc/design/refactor/session.md deleted file mode 100644 index 1d9a26683c14f54e3b5fe41675cd03b5620646b8..0000000000000000000000000000000000000000 --- a/doc/design/refactor/session.md +++ /dev/null @@ -1,180 +0,0 @@ -# Design Doc: Session - -## Abstract - -The *session* object encapsulates the environment in which the -computation graph is executed. - -We will have the *local* session and *remote* session, they offer the -same [interface](#interface). The local session encapsulates the local -runtime environment and the remote session encapsulates the cluster -runtime environment. - -The local runtime environment contains: - -1. computation devices (i.e., CPU, GPU) handles, and -1. the [scope](../scope.md) which holds all variables. - -The remote runtime environment contains: - -1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster, - and -1. the distributed [scope](../scope.md) in a cluster which holds all - variables. - -The user can create a remote session on Paddle Cloud and evaluate the -computation graph with it. In this way, the user can control the -remote computation resource in a cluster from his local computer. - - -## Background - -The current design has an implicit global session in which -`paddle.eval()` is executed. The pain point is: - -Since the user is not able to explicitly switch between runtime -environments, the user cannot run a topology in two independent -environments. - -For example, in reinforcement learning, the user may want to have a -stale model for inference and a fresh model for training, and only -replace the stale model with the fresh model periodically. - -Furthermore, we have no concept that encapsulates a remote environment -that executes a computation graph. - -We need the session object to address above issues. - - -## Session - -A session is an object that owns the runtime environment. All -computations are executed through `session.eval()`. - - -### Interface - -```python -eval( - targets, - feed_dict=None, -) -``` - -Evaluates the target Operations or Variables in `targets`. - -- *targets*: the evaluation targets. Can be a single Operation or - Variable, or a list with the Operations or Variables as - elements. The value returned by `eval()` has the same shape as the - `target` argument. - - The PaddlePaddle program is represented by - the [ProgramDesc](../design/program.md), `eval()` will infer the - ProgramDesc from the given targets and run the PaddlePaddle - program. Please - see - [this graph](./distributed_architecture.md#local-training-architecture) for - the detailed illustration for the local session - and - [this graph](./distributed_architecture.md#distributed-training-architecture) for - the detailed illustration for the remote session. - -- *feed_dict*: a dictionary that contains the tensors which override - the edges of the computation graph. - - feed_dict not only can provide the input data, it can override any - OP's input as well: - - ```python - a = pd.constant(2.0, name="a") - b = pd.variable(name="b") - c = pd.mul(a,b) - sess.eval(targets=c, feed_dict={"b":3.0}) # returns 6.0 - ``` - -```python -close() -``` - -Closes the session and releases the scope that the session owns. - - -### Create a Local Session - -```python -session( - devices=None -) -``` - -Creates a new session. One session owns one global scope, so creating -multiple sessions will create different scopes. - -- *devices*: a single `string` or a list of `string` of device names, - the corresponding devices will be the computation devices for - `eval()`. If not specified, all available devices (e.g., all GPUs) - will be used. The user doesn't need to specify the CPU device since - it will be always used. Multiple sessions can use the same device. - - -#### Example - -```Python -a = paddle.constant(1.0) -b = paddle.constant(2.0) -c = a + b -sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"]) -sess.eval(c) -sess.close() -``` - -### Create a Remote Session - -```python -create_cloud_job( - name, - num_trainer, - mem_per_trainer, - gpu_per_trainer, - cpu_per_trainer, - num_ps, - mem_per_ps, - cpu_per_ps, -) -``` - -Creates a Paddle Cloud job. Fails if the job name exists. - -```python -get_cloud_job( - name -) -``` - -Gets a Paddle Cloud job. - -```python -remote_session( - job -) -``` - -- *job*: the Paddle Cloud job. - -#### Example - -```Python -reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud -image = reader.column(0) -label = reader.column(1) -fc1 = paddle.op.fc(image, size=256, act="sigmoid") -fc2 = paddle.op.fc(fc1, size=10, act="softmax") -cost = paddle.op.cross_entropy(fc2, label) -opt = paddle.optimizer.sgd(cost) - -job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1) -sess = paddle.remote_ession(job) -for i in range(1000): - sess.eval(opt) -sess.close() -``` diff --git a/doc/design/refactor/src/distributed_architecture.graffle b/doc/design/refactor/src/distributed_architecture.graffle deleted file mode 100644 index f8496e57326c38de7468eb452a7713291d57653c..0000000000000000000000000000000000000000 Binary files a/doc/design/refactor/src/distributed_architecture.graffle and /dev/null differ diff --git a/doc/design/refactor/src/distributed_architecture.png b/doc/design/refactor/src/distributed_architecture.png deleted file mode 100644 index 410c4510c6aab301dec95e6427fe80ac24e105fe..0000000000000000000000000000000000000000 Binary files a/doc/design/refactor/src/distributed_architecture.png and /dev/null differ diff --git a/doc/design/refactor/src/local_architecture.graffle b/doc/design/refactor/src/local_architecture.graffle deleted file mode 100644 index cc7783c45381f25ded0b898649322c81418ad317..0000000000000000000000000000000000000000 Binary files a/doc/design/refactor/src/local_architecture.graffle and /dev/null differ diff --git a/doc/design/refactor/src/local_architecture.png b/doc/design/refactor/src/local_architecture.png deleted file mode 100644 index 4b999538b7825c805292ee28b5e3256d5543bd09..0000000000000000000000000000000000000000 Binary files a/doc/design/refactor/src/local_architecture.png and /dev/null differ diff --git a/doc/design/releasing_process.md b/doc/design/releasing_process.md index 14c081ea84282e52a2e36475c3c0ea755122d154..b9787261092f1f27377886152cb1596d9ff54188 100644 --- a/doc/design/releasing_process.md +++ b/doc/design/releasing_process.md @@ -7,11 +7,9 @@ PaddlePaddle每次发新的版本,遵循以下流程: 1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0` 1. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 1. 对这个版本的提交,做如下几个操作: + * 使用Regression Test List作为检查列表,测试本次release的正确性。 + * 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,到第二步 * 修改`python/setup.py.in`中的版本信息,并将`istaged`字段设为`True`。 - * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步 - * 编译这个版本的Ubuntu Deb包。如果失败,修复Ubuntu Deb包编译问题,Patch号加一,返回第二步。 - * 使用Regression Test List作为检查列表,测试Docker镜像/ubuntu安装包的功能正确性 - * 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,返回第二步 * 编译这个版本的python wheel包,并发布到pypi。 * 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`。 * pypi上的package名称为paddlepaddle和paddlepaddle_gpu,如果要上传GPU版本的包,需要修改build/python/setup.py中,name: "paddlepaddle_gpu"并重新打包wheel包:`python setup.py bdist_wheel`。 @@ -21,8 +19,8 @@ PaddlePaddle每次发新的版本,遵循以下流程: pip install twine twine upload dist/[package to upload] ``` + * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步 1. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。 -1. 编译master分支的Docker发行镜像,发布到dockerhub。编译ubuntu的deb包,发布到github release页面 1. 协同完成Release Note的书写 @@ -31,6 +29,30 @@ PaddlePaddle每次发新的版本,遵循以下流程: * `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。 * 在`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。 +## 发布wheel包到pypi + +使用[PaddlePaddle CI](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview) +完成自动化二进制编译,参考下图,选择需要发布的版本(通常包含一个CPU版本和一个GPU版本),点击"run"右侧的"..."按钮,可以 +弹出下面的选择框,在第二个tab (Changes)里选择需要发布的分支,这里选择0.11.0,然后点击"Run Build"按钮。等待编译完成后 +可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m`和`cp27mu`的版本。然后按照上述的方法 +使用`twine`工具上传即可。 + + + +* 注:CI环境使用 https://github.com/PaddlePaddle/buildtools 这里的DockerImage作为编译环境以支持更多的Linux + 发型版,如果需要手动编译,也可以使用这些镜像。这些镜像也可以从 https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/ 下载得到。 +* pypi不支持覆盖上传,所以一个版本号的wheel包发布之后,不可以更改。下一个wheel包需要更新版本号才可以上传。 + +## 发布Docker镜像 + +上述PaddlePaddle CI编译wheel完成后会自动将Docker镜像push到DockerHub,所以,发布Docker镜像只需要对自动push的镜像打上 +版本号对应的tag即可: + +1. 进入 https://hub.docker.com/r/paddlepaddle/paddle/tags/ 查看latest tag的更新时间是否在上述编译wheel包完成后是否最新。 +1. 执行 `docker pull paddlepaddle/paddle:[latest tag]`,latest tag可以是latest或latest-gpu等。 +1. 执行 `docker tag paddlepaddle/paddle:[latest tag] paddlepaddle/paddle:[version]` +1. 执行 `docker push paddlepaddle/paddle:[version]` + ## PaddlePaddle 分支规范 PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 diff --git a/doc/design/support_new_device.md b/doc/design/support_new_device.md index f54b2b3694cc2a8f1d892792fd4d39a0484dc750..4c5f10e2ecb9ec09b78926ca27552741d02d7cc9 100644 --- a/doc/design/support_new_device.md +++ b/doc/design/support_new_device.md @@ -48,8 +48,8 @@ Fluid uses class [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/dev ``` - /-> CPUDeviceContext --> MKLDeviceContext -DeviceContext ----> CUDADeviceContext --> CUDNNDeviceContext + /-> CPUDeviceContext +DeviceContext ----> CUDADeviceContext \-> FPGADeviceContext ``` @@ -79,16 +79,6 @@ private: }; ``` -- CUDNNDeviceContext - -``` -class CUDNNDeviceContext : public CUDADeviceContext { - private: - cudnnHandle_t cudnn_handle_; -}; -``` - - ### Memory and Tensor diff --git a/doc/getstarted/build_and_install/docker_install_cn.rst b/doc/getstarted/build_and_install/docker_install_cn.rst index fa1b6a372728ccac128d2e6e79a6514b8884ea3f..bae42593ddc6f7a7eb47d603752ad6efa9820b45 100644 --- a/doc/getstarted/build_and_install/docker_install_cn.rst +++ b/doc/getstarted/build_and_install/docker_install_cn.rst @@ -15,7 +15,7 @@ 获取PaddlePaddle的Docker镜像 ------------------------------ -执行下面的命令获取最新的PaddlePaddle Docker镜像 +执行下面的命令获取最新的PaddlePaddle Docker镜像,版本为cpu_avx_mkl: .. code-block:: bash @@ -27,7 +27,7 @@ docker pull docker.paddlepaddle.org/paddle -下载GPU版本的Docker镜像: +下载GPU版本(cuda8.0_cudnn5_avx_mkl)的Docker镜像: .. code-block:: bash @@ -54,7 +54,7 @@ .. _docker_run: 在Docker中执行PaddlePaddle训练程序 ------------------------------- +---------------------------------- 假设您已经在当前目录(比如在/home/work)编写了一个PaddlePaddle的程序 :code:`train.py` (可以参考 `PaddlePaddleBook `_ @@ -82,7 +82,7 @@ .. _docker_run_book: 使用Docker启动PaddlePaddle Book教程 ------------------------------- +----------------------------------- 使用Docker可以快速在本地启动一个包含了PaddlePaddle官方Book教程的Jupyter Notebook,可以通过网页浏览。 PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。 diff --git a/doc/getstarted/build_and_install/docker_install_en.rst b/doc/getstarted/build_and_install/docker_install_en.rst index 06012bf65e75c32957516f6b7f62e09480871b84..56a7c68e4d39c45249fa55a964dc48b7081596a6 100644 --- a/doc/getstarted/build_and_install/docker_install_en.rst +++ b/doc/getstarted/build_and_install/docker_install_en.rst @@ -16,7 +16,7 @@ After you've read above tutorials you may proceed the following steps. Pull PaddlePaddle Docker Image ------------------------------ -Run the following command to download the latest Docker images: +Run the following command to download the latest Docker images, the version is cpu_avx_mkl: .. code-block:: bash @@ -28,7 +28,7 @@ For users in China, we provide a faster mirror: docker pull docker.paddlepaddle.org/paddle -Download GPU version images: +Download GPU version (cuda8.0_cudnn5_avx_mkl) images: .. code-block:: bash @@ -58,7 +58,7 @@ and run: .. _docker_run: Launch your training program in Docker ------------------------------- +-------------------------------------- Assume that you have already written a PaddlePaddle program named :code:`train.py` under directory :code:`/home/work` (refer to diff --git a/doc/getstarted/build_and_install/pip_install_cn.rst b/doc/getstarted/build_and_install/pip_install_cn.rst index a4587f82a984acf243f49834e707fcd66d5b1252..0c741e936b46eda5e7165e4ee54b545b14a28a19 100644 --- a/doc/getstarted/build_and_install/pip_install_cn.rst +++ b/doc/getstarted/build_and_install/pip_install_cn.rst @@ -11,14 +11,14 @@ PaddlePaddle可以使用常用的Python包管理工具 ------------------------------ -执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境,并自动下载安装依赖软件。 +执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境,并自动下载安装依赖软件,版本为cpu_avx_openblas。 .. code-block:: bash pip install paddlepaddle -如果需要安装支持GPU的版本,需要执行: +如果需要安装支持GPU的版本(cuda7.5_cudnn5_avx_openblas),需要执行: .. code-block:: bash diff --git a/doc/getstarted/build_and_install/pip_install_en.rst b/doc/getstarted/build_and_install/pip_install_en.rst index 55e31560a0f5087ab69966a6281c6c8573c04204..285ed09805b09790beaef014f6813c227aff33ac 100644 --- a/doc/getstarted/build_and_install/pip_install_en.rst +++ b/doc/getstarted/build_and_install/pip_install_en.rst @@ -12,14 +12,14 @@ Install Using pip ------------------------------ Run the following command to install PaddlePaddle on the current -machine, it will also download requirements. +machine, it will also download requirements, the version is cpu_avx_openblas. .. code-block:: bash pip install paddlepaddle -If you wish to install GPU version, just run: +If you wish to install GPU version (cuda7.5_cudnn5_avx_openblas), just run: .. code-block:: bash diff --git a/doc/getstarted/index_cn.rst b/doc/getstarted/index_cn.rst index a9087be6f350c5656cabb0c64ba0f200d1c666cc..9f6ee25987d51dcca3a37cf0f62a70a5a5a2d89a 100644 --- a/doc/getstarted/index_cn.rst +++ b/doc/getstarted/index_cn.rst @@ -7,13 +7,13 @@ ++++++++ PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12,并安装有Python2.7。 -执行下面的命令完成快速安装: +执行下面的命令完成快速安装,版本为cpu_avx_openblas: .. code-block:: bash pip install paddlepaddle -如果需要安装支持GPU的版本,需要执行: +如果需要安装支持GPU的版本(cuda7.5_cudnn5_avx_openblas),需要执行: .. code-block:: bash diff --git a/doc/getstarted/index_en.rst b/doc/getstarted/index_en.rst index d14e3f5c0cc90792fce9cb82e65da482c44dc433..063d9d880c82550f7f5d47d3d0b1fff59865bca7 100644 --- a/doc/getstarted/index_en.rst +++ b/doc/getstarted/index_en.rst @@ -8,13 +8,13 @@ Quick Install You can use pip to install PaddlePaddle with a single command, supports CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed. -Simply run the following command to install: +Simply run the following command to install, the version is cpu_avx_openblas: .. code-block:: bash pip install paddlepaddle -If you need to install GPU version, run: +If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run: .. code-block:: bash diff --git a/doc/howto/usage/cluster/cluster_train_cn.md b/doc/howto/usage/cluster/cluster_train_cn.md index 659bae9c0ceaf2fb2df8446b9d406a822a9df0ea..c2fc86687d7106aac7c74d6dd16bc229353cb7c1 100644 --- a/doc/howto/usage/cluster/cluster_train_cn.md +++ b/doc/howto/usage/cluster/cluster_train_cn.md @@ -51,7 +51,7 @@ $ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num - port:**必选,默认7164**,pserver监听的起始端口,根据ports_num决定总端口个数,从起始端口监听多个端口用于通信 - ports_num:**必选,默认1**,监听的端口个数 -- ports_num_for_sparse:**必选,默认1**,用于稀疏类型参数通信的端口个数 +- ports_num_for_sparse:**必选,默认0**,用于稀疏类型参数通信的端口个数 - num_gradient_servers:**必选,默认1**,当前训练任务pserver总数 ### 启动计算节点 @@ -60,7 +60,7 @@ $ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num $ python train.py ``` -trainer需要和pserver保持网络联通以完成训练。trainer启动需要传入端口、pserver地址等参数使trainer可以正确连接到pserver。这些参数可以通过环境变量(https://zh.wikipedia.org/wiki/环境变量 )或编写程序时`paddle.init()`中传入参数。如果同时使用`paddle.init()`参数和环境变量,将会优先使用`paddle.init()`中传入的参数。 +trainer需要和pserver保持网络联通以完成训练。trainer启动需要传入端口、pserver地址等参数使trainer可以正确连接到pserver。这些参数可以通过[环境变量](https://zh.wikipedia.org/wiki/环境变量)或编写程序时`paddle.init()`中传入参数。如果同时使用`paddle.init()`参数和环境变量,将会优先使用`paddle.init()`中传入的参数。 使用环境变量: @@ -95,7 +95,7 @@ paddle.init( - trainer_count:**必选,默认1**,当前训练任务trainer总个数 - port:**必选,默认7164**,连接到pserver的端口 - ports_num:**必选,默认1**,连接到pserver的端口个数 -- ports_num_for_sparse:**必选,默认1**,和pserver之间用于稀疏类型参数通信的端口个数 +- ports_num_for_sparse:**必选,默认0**,和pserver之间用于稀疏类型参数通信的端口个数 - num_gradient_servers:**必选,默认1**,当前训练任务pserver总数 - trainer_id:**必选,默认0**,每个trainer的唯一ID,从0开始的整数 - pservers:**必选,默认127.0.0.1**,当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 diff --git a/doc/howto/usage/cluster/cluster_train_en.md b/doc/howto/usage/cluster/cluster_train_en.md index 915405ca5b446981515e301ca4b7ee065a82a9ff..28cd1fa7903e559e33a7fc2f00172fdfbe2fdc97 100644 --- a/doc/howto/usage/cluster/cluster_train_en.md +++ b/doc/howto/usage/cluster/cluster_train_en.md @@ -52,7 +52,7 @@ Parameter Description - port: **required, default 7164**, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput. - ports_num: **required, default 1**, total number of ports will listen on. -- ports_num_for_sparse: **required, default 1**, number of ports which serves sparse parameter update. +- ports_num_for_sparse: **required, default 0**, number of ports which serves sparse parameter update. - num_gradient_servers: **required, default 1**, total number of gradient servers. ### Starting trainer @@ -98,7 +98,7 @@ Parameter Description - trainer_count: **required, default 1**, total count of trainers in the training job. - port: **required, default 7164**, port to connect to parameter server. - ports_num: **required, default 1**, number of ports for communication. -- ports_num_for_sparse: **required, default 1**, number of ports for sparse type caculation. +- ports_num_for_sparse: **required, default 0**, number of ports for sparse type caculation. - num_gradient_servers: **required, default 1**, total number of gradient server. - trainer_id: **required, default 0**, ID for every trainer, start from 0. - pservers: **required, default 127.0.0.1**, list of IPs of parameter servers, separated by ",". diff --git a/doc/mobile/cross_compiling_for_android_cn.md b/doc/mobile/cross_compiling_for_android_cn.md index 424d7718c64438496cf0895397babd5408e1ca02..ae24ced770492743065e37654b494caf6b4c5bc0 100644 --- a/doc/mobile/cross_compiling_for_android_cn.md +++ b/doc/mobile/cross_compiling_for_android_cn.md @@ -1,8 +1,9 @@ # Android平台编译指南 用户可通过如下两种方式,交叉编译Android平台上适用的PaddlePaddle库: -- 基于Docker容器的编译方式 -- 基于Linux交叉编译环境的编译方式 + +- [基于Docker容器的编译方式](#基于docker容器的编译方式) +- [基于Linux交叉编译环境的编译方式](#基于linux交叉编译环境的编译方式) ## 基于Docker容器的编译方式 Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行,因此,使用基于Docker容器的编译方式,用户可在自己熟悉的开发平台上编译Android平台上适用的PaddlePaddle库。 @@ -16,6 +17,12 @@ $ cd Paddle $ docker build -t username/paddle-android:dev . -f Dockerfile.android ``` +用户也可以使用PaddlePaddle提供的官方开发镜像: + +```bash +$ docker pull paddlepaddle/paddle:latest-dev-android +``` + ### 编译PaddlePaddle C-API库 构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。 Android的Docker开发镜像向用户提供两个可配置的参数: @@ -41,23 +48,25 @@ Android的Docker开发镜像向用户提供两个可配置的参数: ANDROID_API - >= 21 + >= 16 21 - 编译`armeabi-v7a`,`Android API 21`的PaddlePaddle库 + ```bash $ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev ``` - 编译`arm64-v8a`,`Android API 21`的PaddlePaddle库 + ```bash $ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev ``` -执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文**配置交叉编译参数**章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 +执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 ## 基于Linux交叉编译环境的编译方式 本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。 @@ -83,6 +92,7 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain 此命令将在`your/path/to/arm_standalone_toolchain`目录生成一套独立编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 - 构建`arm64-v8a`、 `Android API 21`的独立工具链: + ```bash your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \ --arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain @@ -90,14 +100,12 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain 此命令将在`your/path/to/arm64_standalone_toolchain`目录生成一套独立编译工具链,面向架构为64位ARM64架构,支持的最小Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 -注意:**PaddlePaddle要求使用的编译工具链所支持的Android API级别不小于21**。 - ### 配置交叉编译参数 CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)。 交叉编译Android版本的PaddlePaddle库时,有一些必须配置的参数: -- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及Android所需`arm_soft_fp_abi`分支的目标机版OpenBLAS库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`)。 +- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译PaddlePaddle所需的所有第三方库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`、`WITH_MKL=OFF`、`WITH_GOLANG=OFF`)。 - `WITH_C_API`,必须设置为`ON`。在Android平台上只支持使用C-API来预测。 - `WITH_SWIG_PY`,必须设置为`OFF`。在Android平台上不支持通过swig调用来训练或者预测。 @@ -119,7 +127,7 @@ Android平台可选配置参数: 其他配置参数: - `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算。可设置`ON/OFF`,默认值为`OFF`。 -- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。 +- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC/CXX`的值;若环境变量`CC/CXX`没有设置,则设置成`cc/c++`编译器。 常用的cmake配置如下: @@ -147,9 +155,10 @@ cmake -DCMAKE_SYSTEM_NAME=Android \ .. ``` -用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。 +用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS`来影响PaddlePaddle的编译过程。 **性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议: + - 设置`CMAKE_BUILD_TYPE`为`Release` - 使用`clang`编译工具链 - `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`,使用Eigen进行矩阵计算;`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`,使用OpenBLAS进行矩阵计算 diff --git a/doc/mobile/cross_compiling_for_android_en.md b/doc/mobile/cross_compiling_for_android_en.md index 26858581fc1d77a9391520ac0dfd80fbd98f508c..0cf50181df4116beda3aa6faf836eda92edf6066 100644 --- a/doc/mobile/cross_compiling_for_android_en.md +++ b/doc/mobile/cross_compiling_for_android_en.md @@ -1,6 +1,9 @@ # Build PaddlePaddle for Android -There are two approaches to build PaddlePaddle for Android: using Docker and on Linux without Docker. +There are two approaches to build PaddlePaddle for Android: + +- [Cross-Compiling Using Docker](#cross-compiling-using-docker) +- [Cross-Compiling on Linux](#cross-compiling-on-linux) ## Cross-Compiling Using Docker @@ -16,6 +19,12 @@ $ cd Paddle $ docker build -t paddle:dev-android . -f Dockerfile.android ``` +Users can directly use the published Docker image. + +```bash +$ docker pull paddlepaddle/paddle:latest-dev-android +``` + ### Build the Inference Library We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below: @@ -47,7 +56,7 @@ The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`: ANDROID_API - >= 21 + >= 16 21 @@ -93,15 +102,13 @@ Android NDK includes everything we need to build the [*standalone toolchain*](ht The generated standalone toolchain will be in `your/path/to/arm64_standalone_toolchain`. -**Please be aware that the minimum level of Android API required by PaddlePaddle is 21.** - ### Cross-Compiling Arguments CMake supports [choosing the toolchain](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling). PaddlePaddle provides [`android.cmake`](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake), which configures the Android cross-compiling toolchain for CMake. `android.cmake` is not required for CMake >= 3.7, which support Android cross-compiling. PaddlePaddle detects the CMake version, for those newer than 3.7, it uses [the official version](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling). Some other CMake arguments you need to know: -- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, and `WITH_RDMA=OFF`. +- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, `WITH_RDMA=OFF`, `WITH_MKL=OFF` and `WITH_GOLANG=OFF`. - `WITH_C_API` must be `ON`, to build the C-based inference library for Android. - `WITH_SWIG_PY` must be `OFF` because the Android platform doesn't support SWIG-based API. @@ -123,7 +130,7 @@ Some Android-specific arguments: Other useful arguments: - `USE_EIGEN_FOR_BLAS`: indicates if using Eigen. Could be `ON` or `OFF`, defaults to `OFF`. -- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC`, or `cc`. +- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC/C++`, or `cc/c++`. Some frequent configurations for your reference: @@ -158,6 +165,7 @@ There are some other arguments you might want to configure. - `CMAKE_BUILD_TYPE-Release` optimizes the runtime performance. Our own tip for performance optimization to use clang and Eigen or OpenBLAS: + - `CMAKE_BUILD_TYPE=Release` - `ANDROID_TOOLCHAIN=clang` - `USE_EIGEN_BLAS=ON` for `armeabi-v7a`, or `USE_EIGEN_FOR_BLAS=OFF` for `arm64-v8a`. diff --git a/doc/mobile/cross_compiling_for_ios_en.md b/doc/mobile/cross_compiling_for_ios_en.md index aa390cd61f3fbd75e5a3b342f3559e76da35a918..19bfe86c511c7e43b462f94c8cabba420b3007f1 100644 --- a/doc/mobile/cross_compiling_for_ios_en.md +++ b/doc/mobile/cross_compiling_for_ios_en.md @@ -1,4 +1,4 @@ -# PaddlePaddle Compiling Guide for iOS +# Build PaddlePaddle for iOS This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS. @@ -98,7 +98,7 @@ You can set other compiling parameters for your own need. I.E. if you are trying - set `CMAKE_BUILD_TYPE` with `Release` - set `IOS_USE_VECLIB_FOR_BLAS` with `ON` -## Compile and install +## Build and install After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library. @@ -109,7 +109,7 @@ $ make install Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration. -`your/path/to/install` directory will have following directories after `compile` and `install`: +`your/path/to/install` directory will have following directories after `make install`: - `include`, contains all the C-API header files. - `lib`, contains PaddlePaddle C-API static library. diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index 7d2becbdd772747d77890321fce6721d8d17fb30..4a98ede278fad85ff2beef3c8e7dd158912f693a 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -24,6 +24,7 @@ else() add_subdirectory(framework) add_subdirectory(operators) add_subdirectory(pybind) + add_subdirectory(inference) endif() if(WITH_SWIG_PY) diff --git a/paddle/capi/gradient_machine.cpp b/paddle/capi/gradient_machine.cpp index 482b51e8a8430863c3e13df2298f6979d3959461..1f0e033c5b7ab713f1747d58f4fcdaad001f0715 100644 --- a/paddle/capi/gradient_machine.cpp +++ b/paddle/capi/gradient_machine.cpp @@ -168,3 +168,13 @@ paddle_error paddle_gradient_machine_get_layer_output( out->args.push_back(layerOutput); return kPD_NO_ERROR; } + +paddle_error paddle_gradient_machine_release_layer_output( + paddle_gradient_machine machine) { + auto m = cast(machine); + if (m == nullptr || m->machine == nullptr) { + return kPD_NULLPTR; + } + m->machine->releaseOutput(); + return kPD_NO_ERROR; +} diff --git a/paddle/capi/gradient_machine.h b/paddle/capi/gradient_machine.h index 28eeb23e3bbdd4cc22a25c14170bf56c294f8cd7..7e37dea00b27b6cb955486b4210c1373decbcfa5 100644 --- a/paddle/capi/gradient_machine.h +++ b/paddle/capi/gradient_machine.h @@ -113,6 +113,14 @@ paddle_gradient_machine_get_layer_output(paddle_gradient_machine machine, const char* layerName, paddle_arguments args); +/** + * @brief Release the middle layer's output memory of the gradient machine. + * @param [in] gradient machine that have run a inference + * @return paddle_error + */ +PD_API paddle_error +paddle_gradient_machine_release_layer_output(paddle_gradient_machine machine); + #ifdef __cplusplus } #endif diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 738684795d8170ffd5c5b2bf19e6e150219332d0..af4079875a50ffe6eb627492f834fb601bbee716 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -5,10 +5,18 @@ cc_library(ddim SRCS ddim.cc DEPS eigen3) cc_test(ddim_test SRCS ddim_test.cc DEPS ddim) nv_test(dim_test SRCS dim_test.cu DEPS ddim) -cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context) +if (WITH_GPU) + nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place paddle_memory device_context framework_proto) +else() + cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place paddle_memory device_context framework_proto) +endif () cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) -cc_test(tensor_util_test SRCS tensor_util_test.cc DEPS tensor) +if (WITH_GPU) + nv_test(tensor_util_test SRCS tensor_util_test.cc tensor_util_test.cu DEPS tensor) +else() + cc_test(tensor_util_test SRCS tensor_util_test.cc DEPS tensor) +endif() cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) @@ -18,10 +26,15 @@ nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor) cc_test(variable_test SRCS variable_test.cc) -cc_library(scope SRCS scope.cc DEPS glog) +cc_library(threadpool SRCS threadpool.cc) +cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool) + +cc_library(scope SRCS scope.cc DEPS glog threadpool) cc_test(scope_test SRCS scope_test.cc DEPS scope) -cc_library(data_transform SRCS data_transform.cc DEPS tensor framework_proto) +cc_library(device_data_transform SRCS device_data_transform.cc DEPS tensor) + +cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor framework_proto selected_rows device_data_transform) cc_test(data_transform_test SRCS data_transform_test.cc DEPS data_transform device_context) cc_library(attribute SRCS attribute.cc DEPS framework_proto) @@ -30,7 +43,7 @@ device_context) cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute) cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) -cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute) +cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context) cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog shape_inference data_transform) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry init) @@ -62,9 +75,10 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry cc_library(selected_rows SRCS selected_rows.cc DEPS tensor) cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) -cc_library(threadpool SRCS threadpool.cc) -cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool) -cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece) +cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece operator) cc_test(init_test SRCS init_test.cc DEPS init) cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto) +cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc) +nv_test(device_data_transform_test SRCS device_data_transform_test.cu + DEPS operator op_registry init math_function) diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index eaf13ddcefcd8dc5a6b0438f765d8d325925aa30..85e693434af863bfc3bde29989dbbfc69678d3b7 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -427,7 +427,8 @@ std::vector> MakeBlockBackward( VLOG(5) << "Making backward " << (*it)->Type() << " op"; std::vector> op_grads; - if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") { + if ((*it)->Type() == "recurrent" || (*it)->Type() == "while" || + (*it)->Type() == "parallel_do") { int step_block_idx = (*it)->GetBlockAttr("sub_block"); BlockDesc* backward_block = CreateStepBlock(program_desc, no_grad_vars, grad_to_var, step_block_idx); diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md deleted file mode 100644 index ac60be572419b62f4beb644ff192d413c35e19bb..0000000000000000000000000000000000000000 --- a/paddle/framework/backward.md +++ /dev/null @@ -1,100 +0,0 @@ -# Operator/expression 's Backward - -## Motivation - -In Neural Network, most models are solved by the backpropagation algorithm(known as **BP**) at present. Technically, BP calculates the gradient of the loss function, then propagates it back through the networks following the chain rule. Hence we need a module that chains the gradient operators/expressions together to construct the backward pass. Every forward network needs a backward network to construct the full computation graph. The operator/expression's backward pass will be generated with respect to the forward pass. - -## Implementation - -In this design doc, we exported only one API for generating the backward pass. - -```c++ -std::unique_ptr Backward(const OperatorBase& forwardOp, - const std::unordered_set& no_grad_vars); -``` - -The implementation behind it can be divided into two parts, **Backward Operator Creating** and **Backward Operator Building**. - -### Backward Operator Registry - -A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs, and output gradients and then calculate its input gradients. - -| | forward operator | backward operator -| ---------------------- | ---------------- |------------------------- | -| **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients | -| **Operator::outputs_** | Outputs | InputGradients | - - In most cases, there is a one-to-one relation between the forward and backward operators. These relations are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and to make operators pluggable, the registry mechanism is introduced. - -For example, we have `mul_op`, and we can register its information and corresponding backward operator by the following macro: - -```cpp -REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); -``` - -`mul` is the operator's type. `MulOp` and `MulOpMaker` are the operator class and the operator maker class respectively. - -`mul_grad` is the type of backward operator, and `MulOpGrad` is its class name. - -### Backward Opeartor Creating - -Given a certain forward operator, we can get its corresponding backward operator by calling: - -```cpp -OperatorBase* bwd_op = BuildGradOp(const OperatorBase* fwd_op); -``` - -The function `BuildGradOp` will sequentially execute following processes: - -1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`. - -2. Build two maps named `inputs` and `outputs` to temporarily store backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing. - -3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`. - -4. Building backward operator with `inputs`, `outputs` and forward operator's attributes. - -### Backward Network Building - -A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and appending them together one by one. There are some corner cases that need special processing. - -1. Op - - When the input forward network is an Op, return its gradient Operator immediately. If all of its outputs are in no gradient set, then return a special `NOP`. - -2. NetOp - - In our design, the network itself is also a kind of operator(**NetOp**). So the operators contained by a big network may be some small network. When the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp. - -3. RnnOp - - RnnOp is a nested stepnet operator. Backward module needs to recusively call `Backward` for every stepnet. - -4. Sharing Variables - - As illustrated in the figure 1 and figure 2, two operators share the same variable name **W@GRAD**, which will overwrite their shared input variable. - -

-
- -​ Figure 1. Sharing variables in operators. - -

- -​ Sharing variable between operators or same input variable used in multiple operators can lead to duplicate gradient variables. As illustrated in figure 2, we need to rename the gradient names recursively and add a generic add operator to prevent overwriting. - -

-
- -​ Figure 2. Replace sharing variable's gradient with `Add` operator. - -

- -​ Because the framework finds variables according to their names, we need to rename the output links. We add an integer suffix to represent its position in the clockwise direction. - -5. Part of the Gradient is Zero. - - In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implementation, we insert a special `fillZeroLike` operator. - - -Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it. diff --git a/paddle/framework/block_desc.cc b/paddle/framework/block_desc.cc index 0668b08ff7ab3c8ca4f1e989fc7af45a8ec5f63c..54498e175dacfa0a220e3d839f4feb02502b2c03 100644 --- a/paddle/framework/block_desc.cc +++ b/paddle/framework/block_desc.cc @@ -53,12 +53,12 @@ VarDesc *BlockDesc::FindVarRecursive(const std::string &name) const { return it->second.get(); } -VarDesc *BlockDesc::FindRecursiveOrCreateVar(const std::string &name_bytes) { +VarDesc &BlockDesc::FindRecursiveOrCreateVar(const std::string &name_bytes) { VarDesc *res = FindVarRecursive(name_bytes); if (res == nullptr) { res = Var(name_bytes); } - return res; + return *res; } bool BlockDesc::HasVarRecursive(const std::string &name) const { diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h index 6c8c81b332d99e52db41018e117aa837be6745bc..4b609e4bcb67bb8dda5924a639e7a8165eda4353 100644 --- a/paddle/framework/block_desc.h +++ b/paddle/framework/block_desc.h @@ -57,7 +57,7 @@ class BlockDesc { VarDesc *FindVarRecursive(const std::string &name_bytes) const; - VarDesc *FindRecursiveOrCreateVar(const std::string &name_bytes); + VarDesc &FindRecursiveOrCreateVar(const std::string &name_bytes); bool HasVarRecursive(const std::string &var_name) const; diff --git a/paddle/framework/data_transform.cc b/paddle/framework/data_transform.cc index 35f16025a9ae44bd70e15b19b25deb08299bea88..fed958db1584c4fda5394d59a2ef8936045a9ce9 100644 --- a/paddle/framework/data_transform.cc +++ b/paddle/framework/data_transform.cc @@ -11,8 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include #include "paddle/framework/data_transform.h" +#include "paddle/framework/device_data_transform.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/selected_rows.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace framework { @@ -22,5 +27,165 @@ DataTransformFnMap& DataTransformFnMap::Instance() { return data_transform_map; } +Tensor* DataTransform(const OpKernelType& expected_kernel_type, + const OpKernelType& kernel_type_for_var, + const Tensor& input_tensor) { + Tensor* out = nullptr; + if (!platform::is_same_place(kernel_type_for_var.place_, + expected_kernel_type.place_)) { + out = DeviceTransform(input_tensor, expected_kernel_type.place_); + } + PADDLE_ENFORCE_NOT_NULL(out, "out should not be null"); + return out; +} + +void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor, + Variable& out_var) { + if (in_var.IsType()) { + auto& in_lod_tensor = in_var.Get(); + auto* tran_lod_tensor = out_var.GetMutable(); + tran_lod_tensor->set_lod(in_lod_tensor.lod()); + tran_lod_tensor->set_layout(in_lod_tensor.layout()); + tran_lod_tensor->ShareDataWith(tensor); + } else if (in_var.IsType()) { + auto& in_selected_rows = in_var.Get(); + auto* trans_selected_rows = out_var.GetMutable(); + trans_selected_rows->set_height(in_selected_rows.height()); + trans_selected_rows->set_rows(in_selected_rows.rows()); + trans_selected_rows->mutable_value()->ShareDataWith(tensor); + } else { + PADDLE_THROW("unknown var type"); + } +} + +auto KernelFP32 = OpKernelType(proto::DataType::FP32, platform::CPUPlace(), + DataLayout::kNHWC, LibraryType::kPlain); + +auto KernelFP64 = OpKernelType(proto::DataType::FP64, platform::CPUPlace(), + DataLayout::kNHWC, LibraryType::kPlain); + +auto KernelNHWC = OpKernelType(proto::DataType::FP64, platform::CPUPlace(), + DataLayout::kNHWC, LibraryType::kPlain); + +auto KernelNCHW = OpKernelType(proto::DataType::FP64, platform::CPUPlace(), + DataLayout::kNCHW, LibraryType::kPlain); + +// TODO(dzhwinter): Only for testing multiple op kernel. +// Dummy transform function for library_type +// should be removed. +auto KernelPlain = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0), + DataLayout::kAnyLayout, LibraryType::kPlain); + +auto KernelCUDNN = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0), + DataLayout::kAnyLayout, LibraryType::kCUDNN); + +void DummyTrans(const platform::DeviceContext* ctx, + const KernelTypePair& kernel_pair, const Variable& in, + Variable* out) { + PADDLE_ENFORCE(in.IsType(), "Only Support Tensor transform!."); + PADDLE_ENFORCE( + platform::places_are_same_class(kernel_pair.first.place_, + kernel_pair.second.place_), + "TransDataType Only Support DataType transform on same place!"); + auto src = in.Get(); + auto* dst = out->GetMutable(); + *dst = src; +} + +void TransDataType(const platform::DeviceContext* ctx, + const KernelTypePair& kernel_pair, const Variable& in, + Variable* out) { + PADDLE_ENFORCE(in.IsType(), "Only Support Tensor transform!."); + PADDLE_ENFORCE( + platform::places_are_same_class(kernel_pair.first.place_, + kernel_pair.second.place_), + "TransDataType Only Support DataType transform on same place!"); + + auto src = in.Get(); + auto* dst = out->GetMutable(); + + auto dims = src.dims(); + dst->Resize(dims); + auto dst_type = kernel_pair.second.data_type_; + auto src_type = kernel_pair.first.data_type_; + + switch (src_type) { + case proto::DataType::FP32: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::FP64: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::INT32: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::INT64: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + case proto::DataType::BOOL: + framework::VisitDataType(dst_type, CastDataType(src, dst, ctx)); + break; + default: + PADDLE_THROW("Not support type %d", src_type); + } +} + +void TransDataLayout(const std::vector& axis, + const platform::DeviceContext* ctx, + const KernelTypePair& kernel_pair, const Variable& in, + Variable* out) { + PADDLE_ENFORCE(in.IsType(), "Only support Tensor transform!."); + PADDLE_ENFORCE( + platform::places_are_same_class(kernel_pair.first.place_, + kernel_pair.second.place_), + "TransDataLayout only support DataLayout transform on same place!"); + PADDLE_ENFORCE(kernel_pair.first.data_type_ == kernel_pair.second.data_type_, + "TransDataLayout only support Datatype are same!"); + + auto src = in.Get(); + auto* dst = out->GetMutable(); + PADDLE_ENFORCE(arity(src.dims()) == 4, "Input Arity Only Suppport 4!"); + + auto src_dim = src.dims(); + std::vector dst_dim; + + dst_dim.resize(axis.size()); + for (size_t i = 0; i < axis.size(); i++) { + dst_dim[i] = src_dim[axis[i]]; + } + + dst->Resize(make_ddim(dst_dim)); + auto place = kernel_pair.second.place_; + dst->mutable_data(place, src.type()); + + auto src_type = kernel_pair.first.data_type_; + framework::VisitDataType(src_type, CastDataLayout(ctx, axis, src, dst)); + + dst->set_layout(kernel_pair.second.data_layout_); +} + } // namespace framework } // namespace paddle + +namespace f = paddle::framework; + +namespace { +std::vector NHWC2NCHW = {0, 3, 1, 2}; +std::vector NCHW2NHWC = {0, 2, 3, 1}; +} + +REGISTER_DATA_TRANSFORM_FN(f::KernelFP32, f::KernelFP64, f::TransDataType); +REGISTER_DATA_TRANSFORM_FN(f::KernelPlain, f::KernelCUDNN, f::DummyTrans); +REGISTER_DATA_TRANSFORM_FN(f::KernelCUDNN, f::KernelPlain, f::DummyTrans); +REGISTER_DATA_TRANSFORM_FN(f::KernelNHWC, f::KernelNCHW, + std::bind(f::TransDataLayout, NHWC2NCHW, + std::placeholders::_1, + std::placeholders::_2, + std::placeholders::_3, + std::placeholders::_4)); +REGISTER_DATA_TRANSFORM_FN(f::KernelNCHW, f::KernelNHWC, + std::bind(f::TransDataLayout, NCHW2NHWC, + std::placeholders::_1, + std::placeholders::_2, + std::placeholders::_3, + std::placeholders::_4)); diff --git a/paddle/framework/data_transform.h b/paddle/framework/data_transform.h index 73f894a3e20ab779f8607e63a67139b0e8cce79a..e4e5c30a96a3c985ae2ecd494b723c8afeceb12f 100644 --- a/paddle/framework/data_transform.h +++ b/paddle/framework/data_transform.h @@ -19,19 +19,23 @@ limitations under the License. */ #include #include "paddle/framework/op_kernel_type.h" +#include "paddle/framework/selected_rows.h" #include "paddle/framework/tensor.h" #include "paddle/framework/variable.h" +#include "paddle/operators/math/math_function.h" #include "paddle/platform/device_context.h" #include "paddle/platform/macros.h" +#include "paddle/platform/transform.h" namespace paddle { namespace framework { -using DataTransformFN = - std::function ctx, - const Variable& in, Variable* out)>; using KernelTypePair = std::pair; +using DataTransformFn = + std::function; + struct KernelTypePairHash { static void HashCombine(const OpKernelType& t, std::size_t* seed) { OpKernelType::Hash kernel_type_hasher; @@ -46,8 +50,76 @@ struct KernelTypePairHash { } }; +Tensor* DataTransform(const OpKernelType& expected_kernel_type, + const OpKernelType& kernel_type_for_var, + const Tensor& input_tensor); + +void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor, + Variable& out_var); + +template +struct CastDataTypeFunctor { + HOSTDEVICE inline OutType operator()(InType in) const { + return static_cast(in); + } +}; + +template +struct CastDataType { + CastDataType(const framework::Tensor& in, framework::Tensor* out, + const platform::DeviceContext* ctx) + : in_(in), out_(out), ctx_(ctx) {} + const framework::Tensor in_; + framework::Tensor* out_; + const platform::DeviceContext* ctx_; + + template + void operator()() { + auto place = ctx_->GetPlace(); + + auto* in_begin = in_.data(); + auto numel = in_.numel(); + auto* in_end = in_begin + numel; + auto* out_begin = out_->mutable_data(place); + + if (platform::is_cpu_place(place)) { + platform::Transform trans; + auto* context = static_cast(ctx_); + trans(*context, in_begin, in_end, out_begin, + CastDataTypeFunctor()); + } else { + // TODO(dzhwinter): enhance Copy CPU<->GPU with different data type? + PADDLE_THROW("Unsupport CPU <-> GPU!"); + } + } +}; + +struct CastDataLayout { + CastDataLayout(const platform::DeviceContext* ctx, + const std::vector& axis, const framework::Tensor& in, + framework::Tensor* out) + : in_(in), out_(out), ctx_(ctx), axis_(axis) {} + const framework::Tensor in_; + framework::Tensor* out_; + const platform::DeviceContext* ctx_; + const std::vector axis_; + + template + void operator()() { + auto place = ctx_->GetPlace(); + + if (platform::is_cpu_place(place)) { + operators::math::Transpose trans4; + auto* context = static_cast(ctx_); + trans4(*context, in_, out_, axis_); + } else { + PADDLE_THROW("Unsupport CPU <-> GPU!"); + } + } +}; + using DataTransformMap = - std::unordered_map; + std::unordered_map; class DataTransformFnMap { public: @@ -58,25 +130,25 @@ class DataTransformFnMap { } void Insert(const OpKernelType& left, const OpKernelType& right, - const DataTransformFN& data_tranform_fn) { + const DataTransformFn& data_tranform_fn) { Insert(std::make_pair(left, right), data_tranform_fn); } void Insert(const KernelTypePair& kernel_type_pair, - const DataTransformFN& data_tranform_fn) { + const DataTransformFn& data_tranform_fn) { PADDLE_ENFORCE(!Has(kernel_type_pair), "KernelTypePair %s has been registered", ""); map_.insert({kernel_type_pair, data_tranform_fn}); } - const DataTransformFN& Get(const KernelTypePair& key_pair) const { + const DataTransformFn& Get(const KernelTypePair& key_pair) const { auto data_transformer = GetNullable(key_pair); PADDLE_ENFORCE_NOT_NULL(data_transformer, - "DataTransformFN should not be NULL"); + "DataTransformFn should not be NULL"); return *data_transformer; } - const DataTransformFN* GetNullable(const KernelTypePair& key_pair) const { + const DataTransformFn* GetNullable(const KernelTypePair& key_pair) const { auto it = map_.find(key_pair); if (it == map_.end()) { return nullptr; diff --git a/paddle/framework/data_transform_test.cc b/paddle/framework/data_transform_test.cc index f93a47eeb567c4fc984954aa5198362c9939c556..edd305fd17ae202926b83fbec10089719baa2e16 100644 --- a/paddle/framework/data_transform_test.cc +++ b/paddle/framework/data_transform_test.cc @@ -11,36 +11,67 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include +#include -#include "paddle/framework/data_transform.h" #include +#include "paddle/framework/data_transform.h" +#include "paddle/platform/device_context.h" + namespace paddle { namespace framework { - using namespace platform; +/** + * @brief cross validation of different kernel type transform + * We use four bit map represent different combination. + * If the field has multiple possible value, only choose two of them. + * For DataType, only test the FP32(float), FP64(double). + * e.g. 0000 -> FP32, CPUPlace, kNHWC, kPlain + * 1111 -> FP64, GPUPlace, kNCHW, kMKLDNN + */ + +std::array kDataType = { + {proto::DataType::FP32, proto::DataType::FP64}}; + +std::array kPlace = {{CPUPlace(), CUDAPlace(0)}}; + +std::array kDataLayout = {{ + DataLayout::kNHWC, DataLayout::kNCHW, +}}; + +std::array kLibraryType = {{ + LibraryType::kPlain, LibraryType::kMKLDNN, +}}; + +OpKernelType GenFromBit(const std::vector bits) { + return OpKernelType(kDataType[bits[0]], kPlace[bits[1]], kDataLayout[bits[2]], + kLibraryType[bits[3]]); +} + int test_value = 0; -OpKernelType kernel_type_1(proto::DataType::FP32, CPUPlace(), DataLayout::kNCHW, - LibraryType::kCUDNN); -OpKernelType kernel_type_2(proto::DataType::FP32, CUDAPlace(0), - DataLayout::kNCHW, LibraryType::kCUDNN); -OpKernelType kernel_type_3(proto::DataType::FP16, CUDAPlace(0), - DataLayout::kNCHW, LibraryType::kCUDNN); +auto kernel0 = GenFromBit({0, 0, 0, 0}); +auto kernel1 = GenFromBit({0, 0, 0, 1}); +auto kernel2 = GenFromBit({0, 0, 1, 0}); +auto kernel3 = GenFromBit({0, 0, 1, 1}); -void type1_to_type2(std::vector ctx, - const Variable& in, Variable* out) { +void TransDataType_t(const platform::DeviceContext* ctx, + const KernelTypePair& p, const Variable& in, + Variable* out) { test_value++; } -void type2_to_type3(std::vector ctx, - const Variable& in, Variable* out) { +void TransDataLayout_t(const platform::DeviceContext* ctx, + const KernelTypePair& p, const Variable& in, + Variable* out) { test_value--; } -void type1_to_type3(std::vector ctx, - const Variable& in, Variable* out) { +void TransLibraryType_t(const platform::DeviceContext* ctx, + const KernelTypePair& p, const Variable& in, + Variable* out) { test_value += 2; } @@ -49,30 +80,89 @@ void type1_to_type3(std::vector ctx, namespace frw = paddle::framework; -REGISTER_DATA_TRANSFORM_FN(frw::kernel_type_1, frw::kernel_type_2, - frw::type1_to_type2); -REGISTER_DATA_TRANSFORM_FN(frw::kernel_type_2, frw::kernel_type_3, - frw::type2_to_type3); -REGISTER_DATA_TRANSFORM_FN(frw::kernel_type_1, frw::kernel_type_3, - frw::type1_to_type3); +REGISTER_DATA_TRANSFORM_FN(frw::kernel0, frw::kernel1, frw::TransDataType_t); +REGISTER_DATA_TRANSFORM_FN(frw::kernel1, frw::kernel2, frw::TransDataLayout_t); +REGISTER_DATA_TRANSFORM_FN(frw::kernel0, frw::kernel2, frw::TransLibraryType_t); TEST(DataTransform, Register) { using namespace paddle::framework; using namespace paddle::platform; auto& instance = DataTransformFnMap::Instance(); - ASSERT_EQ(instance.Map().size(), 3UL); - std::vector ctx; paddle::framework::Variable in; paddle::framework::Variable out; - instance.Get(std::make_pair(frw::kernel_type_1, frw::kernel_type_2))(ctx, in, - &out); + DeviceContext* ctx = new CPUDeviceContext(); + auto pair0 = std::make_pair(frw::kernel0, frw::kernel1); + instance.Get(pair0)(ctx, pair0, in, &out); ASSERT_EQ(test_value, 1); - instance.Get(std::make_pair(frw::kernel_type_2, frw::kernel_type_3))(ctx, in, - &out); + + auto pair1 = std::make_pair(frw::kernel1, frw::kernel2); + instance.Get(pair1)(ctx, pair1, in, &out); ASSERT_EQ(test_value, 0); - instance.Get(std::make_pair(frw::kernel_type_1, frw::kernel_type_3))(ctx, in, - &out); + + auto pair3 = std::make_pair(frw::kernel0, frw::kernel2); + instance.Get(pair3)(ctx, pair3, in, &out); ASSERT_EQ(test_value, 2); } + +TEST(DataTransform, DataLayout) { + using namespace paddle::framework; + using namespace paddle::platform; + + auto& instance = DataTransformFnMap::Instance(); + Variable in; + Variable out; + Tensor* src = in.GetMutable(); + src->mutable_data(make_ddim({2, 3, 1, 2}), CPUPlace()); + src->set_layout(DataLayout::kNHWC); + + DeviceContext* ctx = new CPUDeviceContext(); + + { + auto kernel1 = GenFromBit({1, 0, 0, 0}); + auto kernel2 = GenFromBit({1, 0, 1, 0}); + auto pair0 = std::make_pair(kernel1, kernel2); + instance.Get(pair0)(ctx, pair0, in, &out); + } + + Tensor dst = out.Get(); + + EXPECT_TRUE(dst.layout() == DataLayout::kNCHW); + EXPECT_TRUE(dst.dims() == make_ddim({2, 2, 3, 1})); + + { + auto kernel1 = GenFromBit({1, 0, 1, 0}); + auto kernel2 = GenFromBit({1, 0, 0, 0}); + auto pair0 = std::make_pair(kernel1, kernel2); + instance.Get(pair0)(ctx, pair0, out, &in); + } + + EXPECT_TRUE(src->layout() == DataLayout::kNHWC); + EXPECT_TRUE(src->dims() == make_ddim({2, 3, 1, 2})); +} + +TEST(DataTransform, DataType) { + using namespace paddle::framework; + using namespace paddle::platform; + + auto& instance = DataTransformFnMap::Instance(); + DeviceContext* ctx = new CPUDeviceContext(); + + Variable in; + Variable out; + Tensor* src = in.GetMutable(); + float* ptr = src->mutable_data(make_ddim({2, 3}), CPUPlace()); + for (int i = 0; i < 6; ++i) { + ptr[i] = i / 3; + } + + { + auto kernel1 = GenFromBit({0, 0, 0, 0}); + auto kernel2 = GenFromBit({1, 0, 0, 0}); + auto pair0 = std::make_pair(kernel1, kernel2); + instance.Get(pair0)(ctx, pair0, in, &out); + } + Tensor dst = out.Get(); + EXPECT_TRUE(dst.data() != nullptr); +} diff --git a/paddle/framework/details/cow_ptr.h b/paddle/framework/details/cow_ptr.h new file mode 100644 index 0000000000000000000000000000000000000000..7e308ffb5a49876aa2c1833b3b7e2a2c7eb137aa --- /dev/null +++ b/paddle/framework/details/cow_ptr.h @@ -0,0 +1,98 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include + +namespace paddle { +namespace framework { +namespace details { + +// Change it to thread safe flags if needed. +class ThreadUnsafeOwnershipFlags { + public: + ThreadUnsafeOwnershipFlags(bool flag) : flag_(flag) {} + + ThreadUnsafeOwnershipFlags(const ThreadUnsafeOwnershipFlags& other) = delete; + ThreadUnsafeOwnershipFlags& operator=( + const ThreadUnsafeOwnershipFlags& other) = delete; + ThreadUnsafeOwnershipFlags(ThreadUnsafeOwnershipFlags&& other) = default; + + void SetOwnership(bool flag) { flag_ = flag; } + + // Invoke the callback if it is not owned. + template + void AcquireOwnershipOnce(Callback acquire) { + if (!flag_) { + acquire(); + flag_ = true; + } + } + + private: + bool flag_; +}; + +// Copy-On-Write pointer. +// It will hold a T* pointer, and only copy once when `MutableData` is invoked. +// +// The template parameter OwnershipFlags should have: +// * a constructor takes a bool. True if own. +// * SetOwnership(bool flag). +// * AcquireOwnershipOnce(Callback). It will invoke the callback if it is not +// owned. +// +// https://en.wikipedia.org/wiki/Copy-on-write +template +class COWPtr { + public: + // Ctor from raw pointer. + explicit COWPtr(T* ptr) : payload_(ptr), ownership_{true} {} + + // Move methods. Steal ownership from origin + COWPtr(COWPtr&& other) + : payload_(other.payload_), ownership_{std::move(other.ownership_)} {} + COWPtr& operator=(COWPtr&& origin) = default; + + // Copy methods. Not own payload + COWPtr(const COWPtr& other) : payload_(other.payload_), ownership_{false} {} + COWPtr& operator=(const COWPtr& other) { + payload_ = other.payload_; + ownership_.SetOwnership(false); + return *this; + } + + // Access read only data. + const T& Data() const { return *payload_; } + + // Access mutable data. If the data is not owned, the data will be copied + // before. + T* MutableData() { + ownership_.AcquireOwnershipOnce( + [this] { payload_.reset(new T(*payload_)); }); + return payload_.get(); + } + + private: + // Actual data pointer. + std::shared_ptr payload_; + + // Ownership flag. + OwnershipFlags ownership_; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/details/cow_ptr_test.cc b/paddle/framework/details/cow_ptr_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..936954a2333e7e5d2a932abad641279db9ef7b9f --- /dev/null +++ b/paddle/framework/details/cow_ptr_test.cc @@ -0,0 +1,35 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/details/cow_ptr.h" +#include "gtest/gtest.h" + +namespace paddle { +namespace framework { +namespace details { + +TEST(COWPtr, all) { + COWPtr ptr(new int{0}); + ASSERT_EQ(ptr.Data(), 0); + COWPtr ptr2 = ptr; + ASSERT_EQ(ptr2.Data(), 0); + ASSERT_EQ(&ptr2.Data(), &ptr.Data()); + *ptr2.MutableData() = 10; + ASSERT_EQ(ptr.Data(), 0); + ASSERT_EQ(ptr2.Data(), 10); +} + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/device_data_transform.cc b/paddle/framework/device_data_transform.cc new file mode 100644 index 0000000000000000000000000000000000000000..cd5104cc6f287315ed9d22aa2ec6414f7204d214 --- /dev/null +++ b/paddle/framework/device_data_transform.cc @@ -0,0 +1,46 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/device_data_transform.h" + +namespace paddle { +namespace framework { + +static const platform::DeviceContext* GetDeviceContext( + const platform::Place& src_place, const platform::Place& dst_place) { + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + + if (platform::is_gpu_place(src_place) && platform::is_cpu_place(dst_place)) { + return pool.Get(src_place); + } else if (platform::is_cpu_place(src_place) && + platform::is_gpu_place(dst_place)) { + return pool.Get(dst_place); + } else { + PADDLE_THROW( + "Currently, model parallelism is only supported between CPU and CUDA"); + } +} + +Tensor* DeviceTransform(const Tensor& in, const platform::Place& dst_place) { + VLOG(3) << "DeviceTransform in, src_place " << in.place() + << " dst_place: " << dst_place; + Tensor* out = new Tensor(); + auto* dev_ctx = GetDeviceContext(in.place(), dst_place); + dev_ctx->Wait(); + Copy(in, dst_place, *dev_ctx, out); + dev_ctx->Wait(); + return out; +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/device_data_transform.h b/paddle/framework/device_data_transform.h new file mode 100644 index 0000000000000000000000000000000000000000..bebf0d1b320183f46ab226dc6493ba09a365fc35 --- /dev/null +++ b/paddle/framework/device_data_transform.h @@ -0,0 +1,27 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/tensor.h" +#include "paddle/framework/tensor_util.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace framework { + +Tensor* DeviceTransform(const Tensor& in, const platform::Place& dst_place); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/device_data_transform_test.cu b/paddle/framework/device_data_transform_test.cu new file mode 100644 index 0000000000000000000000000000000000000000..5d89f5546fa87241dec6364d86a100ca51bce687 --- /dev/null +++ b/paddle/framework/device_data_transform_test.cu @@ -0,0 +1,167 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "gtest/gtest.h" + +#include "paddle/framework/init.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/op_info.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/elementwise_op_function.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace framework { + +template +struct AddFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a + b; } +}; + +class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { + public: + OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("input", "input1 of test op"); + AddOutput("output", "output of test op"); + AddAttr("use_gpu", "force to use gpu kernel").SetDefault(false); + AddComment("This is test op"); + } +}; + +class TestOpWithKernel : public OperatorWithKernel { + public: + using OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override {} + OpKernelType GetExpectedKernelType( + const ExecutionContext& ctx) const override { + if (Attr("use_gpu")) { + VLOG(3) << "force use gpu kernel"; + return OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0)); + } else { + VLOG(3) << "use default kernel"; + return OpKernelType(proto::DataType::FP32, + ctx.Input("input")->place()); + } + } +}; + +template +class TestKernel : public OpKernel { + public: + void Compute(const ExecutionContext& ctx) const { + std::cout << ctx.op().DebugString() << std::endl; + + const Tensor* input = ctx.Input("input"); + + std::cout << "input place:" << input->place() << std::endl; + auto* output = ctx.Output("output"); + output->Resize(input->dims()); + output->mutable_data(ctx.GetPlace()); + + operators::TransformFunctor, T, DeviceContext> functor( + input, input, output, ctx.template device_context(), + AddFunctor()); + functor.Run(); + } +}; + +} // namespace framework +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT( + test_op, paddle::framework::TestOpWithKernel, + paddle::framework::OpKernelTestProtoAndCheckerMaker); +REGISTER_OP_CPU_KERNEL( + test_op, + paddle::framework::TestKernel); +REGISTER_OP_CUDA_KERNEL( + test_op, + paddle::framework::TestKernel); + +static void BuildVar(const std::string& param_name, + std::initializer_list arguments, + paddle::framework::proto::OpDesc::Var* var) { + var->set_parameter(param_name); + for (auto& arg_name : arguments) { + *var->mutable_arguments()->Add() = arg_name; + } +} + +TEST(Operator, CPUtoGPU) { + using namespace paddle::framework; + using namespace paddle::platform; + InitDevices(); + + paddle::framework::Scope scope; + paddle::platform::CPUPlace cpu_place; + + // create an op to run on CPU + paddle::framework::proto::OpDesc cpu_op_desc; + cpu_op_desc.set_type("test_op"); + BuildVar("input", {"IN1"}, cpu_op_desc.add_inputs()); + BuildVar("output", {"OUT1"}, cpu_op_desc.add_outputs()); + + auto cpu_op = paddle::framework::OpRegistry::CreateOp(cpu_op_desc); + // prepare input + auto* in_t = scope.Var("IN1")->GetMutable(); + auto* src_ptr = in_t->mutable_data({2, 3}, CPUPlace()); + for (int i = 0; i < 2 * 3; ++i) { + src_ptr[i] = static_cast(i); + } + + // get output + auto* output = scope.Var("OUT1"); + cpu_op->Run(scope, cpu_place); + + auto* output_ptr = output->Get().data(); + for (int i = 0; i < 2 * 3; ++i) { + ASSERT_EQ(output_ptr[i], static_cast(i) * 2); + } + + // create an op to run on GPU + paddle::framework::proto::OpDesc gpu_op_desc; + gpu_op_desc.set_type("test_op"); + BuildVar("input", {"OUT1"}, gpu_op_desc.add_inputs()); + BuildVar("output", {"OUT2"}, gpu_op_desc.add_outputs()); + + auto attr = gpu_op_desc.mutable_attrs()->Add(); + attr->set_name("use_gpu"); + attr->set_type(paddle::framework::proto::AttrType::BOOLEAN); + attr->set_b(true); + + auto gpu_op = paddle::framework::OpRegistry::CreateOp(gpu_op_desc); + + paddle::platform::CUDAPlace cuda_place(0); + // get output + auto* output2 = scope.Var("OUT2"); + gpu_op->Run(scope, cuda_place); + + // auto* output2_ptr = output2->Get().data(); + DeviceContextPool& pool = DeviceContextPool::Instance(); + auto dev_ctx = pool.Get(cuda_place); + + paddle::framework::Tensor output_tensor; + Copy(output2->Get(), paddle::platform::CPUPlace(), *dev_ctx, + &output_tensor); + + dev_ctx->Wait(); + float* output2_ptr = output_tensor.data(); + for (int i = 0; i < 2 * 3; ++i) { + ASSERT_EQ(output2_ptr[i], static_cast(i) * 4); + } +} diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index 997773c1689efad4ce5a86c09ce58bd3a40185e0..c0418c9266e257bd7567861543e557f354451b17 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -14,18 +14,18 @@ limitations under the License. */ #include "paddle/framework/executor.h" -#include -#include -#include #include -#include +#include "gflags/gflags.h" #include "paddle/framework/feed_fetch_type.h" #include "paddle/framework/lod_rank_table.h" -#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" -#include "paddle/framework/scope.h" +#include "paddle/platform/place.h" + +DEFINE_bool(check_nan_inf, false, + "Checking whether operator produce NAN/INF or not. It will be " + "extremely slow so please use this flag wisely."); namespace paddle { namespace framework { @@ -50,14 +50,30 @@ static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) { var->GetMutable(); } else if (var_type == proto::VarDesc::LOD_TENSOR_ARRAY) { var->GetMutable(); + } else if (var_type == proto::VarDesc::PLACE_LIST) { + var->GetMutable(); } else { PADDLE_THROW( "Variable type %d is not in " - "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE]", + "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE," + " PLACE_LIST]", var_type); } } +static void CheckTensorNANOrInf(const std::string& name, + const framework::Tensor& tensor) { + if (tensor.memory_size() == 0) { + return; + } + if (tensor.type().hash_code() != typeid(float).hash_code() && + tensor.type().hash_code() != typeid(double).hash_code()) { + return; + } + PADDLE_ENFORCE(!framework::HasInf(tensor), "Tensor %s has Inf", name); + PADDLE_ENFORCE(!framework::HasNAN(tensor), "Tensor %s has NAN", name); +} + void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, bool create_local_scope, bool create_vars) { // TODO(tonyyang-svail): @@ -99,10 +115,19 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, for (auto& op_desc : block.AllOps()) { auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); - VLOG(3) << op->DebugString(); + VLOG(3) << op->DebugStringEx(local_scope); op->Run(*local_scope, place_); + if (FLAGS_check_nan_inf) { + for (auto& vname : op->OutputVars(true)) { + auto* var = local_scope->FindVar(vname); + if (var == nullptr) continue; + if (var->IsType()) { + CheckTensorNANOrInf(vname, var->Get()); + } + } + } } - if (create_local_scope) { + if (create_vars && create_local_scope) { scope->DeleteScope(local_scope); } } diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index 4f2746e4b86ee5fe095897ff6ef9d3f6473e8a14..ea69b87e2ac7dc587333b623c310182bb39eb452 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -123,6 +123,7 @@ message VarDesc { STEP_SCOPES = 5; LOD_RANK_TABLE = 6; LOD_TENSOR_ARRAY = 7; + PLACE_LIST = 8; } required string name = 1; required VarType type = 2; diff --git a/paddle/framework/grad_op_desc_maker.h b/paddle/framework/grad_op_desc_maker.h index 2de5242831835b47893a5825e5532500ad5ec3f9..2082f8bb76fb62bc36f033fecbd4eaa76d12d949 100644 --- a/paddle/framework/grad_op_desc_maker.h +++ b/paddle/framework/grad_op_desc_maker.h @@ -87,7 +87,11 @@ class GradOpDescMakerBase { auto onames = this->Output(name); ret_val.reserve(onames.size()); std::transform(onames.begin(), onames.end(), std::back_inserter(ret_val), - GradVarName); + [this](const std::string& fwd_var_name) -> std::string { + auto g_name = GradVarName(fwd_var_name); + (*this->grad_to_var_)[g_name] = fwd_var_name; + return g_name; + }); return ret_val; } diff --git a/paddle/framework/init.cc b/paddle/framework/init.cc index d6601090d5b6150a5aa467210038d3693c3e67a8..e12bac1d78e3f6bbc46849c06b53e3b93e147cfc 100644 --- a/paddle/framework/init.cc +++ b/paddle/framework/init.cc @@ -15,6 +15,7 @@ limitations under the License. */ #include #include "paddle/framework/init.h" +#include "paddle/framework/operator.h" #include "paddle/platform/device_context.h" #include "paddle/platform/place.h" #include "paddle/string/piece.h" @@ -24,7 +25,6 @@ namespace framework { std::once_flag gflags_init_flag; -// TODO(qijun) move init gflags to init.cc void InitGflags(std::vector &argv) { std::call_once(gflags_init_flag, [&]() { int argc = argv.size(); @@ -40,39 +40,28 @@ void InitGflags(std::vector &argv) { }); } -bool InitDevices(const std::vector &devices) { - // device format - // CPU - // GPU:1 - // TODO(dzhwinter) : add device format annotation for users. +void InitDevices() { + /*Init all avaiable devices by default */ + std::vector places; - for (auto &device : devices) { - auto p = string::Piece(device); - if (string::HasPrefix(p, "CPU")) { - places.emplace_back(platform::CPUPlace()); - } else if (string::HasPrefix(p, "GPU")) { + places.emplace_back(platform::CPUPlace()); + #ifdef PADDLE_WITH_CUDA - auto pos = string::RFind(p, ':', string::Piece::npos); - auto number = device.substr(pos + 1); - places.emplace_back(platform::CUDAPlace(std::stoi(number))); + int count = platform::GetCUDADeviceCount(); + for (int i = 0; i < count; ++i) { + places.emplace_back(platform::CUDAPlace(i)); + } #else - LOG(WARNING) - << "'GPU' is not supported, Please re-compile with WITH_GPU option"; + LOG(WARNING) + << "'GPU' is not supported, Please re-compile with WITH_GPU option"; #endif - } else { - return false; - } - } - if (std::find_if(places.begin(), places.end(), - [&](const platform::Place &place) { - return platform::is_cpu_place(place); - }) == places.end()) { - places.emplace_back(platform::CPUPlace()); - LOG(WARNING) << "Not specified CPU device, create CPU by Default."; - } - platform::DeviceContextPool::Create(places); - return true; + platform::DeviceContextPool::Init(places); +} + +void InitGLOG(const std::string &prog_name) { + google::InitGoogleLogging(prog_name.c_str()); + google::InstallFailureSignalHandler(); } } // namespace framework diff --git a/paddle/framework/init.h b/paddle/framework/init.h index 33907f9eb00fb3469b53dcf8151557cc7a2d3791..c8fd964d006baf729888414ded2aec85ba5a024e 100644 --- a/paddle/framework/init.h +++ b/paddle/framework/init.h @@ -22,7 +22,9 @@ namespace framework { void InitGflags(std::vector &argv); -bool InitDevices(const std::vector &devices); +void InitGLOG(const std::string &prog_name); + +void InitDevices(); } // namespace framework } // namespace paddle diff --git a/paddle/framework/init_test.cc b/paddle/framework/init_test.cc index f0788051d4855a175d2d7ea1f1a0805c776c462b..f837a965d3be7d40c20803ae4462b3bfd91bffd0 100644 --- a/paddle/framework/init_test.cc +++ b/paddle/framework/init_test.cc @@ -14,18 +14,13 @@ limitations under the License. */ #include "gtest/gtest.h" #include "paddle/framework/init.h" +#include "paddle/platform/device_context.h" -TEST(Init, InitDevices) { +TEST(InitDevices, CPU) { using paddle::framework::InitDevices; - std::vector ds1 = {"CPU"}; - ASSERT_EQ(InitDevices(ds1), true); + using paddle::platform::DeviceContextPool; -#ifdef PADDLE_WITH_CUDA - std::vector ds2 = {"CPU", "GPU:0", "GPU:1"}; - ASSERT_EQ(InitDevices(ds2), true); - - // test re-init - std::vector ds3 = {"GPU:0", "GPU:1"}; - ASSERT_EQ(InitDevices(ds3), true); -#endif + InitDevices(); + DeviceContextPool& pool = DeviceContextPool::Instance(); + ASSERT_GE(pool.size(), 1U); } diff --git a/paddle/framework/library_type.h b/paddle/framework/library_type.h index 7707799cae8c4edc304cd81725270a85f01fd28d..1e3084835439b0d55de72a669b93acbaef7ed6b9 100644 --- a/paddle/framework/library_type.h +++ b/paddle/framework/library_type.h @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include namespace paddle { namespace framework { @@ -41,6 +42,9 @@ inline std::string LibraryTypeToString(const LibraryType& library_type) { inline LibraryType StringToLibraryType(const char* ctype) { std::string s(ctype); + for (size_t i = 0; i < s.size(); ++i) { + s[i] = toupper(s[i]); + } if (s == std::string("PLAIN")) { return LibraryType::kPlain; } else if (s == std::string("MKLDNN")) { diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index f8a3be9a82bdbaf82550634d36122eb7bbe85e54..7ae94c646537e0d7c4687b949a1b06cd3a7f3404 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -43,16 +43,30 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) { return os; } -LoD SliceLevels(const LoD &in, size_t level_begin, size_t level_end) { - LoD new_lod; - new_lod.reserve(level_end - level_begin); - for (size_t i = level_begin; i < level_end; i++) { - new_lod.emplace_back(in.at(i)); +std::ostream &operator<<(std::ostream &os, const LoDTensor &t) { + PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code()); + + if (!platform::is_cpu_place(t.place())) { + LoDTensor tt; + framework::Copy(t, platform::CPUPlace(), &tt); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(t.place()); + dev_ctx.Wait(); + + os << tt; + return os; + } + + os << "dim: " << t.dims() << "\n"; + os << "lod: " << t.lod() << "\n"; + + // only print first ten elements + int64_t size = t.numel() < 10 ? t.numel() : 10; + for (int64_t i = 0; i < size; ++i) { + os << t.data()[i] << " "; } - // transform the lowest level to absolute offset. - LoD abs_offset_lod = ToAbsOffset(in); - new_lod.back() = abs_offset_lod[level_end - 1]; - return new_lod; + + return os; } LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, @@ -115,43 +129,6 @@ bool operator==(const LoD &a, const LoD &b) { return true; } -size_t LoDTensor::NumElements(size_t level, size_t idx) const { - PADDLE_ENFORCE_LT(level, NumLevels()); - PADDLE_ENFORCE_LT(idx, NumElements(level)); - return lod_[level][idx + 1] - lod_[level][idx]; -} - -size_t LoDTensor::NumInstancesInElement(size_t level, size_t idx) const { - PADDLE_ENFORCE_LT(level, NumLevels()); - PADDLE_ENFORCE_LT(idx, NumElements(level)); - auto abs_lod = ToAbsOffset(lod()); - size_t begin = abs_lod[level][idx]; - size_t end = abs_lod[level][idx + 1]; - return end - begin; -} - -void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) { - auto new_lod = framework::SliceLevels(lod_, level_begin, level_end); - lod_ = new_lod; -} - -void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin, - size_t elem_end) { - PADDLE_ENFORCE_LT(level, NumLevels()); - PADDLE_ENFORCE_LT(elem_begin, NumElements(level)); - PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1); - - auto abs_lod = framework::ToAbsOffset(lod()); - auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end); - lod_ = new_lod; - - // slice the underlying tensor - size_t begin = abs_lod[level][elem_begin]; - size_t end = abs_lod[level][elem_end]; - PADDLE_ENFORCE_LT(begin, end, "Cannot shrink, the result tensor is empty."); - ShareDataWith(Slice(begin, end)); -} - using LoDAndOffset = std::pair>; LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, size_t end_idx, size_t start_level) { @@ -177,6 +154,9 @@ void AppendLoD(LoD *lod, const LoD &lod_length) { lod->empty() || lod->size() == lod_length.size(), "The lod_length should has the same size with the appended lod."); if (lod->empty()) { + for (size_t i = 0; i < lod_length.size(); ++i) { + lod->emplace_back(1, 0); // size = 1, value = 0; + } *lod = LoD(lod_length.size(), std::vector({0})); } for (size_t i = 0; i < lod->size(); ++i) { @@ -189,62 +169,16 @@ void AppendLoD(LoD *lod, const LoD &lod_length) { void SerializeToStream(std::ostream &os, const LoDTensor &tensor, const platform::DeviceContext &dev_ctx) { - // TODO(typhoonzero): serialize to ostream - { // the 1st field, uint32_t version + { // the 1st field, uint32_t version for LoDTensor constexpr uint32_t version = 0; os.write(reinterpret_cast(&version), sizeof(version)); } - { // the 2nd field, tensor description - // int32_t size - // void* protobuf message - proto::TensorDesc desc; - desc.set_data_type(framework::ToDataType(tensor.type())); - auto dims = framework::vectorize(tensor.dims()); - auto *pb_dims = desc.mutable_dims(); - pb_dims->Resize(static_cast(dims.size()), 0); - std::copy(dims.begin(), dims.end(), pb_dims->begin()); - int32_t size = desc.ByteSize(); - os.write(reinterpret_cast(&size), sizeof(size)); - auto out = desc.SerializeAsString(); - os.write(out.data(), size); - } - { // the 3rd field, tensor data - uint64_t size = tensor.memory_size(); - auto *data_ptr = tensor.data(); - PADDLE_ENFORCE(size < std::numeric_limits::max(), - "Index overflow when writing tensor"); - if (platform::is_gpu_place(tensor.place())) { -#ifdef PADDLE_WITH_CUDA - constexpr size_t kBufSize = 1024 * 1024 * 64; // 64MB - std::unique_ptr buf(new char[kBufSize]); - auto &gpu_dev_ctx = - static_cast(dev_ctx); - platform::CPUPlace cpu; - uintptr_t data = reinterpret_cast(data_ptr); - while (size != 0) { - size_t size_to_write = std::min(kBufSize, static_cast(size)); - memory::Copy(cpu, buf.get(), - boost::get(tensor.place()), - reinterpret_cast(data), size_to_write, - gpu_dev_ctx.stream()); - gpu_dev_ctx.Wait(); - os.write(buf.get(), size_to_write); - data += size_to_write; - size -= size_to_write; - } -#else - PADDLE_THROW("Unexpected branch"); -#endif - } else { - os.write(static_cast(data_ptr), - static_cast(size)); - } - } - { // the 4th field, lod information - // uint64_t lod_level - // uint64_t lod_level_1 size in byte. - // int* lod_level_1 data - // ... + { + // the 2st field, LoD information + // uint64_t lod_level + // uint64_t lod_level_1 size in byte. + // int* lod_level_1 data + // ... auto lod = tensor.lod(); uint64_t size = lod.size(); os.write(reinterpret_cast(&size), sizeof(size)); @@ -256,49 +190,20 @@ void SerializeToStream(std::ostream &os, const LoDTensor &tensor, static_cast(size)); } } + // the 3st field, Tensor + SerializeToStream(os, static_cast(tensor), dev_ctx); } -void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { - uint32_t version; - is.read(reinterpret_cast(&version), sizeof(version)); - PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); - proto::TensorDesc desc; - { // int32_t size - // proto buffer - int32_t size; - is.read(reinterpret_cast(&size), sizeof(size)); - std::unique_ptr buf(new char[size]); - is.read(reinterpret_cast(buf.get()), size); - PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size), - "Cannot parse tensor desc"); +void DeserializeFromStream(std::istream &is, LoDTensor *tensor, + const platform::DeviceContext &dev_ctx) { + { + // the 1st field, unit32_t version for LoDTensor + uint32_t version; + is.read(reinterpret_cast(&version), sizeof(version)); + PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); } - { // read tensor - std::vector dims; - dims.reserve(static_cast(desc.dims().size())); - std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); - tensor->Resize(framework::make_ddim(dims)); - - void *buf; - platform::Place cpu = platform::CPUPlace(); - switch (desc.data_type()) { - case proto::FP32: - buf = tensor->mutable_data(cpu); - break; - case proto::FP64: - buf = tensor->mutable_data(cpu); - break; - case proto::INT32: - buf = tensor->mutable_data(cpu); - break; - case proto::INT64: - buf = tensor->mutable_data(cpu); - break; - default: - PADDLE_THROW("DataType %d not supported", desc.data_type()); - } - is.read(static_cast(buf), tensor->memory_size()); - } - { // read lod + { + // the 2st field, LoD information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); auto &lod = *tensor->mutable_lod(); @@ -312,6 +217,59 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { lod[i] = tmp; } } + // the 3st filed, Tensor + DeserializeFromStream(is, static_cast(tensor), dev_ctx); +} + +// TODO(tonyyang-svail): make this function support LoD +std::vector LoDTensor::SplitLoDTensor( + const std::vector places) const { + check_memory_size(); + PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now"); + PADDLE_ENFORCE(dims()[0] % places.size() == 0, + "Batch size should be divided by places size"); + + std::vector lods; + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + int begin = place_idx * dims()[0] / places.size(); + int end = (place_idx + 1) * dims()[0] / places.size(); + + auto src = Slice(begin, end); + auto &dst_place = places[place_idx]; + LoDTensor dst; + framework::Copy(src, dst_place, &dst); + + lods.emplace_back(dst); + } + + return lods; +} + +// TODO(tonyyang-svail): make this function support LoD +void LoDTensor::MergeLoDTensor( + const std::vector &lod_tensors, + platform::Place dst_place) { + PADDLE_ENFORCE(!lod_tensors.empty()); + framework::DDim new_dim = lod_tensors[0]->dims(); + std::type_index new_type = lod_tensors[0]->type(); + auto new_layout = lod_tensors[0]->layout(); + for (auto *lod : lod_tensors) { + PADDLE_ENFORCE(new_dim == lod->dims()); + PADDLE_ENFORCE(new_type == lod->type()); + PADDLE_ENFORCE(new_layout == lod->layout()); + } + new_dim[0] *= lod_tensors.size(); + Resize(new_dim); + set_layout(new_layout); + + mutable_data(dst_place, new_type); + int begin = 0; + for (auto *src : lod_tensors) { + int end = begin + src->dims()[0]; + auto dst = Slice(begin, end); + framework::Copy(*src, dst_place, &dst); + begin = end; + } } } // namespace framework diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 147db3ab0877662d9e47ae7ee6df05638b5fcbd1..37753f5f4ddea4755ad6211007c367de00aad754 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -58,14 +58,7 @@ using Vector = thrust::host_vector< using LoD = std::vector>; std::ostream& operator<<(std::ostream& os, const LoD& lod); - -/* - * Slice levels from a LoD. - * NOTE the lowest level should always be the absolute offsets of the underlying - * tensor instances. So if higher layers are sliced without the lowest level, - * the lower level of the sliced LoD will be transformed to the absolute offset. - */ -LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end); +std::ostream& operator<<(std::ostream& os, const LoDTensor& t); LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin, size_t elem_end); @@ -115,34 +108,11 @@ class LoDTensor : public Tensor { return (lod_)[level].size() - 1; } - /* - * Number of lower-level elements. - * For example, a 2-level lod-tensor - * - * 0-th level | | - * 1-th level || ||| - * - * NumElements(0, 0) get 2 - * NumElements(0, 1) get 3 - */ - size_t NumElements(size_t level, size_t idx) const; + std::vector SplitLoDTensor( + const std::vector places) const; - /* - * Get the number of instances in the underlying tensor in the `idx`-th - * element. - */ - size_t NumInstancesInElement(size_t level, size_t idx) const; - - /* - * Shrink levels[level_begin:level_end] - */ - void ShrinkLevels(size_t level_begin, size_t level_end); - - /* - * Shrink elements of a level, [elem_begin: elem_end] - * @note: low performance in slice lod_. - */ - void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end); + void MergeLoDTensor(const std::vector& lod_tensors, + platform::Place place); private: LoD lod_; @@ -177,8 +147,8 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level, for (size_t ins = 0; ins < num_instances; ins++) { for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) { auto slice = tensor.Slice(elem, elem + 1); - CopyFrom(source.Slice(ins, ins + 1), platform::CPUPlace(), - platform::CPUDeviceContext(), &slice); + Copy(source.Slice(ins, ins + 1), platform::CPUPlace(), + platform::CPUDeviceContext(), &slice); } } return tensor; @@ -208,7 +178,8 @@ void AppendLoD(LoD* lod, const LoD& lod_length); */ void SerializeToStream(std::ostream& os, const LoDTensor& tensor, const platform::DeviceContext& dev_ctx); -void DeserializeFromStream(std::istream& is, LoDTensor* tensor); +void DeserializeFromStream(std::istream& is, LoDTensor* tensor, + const platform::DeviceContext& dev_ctx); } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc index 02d84b68233f2fdfc66e1df2fc7ce20307cadd94..baad9c6f98ac135c3650fe3113522850328c1298 100644 --- a/paddle/framework/lod_tensor_test.cc +++ b/paddle/framework/lod_tensor_test.cc @@ -54,78 +54,6 @@ class LoDTensorTester : public ::testing::Test { LoDTensor lod_tensor_; }; -TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); } - -TEST_F(LoDTensorTester, NumElements) { - ASSERT_EQ(lod_tensor_.NumElements(0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(1), 3UL); - ASSERT_EQ(lod_tensor_.NumElements(2), 8UL); -} - -TEST_F(LoDTensorTester, NumElements2) { - ASSERT_EQ(lod_tensor_.NumElements(0, 0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(0, 1), 1UL); - ASSERT_EQ(lod_tensor_.NumElements(1, 1), 3UL); -} - -TEST_F(LoDTensorTester, ShrinkLevels) { - // slice 1 level - for (size_t level = 0; level < 3UL; ++level) { - LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkLevels(level, level + 1); - ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); - } - // shrink 2 level - for (size_t level = 0; level < 2UL; ++level) { - LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkLevels(level, level + 2); - // the lowest level's last element should be the tensor's batch_size. - ASSERT_EQ(new_lod_tensor.lod().back().back(), - lod_tensor_.lod().back().back()); - ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); - } -} - -TEST_F(LoDTensorTester, ShrinkInLevel) { - size_t level = 0; - LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 0, 1); - ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(2), 5UL); - ASSERT_EQ(new_lod_tensor.dims()[0], 12); - for (int i = 0; i < 12 * 128; i++) { - ASSERT_EQ(new_lod_tensor.data()[i], i); - } - - level = 1; - new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 1, 2); - ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 3UL); - ASSERT_EQ(new_lod_tensor.dims()[0], 7); - for (int i = 5 * 128; i < 12 * 128; i++) { - ASSERT_EQ(new_lod_tensor.data()[i - 5 * 128], i); - } - - LoDTensor t1; - t1.set_lod(lod_tensor_.lod()); - t1.ShareDataWith(lod_tensor_); - - LoDTensor t2; - t2.set_lod(lod_tensor_.lod()); - t2.ShareDataWith(lod_tensor_); - - t1.ShrinkInLevel(0, 1, 2); - t2.ShrinkInLevel(0, 0, 1); - EXPECT_NE(t1.data(), t2.data()); - EXPECT_NE(t1.data(), lod_tensor_.data()); -} - TEST(LodExpand, test) { LoD lod{{0, 2}}; LoDTensor tensor; @@ -187,5 +115,21 @@ TEST(LoD, AppendLoD) { EXPECT_EQ(origin, expected); } +TEST(LoD, ToAbsOffset) { + LoD relative_lod; + relative_lod.push_back(std::vector({0, 2})); + relative_lod.push_back(std::vector({0, 1, 3})); + relative_lod.push_back(std::vector({0, 2, 4, 5})); + + LoD abs_lod = paddle::framework::ToAbsOffset(relative_lod); + + LoD expected; + expected.push_back(std::vector({0, 5})); + expected.push_back(std::vector({0, 2, 5})); + expected.push_back(std::vector({0, 2, 4, 5})); + + EXPECT_EQ(abs_lod, expected); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index 781bbb4c19f1c610df485c3061ca8b510e727019..1c0372bb16c04e155a68a0411939e4887322107a 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -64,8 +64,9 @@ class CompileTimeInferShapeContext : public InferShapeContext { PADDLE_ENFORCE_EQ(in_var->GetType(), proto::VarDesc::LOD_TENSOR, "The %d-th output of Output(%s) must be LoDTensor.", j, out); - out_var->SetLoDLevel(in_var->GetLodLevel()); + out_var->SetLoDLevel(in_var->GetLoDLevel()); } + bool IsRuntime() const override; protected: @@ -260,7 +261,13 @@ struct SetAttrDescVisitor : public boost::static_visitor { void operator()(int v) const { attr_->set_i(v); } void operator()(float v) const { attr_->set_f(v); } void operator()(const std::string &v) const { attr_->set_s(v); } - void operator()(bool b) const { attr_->set_b(b); } + + // Please refer to https://github.com/PaddlePaddle/Paddle/issues/7162 + template ::value>::type> + void operator()(T b) const { + attr_->set_b(b); + } void operator()(const std::vector &v) const { VectorToRepeated(v, attr_->mutable_ints()); @@ -274,9 +281,7 @@ struct SetAttrDescVisitor : public boost::static_visitor { void operator()(const std::vector &v) const { VectorToRepeated(v, attr_->mutable_bools()); } - void operator()(proto::BlockDesc *desc) const { - attr_->set_block_idx(desc->idx()); - } + void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); } void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); } }; @@ -379,7 +384,7 @@ void OpDesc::InferVarType(BlockDesc *block) const { for (auto &out_pair : this->outputs_) { for (auto &out_var_name : out_pair.second) { block->FindRecursiveOrCreateVar(out_var_name) - ->SetType(proto::VarDesc::LOD_TENSOR); + .SetType(proto::VarDesc::LOD_TENSOR); } } } diff --git a/paddle/framework/op_desc.h b/paddle/framework/op_desc.h index 4cf784a0d0d319d09caa27b4e2b589bd7ac4f324..a5ffb162928bfd355d35d3f9b63aab59a88dd061 100644 --- a/paddle/framework/op_desc.h +++ b/paddle/framework/op_desc.h @@ -129,7 +129,7 @@ class OpDesc { } proto::OpDesc desc_; - // input arg name => output variable names + // input arg name => input variable names VariableNameMap inputs_; // output arg name => output variable names VariableNameMap outputs_; diff --git a/paddle/framework/op_kernel_type.h b/paddle/framework/op_kernel_type.h index 97b542e345feab0bab701dd967558ce23375dc7f..053897784c1c4350deadf39e2a009220d38f65f9 100644 --- a/paddle/framework/op_kernel_type.h +++ b/paddle/framework/op_kernel_type.h @@ -26,13 +26,12 @@ namespace framework { struct OpKernelType { struct Hash { size_t operator()(const OpKernelType& key) const { - int place = key.place_.which() + (1 << LEFT_SHIFT); - int data_type = - static_cast(key.data_type_) + (1 << (LEFT_SHIFT + 1)); - int data_layout = - static_cast(key.data_layout_) + (1 << (LEFT_SHIFT + 2)); - int library_type = - static_cast(key.library_type_) + (1 << (LEFT_SHIFT + 3)); + int place = key.place_.which(); + int data_type = static_cast(key.data_type_) << LEFT_SHIFT; + int data_layout = static_cast(key.data_layout_) << (LEFT_SHIFT * 2); + int library_type = static_cast(key.library_type_) + << (LEFT_SHIFT * 3); + std::hash hasher; return hasher(place + data_type + data_layout + library_type); } @@ -68,6 +67,8 @@ struct OpKernelType { data_type_ == o.data_type_ && data_layout_ == o.data_layout_ && library_type_ == o.library_type_; } + + bool operator!=(const OpKernelType& o) const { return !(*this == o); } }; inline std::ostream& operator<<(std::ostream& os, @@ -78,5 +79,11 @@ inline std::ostream& operator<<(std::ostream& os, return os; } +inline std::string KernelTypeToString(const OpKernelType& kernel_key) { + std::ostringstream stream; + stream << kernel_key; + return stream.str(); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/op_kernel_type_test.cc b/paddle/framework/op_kernel_type_test.cc index dd048405007974667bbb8a052b77ab8b3aa4580e..649afeee8a846b0579545f2edff77e9dbe3b4dd8 100644 --- a/paddle/framework/op_kernel_type_test.cc +++ b/paddle/framework/op_kernel_type_test.cc @@ -26,10 +26,8 @@ TEST(OpKernelType, ToString) { OpKernelType op_kernel_type(DataType::FP32, CPUPlace(), DataLayout::kNCHW, LibraryType::kCUDNN); - std::ostringstream stream; - stream << op_kernel_type; ASSERT_EQ( - stream.str(), + paddle::framework::KernelTypeToString(op_kernel_type), "data_type[5]:data_layout[NCHW]:place[CPUPlace]:library_type[CUDNN]"); } diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index bdaa25918155caca4b64b0ed60aa3f6be03eb12f..d75c0233e8e0134ddf4edc50c07490a234b65cd0 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -37,8 +37,8 @@ class Registrar { public: // In our design, various kinds of classes, e.g., operators and kernels, // have their corresponding registry and registrar. The action of - // registration is in the constructor of a global registrar variable, which, - // however, are not used in the code that calls package framework, and would + // registration is in the constructor of a global registrar variable, which + // are not used in the code that calls package framework, and would // be removed from the generated binary file by the linker. To avoid such // removal, we add Touch to all registrar classes and make USE_OP macros to // call this method. So, as long as the callee code calls USE_OP, the global diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index cef530c6e639f6e2188869fa57d114ec6b885aa8..66f07b6757fe1fe613e61ac66057be43ef5aced7 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -12,13 +12,16 @@ See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/framework/op_registry.h" +#include #include +#include "paddle/framework/op_registry.h" + namespace pd = paddle::framework; namespace paddle { namespace framework { + class CosineOp : public OperatorBase { public: using OperatorBase::OperatorBase; @@ -215,7 +218,7 @@ class OpWithKernelTest : public OperatorWithKernel { protected: void InferShape(InferShapeContext* ctx) const override {} - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(proto::DataType::FP32, ctx.device_context()); } @@ -252,7 +255,6 @@ TEST(OperatorRegistrar, CPU) { op->Run(scope, cpu_place); } -#ifdef PADDLE_WITH_CUDA TEST(OperatorRegistrar, CUDA) { paddle::framework::proto::OpDesc op_desc; paddle::platform::CUDAPlace cuda_place(0); @@ -263,4 +265,127 @@ TEST(OperatorRegistrar, CUDA) { op->Run(scope, cuda_place); } -#endif + +static int op_test_value = 0; + +using paddle::platform::DeviceContext; +using paddle::platform::CPUDeviceContext; +using paddle::platform::CUDADeviceContext; + +namespace paddle { +namespace framework { + +class OpWithMultiKernelTest : public OperatorWithKernel { + public: + using OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(InferShapeContext* ctx) const override {} + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + proto::DataType::FP32, platform::CUDAPlace(0), DataLayout::kAnyLayout, + framework::LibraryType::kCUDNN); + } +}; + +template +class OpMultiKernelTest : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const; +}; + +template +class OpMultiKernelTest + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + ++op_test_value; + } +}; + +template +class OpMultiKernelTest + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + --op_test_value; + } +}; + +template +class OpMultiKernelTest2 : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const; +}; + +template +class OpMultiKernelTest2 + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + op_test_value += 10; + } +}; + +template +class OpMultiKernelTest2 + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + op_test_value -= 10; + } +}; + +} // namespace framework +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT(op_with_multi_kernel, + paddle::framework::OpWithMultiKernelTest, + paddle::framework::OpKernelTestMaker); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CPU, paddle::platform::CPUPlace, + paddle::framework::OpMultiKernelTest); +REGISTER_OP_KERNEL( + op_with_multi_kernel, MKLDNN, paddle::platform::CPUPlace, + paddle::framework::OpMultiKernelTest2); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CUDA, paddle::platform::CUDAPlace, + paddle::framework::OpMultiKernelTest); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CUDNN, paddle::platform::CUDAPlace, + paddle::framework::OpMultiKernelTest2); + +TEST(OperatorRegistrar, OpWithMultiKernel) { + paddle::framework::proto::OpDesc op_desc; + paddle::platform::CUDAPlace cuda_place(0); + paddle::platform::CPUPlace cpu_place; + paddle::framework::Scope scope; + + op_desc.set_type("op_with_multi_kernel"); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + + // TODO(qiao) add priority back + // use all available kernels + paddle::framework::UseALL(); + op->Run(scope, cuda_place); + EXPECT_EQ(op_test_value, -10); + + // remove cuda kernels + paddle::framework::UseCPU(); + op->Run(scope, cpu_place); + + EXPECT_EQ(op_test_value, -9); + + // add cuda kernels + paddle::framework::UseCUDA(); + op->Run(scope, cuda_place); + + EXPECT_EQ(op_test_value, -10); + + // use cudnn kernel + paddle::framework::UseCUDNN(); + op->Run(scope, cuda_place); + EXPECT_EQ(op_test_value, -20); +} diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 886f73e7b81c35cac573bd041e6462eb2111bf85..35ebe48ba682f135b7f85edb3b2999db7c29e51a 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -11,13 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include #include -#include #include "paddle/framework/data_transform.h" +#include "paddle/framework/device_data_transform.h" #include "paddle/framework/executor.h" -#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/operator.h" #include "paddle/framework/shape_inference.h" #include "paddle/framework/var_type.h" @@ -25,6 +25,66 @@ limitations under the License. */ namespace paddle { namespace framework { +std::vector> kKernelPriority; + +void UseCPU() { + kKernelPriority.clear(); + /*Plain CPU*/ + auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain); + kKernelPriority.insert(kKernelPriority.begin(), pair0); +} + +void UseMKLDNN() { + UseCPU(); +#if PADDLE_WITH_MKLML + { + /*MKLDNN Kernel*/ + auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN); + kKernelPriority.insert(kKernelPriority.begin(), pair0); + } +#endif +} + +void UseCUDA() { + UseMKLDNN(); +#if PADDLE_WITH_CUDA + /*Plain GPU*/ + auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain); + kKernelPriority.insert(kKernelPriority.begin(), pair0); +#endif +} + +void UseCUDNN() { + UseCUDA(); +#if PADDLE_WITH_CUDA + if (platform::dynload::HasCUDNN()) { + /*CUDNN Kernel*/ + auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN); + kKernelPriority.insert(kKernelPriority.begin(), pair0); + } +#endif +} + +void UseALL() { + UseCPU(); + UseMKLDNN(); + UseCUDA(); + UseCUDNN(); +} + +static DDim GetDims(const Scope& scope, const std::string& name) { + Variable* var = scope.FindVar(name); + if (var == nullptr) { + return DDim({-1}); + } else if (var->IsType()) { + return var->Get().dims(); + } else if (var->IsType()) { + return var->Get().GetCompleteDims(); + } else { + return DDim({-1}); + } +} + std::string OperatorBase::Input(const std::string& name) const { auto& ins = Inputs(name); PADDLE_ENFORCE_LE(ins.size(), 1UL, @@ -57,7 +117,7 @@ const std::vector& OperatorBase::Outputs( return it->second; } -std::string OperatorBase::DebugString() const { +std::string OperatorBase::DebugStringEx(const Scope* scope) const { std::stringstream ss; ss << "Op(" << type_ << "), inputs:{"; for (auto it = inputs_.begin(); it != inputs_.end();) { @@ -65,6 +125,9 @@ std::string OperatorBase::DebugString() const { ss << input.first << "["; for (size_t i = 0; i < input.second.size(); ++i) { ss << input.second[i]; + if (scope) { + ss << "(" << GetDims(*scope, input.second[i]) << ")"; + } if (i != input.second.size() - 1) { ss << ", "; } @@ -81,6 +144,9 @@ std::string OperatorBase::DebugString() const { ss << output.first << "["; for (size_t i = 0; i < output.second.size(); ++i) { ss << output.second[i]; + if (scope) { + ss << "(" << GetDims(*scope, output.second[i]) << ")"; + } if (i != output.second.size() - 1) { ss << ", "; } @@ -178,6 +244,10 @@ void OperatorBase::GenerateTemporaryNames() { } } +static bool VarIsTensor(const Variable* var) { + return var->IsType() || var->IsType(); +} + static const Tensor* GetTensorFromVar(const Variable* var) { const Tensor* t = nullptr; if (var->IsType()) { @@ -185,7 +255,8 @@ static const Tensor* GetTensorFromVar(const Variable* var) { } else if (var->IsType()) { t = &(var->Get().value()); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", + var->Type().name()); } return t; } @@ -197,7 +268,8 @@ static Tensor* GetMutableTensorFromVar(Variable* var) { } else if (var->IsType()) { t = var->GetMutable()->mutable_value(); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", + var->Type().name()); } return t; } @@ -347,6 +419,25 @@ class RuntimeInferShapeContext : public InferShapeContext { auto in_tensor = in_var->Get(); auto* out_tensor = out_var->GetMutable(); out_tensor->set_lod(in_tensor.lod()); + + // TODO(dzhwinter) : reuse ShareLoD in most operators. + // Need to call ShareLayout explicitly in sequence related ops. + // Shall we have a better method to shared info between in/out Tensor? + out_tensor->set_layout(in_tensor.layout()); + } + + void ShareLayout(const std::string& in, const std::string& out, size_t i = 0, + size_t j = 0) const { + PADDLE_ENFORCE_LT(i, Inputs(in).size()); + PADDLE_ENFORCE_LT(j, Outputs(out).size()); + Variable* in_var = scope_.FindVar(Inputs(in)[i]); + Variable* out_var = scope_.FindVar(Outputs(out)[j]); + if (!in_var->IsType()) return; + PADDLE_ENFORCE(out_var->IsType(), + "The %d-th output of Output(%s) must be LoDTensor.", j, out); + auto in_tensor = in_var->Get(); + auto* out_tensor = out_var->GetMutable(); + out_tensor->set_layout(in_tensor.layout()); } bool IsRuntime() const override { return true; } @@ -359,7 +450,8 @@ class RuntimeInferShapeContext : public InferShapeContext { } else if (var->IsType()) { return var->Get().GetCompleteDims(); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", + name, var->Type().name()); } } @@ -370,7 +462,8 @@ class RuntimeInferShapeContext : public InferShapeContext { } else if (var->IsType()) { var->GetMutable()->set_height(dim[0]); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", + name, var->Type().name()); } } @@ -388,8 +481,8 @@ void OperatorWithKernel::Run(const Scope& scope, const platform::Place& place) const { RuntimeInferShapeContext infer_shape_ctx(*this, scope); this->InferShape(&infer_shape_ctx); - platform::DeviceContextPool& pool = platform::DeviceContextPool::Get(); - auto dev_ctx = pool.Borrow(place); + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto dev_ctx = pool.Get(place); // check if op[type] has kernel registered. auto& all_op_kernels = AllOpKernels(); @@ -399,61 +492,59 @@ void OperatorWithKernel::Run(const Scope& scope, "There are no kernels which are registered in the %s operator.", type_); } - // check if op[type] have kernel for kernel_key - OpKernelMap& kernels = kernels_iter->second; - ExecutionContext ctx(*this, scope, *dev_ctx); - auto actual_kernel_key = GetActualKernelType(ctx); - auto expected_kernel_key = GetExpectedKernelType(actual_kernel_key); - auto kernel_iter = kernels.find(expected_kernel_key); - - if (kernel_iter == kernels.end()) { - PADDLE_THROW("The operator %s does not support %s", type_, - expected_kernel_key); - } + auto expected_kernel_key = this->GetExpectedKernelType(ctx); - if (actual_kernel_key == expected_kernel_key) { - kernel_iter->second->Compute(ctx); - } else { - Scope& op_scope = scope.NewScope(); - auto input_vars = this->InputVars(); - for (auto var_name : input_vars) { - op_scope.Var(var_name); - } - - // TODO(qijun) get appropriate DeviceContext from DeviceContext pool - platform::DeviceContext* trans_dev_ctx = nullptr; - std::vector trans_dev_ctx_vec{trans_dev_ctx}; - - // TODO(qijun) get appropriate DataTransformFN from global map - framework::DataTransformFN trans_fun = nullptr; + OpKernelMap& kernels = kernels_iter->second; - // Wait for transform starting - dev_ctx->Wait(); + for (auto& candidate : kKernelPriority) { + auto candidate_key = + OpKernelType(expected_kernel_key.data_type_, std::get<0>(candidate), + expected_kernel_key.data_layout_, std::get<1>(candidate)); - for (auto var_name : input_vars) { - trans_fun(trans_dev_ctx_vec, *(scope.FindVar(var_name)), - op_scope.FindVar(var_name)); - } - // Wait for data transform finishing - for (auto ctx : trans_dev_ctx_vec) { - ctx->Wait(); + if ((candidate_key == expected_kernel_key) || + (kernels.count(candidate_key))) { + expected_kernel_key = candidate_key; + break; } + } - // Create a new ExecutionContext - ExecutionContext op_ctx(*this, op_scope, *dev_ctx); - kernel_iter->second->Compute(op_ctx); + VLOG(3) << "expected_kernel_key:" << expected_kernel_key; + + Scope& new_scope = scope.NewScope(); + + for (auto& var_name_item : this->Inputs()) { + for (auto& var_name : var_name_item.second) { + auto* var = scope.FindVar(var_name); + if (var && VarIsTensor(var)) { + auto* tensor_in = GetTensorFromVar(var); + if (tensor_in->IsInitialized()) { + auto kernel_type_for_var = this->GetKernelTypeForVar( + var_name_item.first, *tensor_in, expected_kernel_key); + if (kernel_type_for_var != expected_kernel_key) { + auto out_var_names = OutputVars(true); + if (std::find(out_var_names.begin(), out_var_names.end(), + var_name) != out_var_names.end()) { + PADDLE_THROW( + "var %s is both input and output, " + "does not support transform", + var_name); + } + VLOG(3) << "need to do transform for var " << var_name; + auto* trans_var = new_scope.Var(var_name); + auto* out = DataTransform(expected_kernel_key, kernel_type_for_var, + *tensor_in); + CopyVariableWithTensor(*var, *out, *trans_var); + } + } + } + } } -} -OpKernelType OperatorWithKernel::GetActualKernelType( - const ExecutionContext& ctx) const { - return OpKernelType(IndicateDataType(ctx), ctx.GetPlace()); -} + auto kernel_iter = kernels.find(expected_kernel_key); -OpKernelType OperatorWithKernel::GetExpectedKernelType( - const OpKernelType& actual_kernel_type) const { - return actual_kernel_type; + kernel_iter->second->Compute(ExecutionContext( + *this, new_scope, *pool.Get(expected_kernel_key.place_))); } proto::DataType OperatorWithKernel::IndicateDataType( @@ -485,5 +576,16 @@ proto::DataType OperatorWithKernel::IndicateDataType( return static_cast(data_type); } +OpKernelType OperatorWithKernel::GetExpectedKernelType( + const ExecutionContext& ctx) const { + return OpKernelType(IndicateDataType(ctx), ctx.GetPlace()); +} + +OpKernelType OperatorWithKernel::GetKernelTypeForVar( + const std::string& var_name, const Tensor& tensor, + const OpKernelType& expected_kernel_type) const { + return OpKernelType(expected_kernel_type.data_type_, tensor.place()); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index d0a9b643d565d6651fd7ec0b515f088362852ba3..d5feb598649c97a9517b7c2b1764fd54ff9f8693 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include +#include #include #include @@ -52,10 +53,33 @@ constexpr char kGradVarSuffix[] = "@GRAD"; /// Variables with this suffix are supposed to be filled up with zeros. constexpr char kZeroVarSuffix[] = "@ZERO"; -// define some kernel hint -const std::string kUseCPU = "use_cpu"; -const std::string kUseCUDNN = "use_cudnn"; -const std::string kUseMKLDNN = "use_mkldnn"; +// define some kernel priority +extern std::vector> kKernelPriority; + +/** + * @brief Use cpu kernel only + */ +void UseCPU(); + +/** + * @brief Perfer MKLDNN kernel than Plain CPU kernel + */ +void UseMKLDNN(); + +/** + * @brief Perfer CUDA kernel than Plain CPU kernel + */ +void UseCUDA(); + +/** + * @brief Perfer cudnn kernel than Plain CUDA kernel + */ +void UseCUDNN(); + +/** + * @brief Use all available kernels + */ +void UseALL(); inline std::string GradVarName(const std::string& var_name) { return var_name + kGradVarSuffix; @@ -84,7 +108,10 @@ class OperatorBase { return boost::get(attrs_.at(name)); } - virtual std::string DebugString() const; + /// if scope is not null, also show dimensions of arguments + virtual std::string DebugStringEx(const Scope* scope) const; + + std::string DebugString() const { return DebugStringEx(nullptr); } /// Net will call this function to Run an op. virtual void Run(const Scope& scope, const platform::Place& place) const = 0; @@ -381,9 +408,10 @@ class OperatorWithKernel : public OperatorBase { } protected: - virtual OpKernelType GetActualKernelType(const ExecutionContext& ctx) const; - virtual OpKernelType GetExpectedKernelType( - const OpKernelType& actual_kernel_type) const; + virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const; + virtual OpKernelType GetKernelTypeForVar( + const std::string& var_name, const Tensor& tensor, + const OpKernelType& expected_kernel_type) const; private: // indicate kernel DataType by input data. Defaultly all input data must be diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 4d38a7ada91af834aa1a19b49e36d606ebe786ba..b69d7c7a7406eb3e18d385c568cb9c21b9b4107b 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -69,7 +69,7 @@ REGISTER_OP_WITHOUT_GRADIENT(test_operator, paddle::framework::OpWithoutKernelCheckerMaker); TEST(OperatorBase, all) { - paddle::framework::InitDevices({"CPU"}); + paddle::framework::InitDevices(); paddle::framework::proto::OpDesc op_desc; op_desc.set_type("test_operator"); BuildVar("input", {"IN1"}, op_desc.add_inputs()); @@ -114,7 +114,8 @@ class OpWithKernelTest : public OperatorWithKernel { protected: void InferShape(framework::InferShapeContext* ctx) const override {} - OpKernelType GetActualKernelType(const ExecutionContext& ctx) const override { + OpKernelType GetExpectedKernelType( + const ExecutionContext& ctx) const override { return OpKernelType(proto::DataType::FP32, ctx.GetPlace()); } }; @@ -194,7 +195,7 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, // test with single input TEST(OpKernel, all) { - paddle::framework::InitDevices({"CPU"}); + paddle::framework::InitDevices(); paddle::framework::proto::OpDesc op_desc; op_desc.set_type("op_with_kernel"); BuildVar("x", {"IN1"}, op_desc.add_inputs()); @@ -224,7 +225,7 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, TEST(OpKernel, multi_inputs) { using namespace paddle::framework; - paddle::framework::InitDevices({"CPU"}); + paddle::framework::InitDevices(); proto::OpDesc op_desc; op_desc.set_type("op_multi_inputs_with_kernel"); @@ -263,7 +264,7 @@ class OperatorClone : public paddle::framework::OperatorBase { }; TEST(Operator, Clone) { - paddle::framework::InitDevices({"CPU"}); + paddle::framework::InitDevices(); OperatorClone a("ABC", paddle::framework::VariableNameMap{}, paddle::framework::VariableNameMap{}, paddle::framework::AttributeMap{}); diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc index 0c01d605bcd95f5796fba1e5a3351a2640b2898a..2bd0ac8f5a9eb6439a4196dd9c61e13797c1a8e3 100644 --- a/paddle/framework/scope.cc +++ b/paddle/framework/scope.cc @@ -17,6 +17,7 @@ limitations under the License. */ #include // for unique_ptr #include // for call_once #include "glog/logging.h" +#include "paddle/framework/threadpool.h" #include "paddle/string/printf.h" namespace paddle { @@ -87,7 +88,8 @@ void Scope::DeleteScope(Scope* scope) { auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope); this->kids_.erase(it); - delete scope; + // Make delete async. + Async([scope] { delete scope; }); } void Scope::Rename(const std::string& origin_name, @@ -107,6 +109,7 @@ std::string Scope::Rename(const std::string& origin_name) const { Rename(origin_name, var_name); return var_name; } + Variable* Scope::FindVarLocally(const std::string& name) const { auto it = vars_.find(name); if (it != vars_.end()) return it->second; diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index 10143326dfa201894c777b3e5e226d5ca5015eda..a1da81cc7977d2f31b99c41fb3db3ec03188f954 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -75,9 +75,9 @@ class Scope { // Rename variable to a new name and return the new name std::string Rename(const std::string& origin_name) const; - private: Variable* FindVarLocally(const std::string& name) const; + private: // Call Scope::NewScope for a sub-scope. explicit Scope(Scope const* parent) : parent_(parent) {} diff --git a/paddle/framework/selected_rows.cc b/paddle/framework/selected_rows.cc index c74459c9dd7006a24615b1d6df041583088fb25c..3b3e60177a495cc99f38ee8b82af41c4c76b8652 100644 --- a/paddle/framework/selected_rows.cc +++ b/paddle/framework/selected_rows.cc @@ -12,5 +12,58 @@ limitations under the License. */ #include "paddle/framework/selected_rows.h" namespace paddle { -namespace framework {} // namespace framework +namespace framework { +void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows, + const platform::DeviceContext& dev_ctx) { + { // the 1st field, uint32_t version + constexpr uint32_t version = 0; + os.write(reinterpret_cast(&version), sizeof(version)); + } + { + // the 2st field, rows information + auto& rows = selected_rows.rows(); + uint64_t size = rows.size(); + os.write(reinterpret_cast(&size), sizeof(size)); + for (uint64_t i = 0; i < size; ++i) { + os.write(reinterpret_cast(&rows[i]), sizeof(rows[i])); + } + } + { + // the 3st field, the height of SelectedRows + int64_t height = selected_rows.height(); + os.write(reinterpret_cast(&height), sizeof(height)); + } + // the 4st field, Tensor data + SerializeToStream(os, selected_rows.value(), dev_ctx); +} + +void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows, + const platform::DeviceContext& dev_ctx) { + { + // the 1st field, unit32_t version for SelectedRows + uint32_t version; + is.read(reinterpret_cast(&version), sizeof(version)); + PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); + } + { + // the 2st field, rows information + uint64_t size; + is.read(reinterpret_cast(&size), sizeof(size)); + auto& rows = *selected_rows->mutable_rows(); + rows.resize(size); + for (uint64_t i = 0; i < size; ++i) { + is.read(reinterpret_cast(&rows[i]), sizeof(int64_t)); + } + } + { + // the 3st field, the height of the SelectedRows + int64_t height; + is.read(reinterpret_cast(&height), sizeof(int64_t)); + selected_rows->set_height(height); + } + // the 4st field, tensor which contains the data + DeserializeFromStream(is, selected_rows->mutable_value(), dev_ctx); +} + +} // namespace framework } // namespace paddle diff --git a/paddle/framework/selected_rows.h b/paddle/framework/selected_rows.h index 0332b91323e3a4b4b80e02302ad3dcafe0986cde..30d3dfc1e89f073a8180ceacf77619b36f7079a9 100644 --- a/paddle/framework/selected_rows.h +++ b/paddle/framework/selected_rows.h @@ -59,5 +59,15 @@ class SelectedRows { int64_t height_; }; +/* + * Serialize/Desiralize SelectedRows to std::ostream + * You can pass ofstream or ostringstream to serilize to file + * or to a in memory string. GPU tensor will be copied to CPU. + */ +void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows, + const platform::DeviceContext& dev_ctx); +void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows, + const platform::DeviceContext& dev_ctx); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/selected_rows_test.cc b/paddle/framework/selected_rows_test.cc index 4ee13a65d72e44693573397bb686b355effb2227..8ff3fb6a97199a2798ab29c56957a0f77fa26628 100644 --- a/paddle/framework/selected_rows_test.cc +++ b/paddle/framework/selected_rows_test.cc @@ -43,5 +43,21 @@ TEST_F(SelectedRowsTester, complete_dims) { ASSERT_EQ(selected_rows_->GetCompleteDims(), make_ddim({10, 100})); } +TEST_F(SelectedRowsTester, SerializeAndDeseralize) { + SelectedRows dst_tensor; + platform::CPUDeviceContext cpu_ctx(place_); + std::ostringstream oss; + + SerializeToStream(oss, *selected_rows_, cpu_ctx); + + std::istringstream iss(oss.str()); + DeserializeFromStream(iss, &dst_tensor, cpu_ctx); + + ASSERT_EQ(selected_rows_->rows(), dst_tensor.rows()); + ASSERT_EQ(selected_rows_->height(), dst_tensor.height()); + ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims()); + ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims()); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index b9f6884f7c4b6eeacda722762d485dea97fdcb63..4aaa29d794c95592832a1fe990e2dce274eba9d5 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -55,6 +55,10 @@ class Tensor { template inline const T* data() const; + inline bool IsInitialized() const; + + inline void switch_place(platform::Place new_place); + /** * @brief Return a pointer to mutable memory block. * @note If not exist, then allocation. @@ -178,7 +182,7 @@ class Tensor { DDim dims_; /** - * @brief the layout of memory block, default is NCHW. + * @brief the layout of memory block, default is NHWC. * * @note the memory allocation order, describe how weight/data is stored * For example, in 4-D Tensor(rank=4), there are three commonly @@ -200,6 +204,15 @@ class Tensor { size_t offset_; }; +inline void Tensor::switch_place(platform::Place new_place) { + if (holder_->place() == new_place) { + return; + } + + // TODO(tonyyang-svail): do memcpy here. + PADDLE_THROW("Not Implemented"); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 6c6f298edc187a87677089e54c4c9046821282df..1340c5e48520ccdd537e694abf452fd79129df99 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -84,6 +84,8 @@ inline const T* Tensor::data() const { reinterpret_cast(holder_->ptr()) + offset_); } +inline bool Tensor::IsInitialized() const { return holder_ != nullptr; } + template inline T* Tensor::data() { check_memory_size(); diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index ca76a9fcb9079bab22f7b192c45903852c91797f..a1b4a03289eca4c8b9d8c23ede4221853cb31f79 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -15,12 +15,13 @@ #include #include +namespace framework = paddle::framework; +namespace platform = paddle::platform; + TEST(Tensor, Dims) { - using namespace paddle::framework; - using namespace paddle::platform; - Tensor tt; + framework::Tensor tt; tt.Resize({2, 3, 4}); - DDim dims = tt.dims(); + framework::DDim dims = tt.dims(); ASSERT_EQ(arity(dims), 3); for (int i = 0; i < 3; ++i) { EXPECT_EQ(i + 2, dims[i]); @@ -28,12 +29,12 @@ TEST(Tensor, Dims) { } TEST(Tensor, DataAssert) { - paddle::framework::Tensor src_tensor; + framework::Tensor src_tensor; bool caught = false; try { src_tensor.data(); - } catch (paddle::platform::EnforceNotMet err) { + } catch (platform::EnforceNotMet err) { caught = true; std::string msg = "holder_ should not be null\nTensor holds no memory. Call " @@ -50,61 +51,65 @@ TEST(Tensor, DataAssert) { because Memory::Alloc() and Memory::Free() have not been ready. */ TEST(Tensor, MutableData) { - using namespace paddle::framework; - using namespace paddle::platform; { - Tensor src_tensor; + framework::Tensor src_tensor; float* p1 = nullptr; float* p2 = nullptr; // initialization - p1 = src_tensor.mutable_data(make_ddim({1, 2, 3}), CPUPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({1, 2, 3}), + platform::CPUPlace()); EXPECT_NE(p1, nullptr); // set src_tensor a new dim with large size // momery is supposed to be re-allocated - p2 = src_tensor.mutable_data(make_ddim({3, 4}), CPUPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({3, 4}), + platform::CPUPlace()); EXPECT_NE(p2, nullptr); EXPECT_NE(p1, p2); // set src_tensor a new dim with same size // momery block is supposed to be unchanged - p1 = src_tensor.mutable_data(make_ddim({2, 2, 3}), CPUPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({2, 2, 3}), + platform::CPUPlace()); EXPECT_EQ(p1, p2); // set src_tensor a new dim with smaller size // momery block is supposed to be unchanged - p2 = src_tensor.mutable_data(make_ddim({2, 2}), CPUPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({2, 2}), + platform::CPUPlace()); EXPECT_EQ(p1, p2); } #ifdef PADDLE_WITH_CUDA { - Tensor src_tensor; + framework::Tensor src_tensor; float* p1 = nullptr; float* p2 = nullptr; // initialization - p1 = src_tensor.mutable_data(make_ddim({1, 2, 3}), CUDAPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({1, 2, 3}), + platform::CUDAPlace()); EXPECT_NE(p1, nullptr); // set src_tensor a new dim with large size // momery is supposed to be re-allocated - p2 = src_tensor.mutable_data(make_ddim({3, 4}), CUDAPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({3, 4}), + platform::CUDAPlace()); EXPECT_NE(p2, nullptr); EXPECT_NE(p1, p2); // set src_tensor a new dim with same size // momery block is supposed to be unchanged - p1 = src_tensor.mutable_data(make_ddim({2, 2, 3}), CUDAPlace()); + p1 = src_tensor.mutable_data(framework::make_ddim({2, 2, 3}), + platform::CUDAPlace()); EXPECT_EQ(p1, p2); // set src_tensor a new dim with smaller size // momery block is supposed to be unchanged - p2 = src_tensor.mutable_data(make_ddim({2, 2}), CUDAPlace()); + p2 = src_tensor.mutable_data(framework::make_ddim({2, 2}), + platform::CUDAPlace()); EXPECT_EQ(p1, p2); } #endif } TEST(Tensor, ShareDataWith) { - using namespace paddle::framework; - using namespace paddle::platform; { - Tensor src_tensor; - Tensor dst_tensor; + framework::Tensor src_tensor; + framework::Tensor dst_tensor; // Try to share data form uninitialized tensor bool caught = false; try { @@ -121,16 +126,18 @@ TEST(Tensor, ShareDataWith) { } ASSERT_TRUE(caught); - src_tensor.mutable_data(make_ddim({2, 3, 4}), CPUPlace()); + src_tensor.mutable_data(framework::make_ddim({2, 3, 4}), + platform::CPUPlace()); dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } #ifdef PADDLE_WITH_CUDA { - Tensor src_tensor; - Tensor dst_tensor; - src_tensor.mutable_data(make_ddim({2, 3, 4}), CUDAPlace()); + framework::Tensor src_tensor; + framework::Tensor dst_tensor; + src_tensor.mutable_data(framework::make_ddim({2, 3, 4}), + platform::CUDAPlace()); dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } @@ -138,13 +145,12 @@ TEST(Tensor, ShareDataWith) { } TEST(Tensor, Slice) { - using namespace paddle::framework; - using namespace paddle::platform; { - Tensor src_tensor; - src_tensor.mutable_data(make_ddim({5, 3, 4}), CPUPlace()); - Tensor slice_tensor = src_tensor.Slice(1, 3); - DDim slice_dims = slice_tensor.dims(); + framework::Tensor src_tensor; + src_tensor.mutable_data(framework::make_ddim({5, 3, 4}), + platform::CPUPlace()); + framework::Tensor slice_tensor = src_tensor.Slice(1, 3); + framework::DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 3); EXPECT_EQ(slice_dims[0], 2); EXPECT_EQ(slice_dims[1], 3); @@ -153,11 +159,12 @@ TEST(Tensor, Slice) { uintptr_t src_data_address = reinterpret_cast(src_tensor.data()); uintptr_t src_mutable_data_address = reinterpret_cast( - src_tensor.mutable_data(src_tensor.dims(), CPUPlace())); + src_tensor.mutable_data(src_tensor.dims(), platform::CPUPlace())); uintptr_t slice_data_address = reinterpret_cast(slice_tensor.data()); - uintptr_t slice_mutable_data_address = reinterpret_cast( - slice_tensor.mutable_data(slice_tensor.dims(), CPUPlace())); + uintptr_t slice_mutable_data_address = + reinterpret_cast(slice_tensor.mutable_data( + slice_tensor.dims(), platform::CPUPlace())); EXPECT_EQ(src_data_address, src_mutable_data_address); EXPECT_EQ(slice_data_address, slice_mutable_data_address); EXPECT_EQ(src_data_address + 3 * 4 * 1 * sizeof(int), slice_data_address); @@ -165,22 +172,25 @@ TEST(Tensor, Slice) { #ifdef PADDLE_WITH_CUDA { - Tensor src_tensor; - src_tensor.mutable_data(make_ddim({6, 9}), CUDAPlace()); - Tensor slice_tensor = src_tensor.Slice(2, 6); - DDim slice_dims = slice_tensor.dims(); + framework::Tensor src_tensor; + src_tensor.mutable_data(framework::make_ddim({6, 9}), + platform::CUDAPlace()); + framework::Tensor slice_tensor = src_tensor.Slice(2, 6); + framework::DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 2); EXPECT_EQ(slice_dims[0], 4); EXPECT_EQ(slice_dims[1], 9); uintptr_t src_data_address = reinterpret_cast(src_tensor.data()); - uintptr_t src_mutable_data_address = reinterpret_cast( - src_tensor.mutable_data(src_tensor.dims(), CUDAPlace())); + uintptr_t src_mutable_data_address = + reinterpret_cast(src_tensor.mutable_data( + src_tensor.dims(), platform::CUDAPlace())); uintptr_t slice_data_address = reinterpret_cast(slice_tensor.data()); - uintptr_t slice_mutable_data_address = reinterpret_cast( - slice_tensor.mutable_data(slice_tensor.dims(), CUDAPlace())); + uintptr_t slice_mutable_data_address = + reinterpret_cast(slice_tensor.mutable_data( + slice_tensor.dims(), platform::CUDAPlace())); EXPECT_EQ(src_data_address, src_mutable_data_address); EXPECT_EQ(slice_data_address, slice_mutable_data_address); EXPECT_EQ(src_data_address + 9 * 2 * sizeof(double), slice_data_address); @@ -189,23 +199,19 @@ TEST(Tensor, Slice) { } TEST(Tensor, ReshapeToMatrix) { - using namespace paddle::framework; - using namespace paddle::platform; - Tensor src; - int* src_ptr = src.mutable_data({2, 3, 4, 9}, CPUPlace()); + framework::Tensor src; + int* src_ptr = src.mutable_data({2, 3, 4, 9}, platform::CPUPlace()); for (int i = 0; i < 2 * 3 * 4 * 9; ++i) { src_ptr[i] = i; } - Tensor res = ReshapeToMatrix(src, 2); + framework::Tensor res = framework::ReshapeToMatrix(src, 2); ASSERT_EQ(res.dims()[0], 2 * 3); ASSERT_EQ(res.dims()[1], 4 * 9); } TEST(Tensor, Layout) { - using namespace paddle::framework; - using namespace paddle::platform; - Tensor src; - ASSERT_EQ(src.layout(), DataLayout::kNHWC); - src.set_layout(DataLayout::kAnyLayout); - ASSERT_EQ(src.layout(), DataLayout::kAnyLayout); + framework::Tensor src; + ASSERT_EQ(src.layout(), framework::DataLayout::kNHWC); + src.set_layout(framework::DataLayout::kAnyLayout); + ASSERT_EQ(src.layout(), framework::DataLayout::kAnyLayout); } diff --git a/paddle/framework/tensor_util.cc b/paddle/framework/tensor_util.cc new file mode 100644 index 0000000000000000000000000000000000000000..a5b83eaa07ad25d39996f5644d6a7f3ed35ff7b2 --- /dev/null +++ b/paddle/framework/tensor_util.cc @@ -0,0 +1,119 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/tensor_util.h" + +namespace paddle { +namespace framework { +template +struct AnyDTypeVisitor { + Predicate predicate_; + const Tensor& tensor_; + const DevCtx& ctx_; + Tensor* out_; + + AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx, + Tensor* out) + : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {} + + template + void operator()() const { + auto t = EigenVector::Flatten(tensor_); + auto o = EigenScalar::From(*out_); + // return any of predicate_(t) is true. + o.device(*ctx_.eigen_device()) = predicate_(t).any(); + } +}; + +template +inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor, + const DevCtx& ctx, framework::Tensor* out) { + VisitDataType(ToDataType(tensor.type()), AnyDTypeVisitor( + predicate, tensor, ctx, out)); +} + +template +struct AnyVisitor : public boost::static_visitor { + const framework::Tensor& tensor_; + Predicate predicate_; + + AnyVisitor(const framework::Tensor& tensor, Predicate predicate) + : tensor_(tensor), predicate_(std::move(predicate)) {} + + template + bool operator()(const Place& place) const { + framework::Tensor out; + out.Resize({1}); + out.mutable_data(place); + auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place); + AnyImpl(predicate_, tensor_, *ctx, &out); + return this->GetResult(out, place); + } + + bool GetResult(const framework::Tensor& out, + const platform::CUDAPlace& gpu) const { + platform::CPUPlace cpu; + framework::Tensor tmp; + tmp.Resize({1}); + tmp.mutable_data(cpu); + auto gpuctx = platform::DeviceContextPool::Instance().Get(gpu); + gpuctx->Wait(); + Copy(out, cpu, *gpuctx, &tmp); + gpuctx->Wait(); + return GetResult(tmp, cpu); + } + + bool GetResult(const framework::Tensor& out, + const platform::CPUPlace& cpu) const { + return *out.data(); + } +}; + +template +inline bool Any(const framework::Tensor& tensor, Predicate predicate) { + AnyVisitor visitor(tensor, predicate); + auto place = tensor.place(); + return platform::VisitPlace(place, visitor); +} + +struct HasNANPredicate { + template + auto operator()(const T& eigen_vec) const + -> decltype(std::declval().isnan()) { + // Cast eigen_vector to vector of bool. true if is inf. + return eigen_vec.isnan(); + } +}; + +bool HasNAN(const framework::Tensor& tensor) { + HasNANPredicate predicate; + return Any(tensor, predicate); +} + +struct HasInfPredicate { + template + auto operator()(const T& eigen_vec) const + -> decltype(std::declval().isinf()) { + // Cast eigen_vector to vector of bool. true if is inf. + return eigen_vec.isinf(); + } +}; + +bool HasInf(const framework::Tensor& tensor) { + HasInfPredicate predicate; + return Any(tensor, predicate); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/tensor_util.cu b/paddle/framework/tensor_util.cu new file mode 120000 index 0000000000000000000000000000000000000000..b00e6e59d93328bf3142597ea4de0dc225501e56 --- /dev/null +++ b/paddle/framework/tensor_util.cu @@ -0,0 +1 @@ +./tensor_util.cc \ No newline at end of file diff --git a/paddle/framework/tensor_util.h b/paddle/framework/tensor_util.h index ea4e4f22ea82ccc9f8b683d2fd773a7bc37f78a3..f541d2ba693a169d074c070dd794a2dd4e52aabf 100644 --- a/paddle/framework/tensor_util.h +++ b/paddle/framework/tensor_util.h @@ -13,7 +13,11 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include "paddle/framework/data_type.h" +#include "paddle/framework/eigen.h" +#include "paddle/framework/framework.pb.h" #include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace framework { @@ -25,11 +29,12 @@ namespace framework { * @param[in] dst_place The dst place. * @param[in] ctx The device context contains device resources. * - * @note CopyFrom supports CPU <-> GPU, GPU <-> GPU. + * @note Copy supports CPU <-> GPU, GPU <-> GPU. */ - -inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, - const platform::DeviceContext& ctx, Tensor* dst) { +inline void Copy(const Tensor& src, const platform::Place& dst_place, + const platform::DeviceContext& ctx, Tensor* dst) { + VLOG(3) << "Copy " << src.dims() << " from " << src.place() << " to " + << dst_place; src.check_memory_size(); dst->Resize(src.dims()); @@ -84,26 +89,25 @@ inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, } /** - * @brief CopyFrom support CPU <-> CPU + * @brief Wrapper on + * Copy(const Tensor& src, const platform::Place& dst_place, + * const platform::DeviceContext& ctx, Tensor* dst); + * + * @param[in] src The external tensor. + * @param[in] dst_place The dst place. + * + * @note Copy supports CPU <-> GPU, GPU <-> GPU. */ -inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, - Tensor* dst) { - src.check_memory_size(); - dst->Resize(src.dims()); - dst->set_layout(src.layout()); - - auto src_place = src.place(); - auto src_ptr = src.data(); - - auto dst_ptr = dst->mutable_data(dst_place, src.type()); - - auto size = src.numel() * SizeOfType(src.type()); - - PADDLE_ENFORCE(platform::is_cpu_place(src_place) && - platform::is_cpu_place(dst_place)); - - memory::Copy(boost::get(dst_place), dst_ptr, - boost::get(src_place), src_ptr, size); +inline void Copy(const Tensor& src, const platform::Place& dst_place, + Tensor* dst) { + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + const platform::DeviceContext* dev_ctx; + if (platform::is_gpu_place(src.place())) { + dev_ctx = pool.Get(src.place()); + } else { + dev_ctx = pool.Get(dst_place); + } + Copy(src, dst_place, *dev_ctx, dst); } /** @@ -205,5 +209,126 @@ inline void CopyToVector(const Tensor& src, std::vector* dst) { src_ptr, size); } +// Returns true if a tensor contains NAN, i.e., Not A Number. +bool HasNAN(const framework::Tensor& tensor); + +// Returns true if a tensor contains Inf, i.e., Infinity. +bool HasInf(const framework::Tensor& tensor); + +inline void SerializeToStream(std::ostream& os, const Tensor& tensor, + const platform::DeviceContext& dev_ctx) { + // TODO(typhoonzero): serialize to ostream + { // the 1st field, uint32_t version + constexpr uint32_t version = 0; + os.write(reinterpret_cast(&version), sizeof(version)); + } + { // the 2nd field, tensor description + // int32_t size + // void* protobuf message + proto::TensorDesc desc; + desc.set_data_type(framework::ToDataType(tensor.type())); + auto dims = framework::vectorize(tensor.dims()); + auto* pb_dims = desc.mutable_dims(); + pb_dims->Resize(static_cast(dims.size()), 0); + std::copy(dims.begin(), dims.end(), pb_dims->begin()); + int32_t size = desc.ByteSize(); + os.write(reinterpret_cast(&size), sizeof(size)); + auto out = desc.SerializeAsString(); + os.write(out.data(), size); + } + { // the 3rd field, tensor data + uint64_t size = tensor.memory_size(); + auto* data_ptr = tensor.data(); + PADDLE_ENFORCE(size < std::numeric_limits::max(), + "Index overflow when writing tensor"); + if (platform::is_gpu_place(tensor.place())) { +#ifdef PADDLE_WITH_CUDA + constexpr size_t kBufSize = 1024 * 1024 * 64; // 64MB + std::unique_ptr buf(new char[kBufSize]); + auto& gpu_dev_ctx = + static_cast(dev_ctx); + platform::CPUPlace cpu; + uintptr_t data = reinterpret_cast(data_ptr); + while (size != 0) { + size_t size_to_write = std::min(kBufSize, static_cast(size)); + memory::Copy(cpu, buf.get(), + boost::get(tensor.place()), + reinterpret_cast(data), size_to_write, + gpu_dev_ctx.stream()); + gpu_dev_ctx.Wait(); + os.write(buf.get(), size_to_write); + data += size_to_write; + size -= size_to_write; + } +#else + PADDLE_THROW("Unexpected branch"); +#endif + } else { + os.write(static_cast(data_ptr), + static_cast(size)); + } + } +} + +struct DeserializedDataFunctor { + DeserializedDataFunctor(void** buf, Tensor* tensor, + const platform::Place& place) + : buf_(buf), tensor_(tensor), place_(place) {} + + template + void operator()() { + *buf_ = tensor_->mutable_data(place_); + } + + void** buf_; + Tensor* tensor_; + platform::Place place_; +}; + +inline void DeserializeFromStream(std::istream& is, Tensor* tensor, + const platform::DeviceContext& dev_ctx) { + uint32_t version; + is.read(reinterpret_cast(&version), sizeof(version)); + PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); + proto::TensorDesc desc; + { // int32_t size + // proto buffer + int32_t size; + is.read(reinterpret_cast(&size), sizeof(size)); + std::unique_ptr buf(new char[size]); + is.read(reinterpret_cast(buf.get()), size); + PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size), + "Cannot parse tensor desc"); + } + { // read tensor + std::vector dims; + dims.reserve(static_cast(desc.dims().size())); + std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); + tensor->Resize(framework::make_ddim(dims)); + void* buf; + auto ctx = platform::CPUDeviceContext(); + if (platform::is_gpu_place(dev_ctx.GetPlace())) { +#ifdef PADDLE_WITH_CUDA + Tensor cpu_tensor; + cpu_tensor.Resize(framework::make_ddim(dims)); + framework::VisitDataType( + desc.data_type(), + DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace())); + is.read(static_cast(buf), cpu_tensor.memory_size()); + auto cpu_place = new platform::CPUPlace(); + framework::Copy(cpu_tensor, *cpu_place, dev_ctx, tensor); + delete cpu_place; +#else + PADDLE_THROW("Unexpected branch"); +#endif + } else { + framework::VisitDataType( + desc.data_type(), + DeserializedDataFunctor(&buf, tensor, ctx.GetPlace())); + is.read(static_cast(buf), tensor->memory_size()); + } + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_util_test.cc b/paddle/framework/tensor_util_test.cc index f388c19f28ed28335818733f946d8eaf18464627..3636125f2052200238ff82d4f708b62224322cdf 100644 --- a/paddle/framework/tensor_util_test.cc +++ b/paddle/framework/tensor_util_test.cc @@ -13,12 +13,13 @@ #include "paddle/framework/tensor_util.h" #include +#include #include namespace paddle { namespace framework { -TEST(CopyFrom, Tensor) { +TEST(Copy, Tensor) { Tensor src_tensor; Tensor dst_tensor; platform::CPUDeviceContext cpu_ctx((platform::CPUPlace())); @@ -31,7 +32,7 @@ TEST(CopyFrom, Tensor) { src_tensor.set_layout(DataLayout::kAnyLayout); auto cpu_place = new platform::CPUPlace(); - CopyFrom(src_tensor, *cpu_place, &dst_tensor); + Copy(src_tensor, *cpu_place, &dst_tensor); const int* dst_ptr = dst_tensor.data(); ASSERT_NE(src_ptr, dst_ptr); @@ -42,7 +43,7 @@ TEST(CopyFrom, Tensor) { EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout()); Tensor slice_tensor = src_tensor.Slice(1, 2); - CopyFrom(slice_tensor, *cpu_place, &dst_tensor); + Copy(slice_tensor, *cpu_place, &dst_tensor); const int* slice_ptr = slice_tensor.data(); dst_ptr = dst_tensor.data(); ASSERT_NE(dst_ptr, slice_ptr); @@ -66,11 +67,11 @@ TEST(CopyFrom, Tensor) { // CPU Tensor to GPU Tensor auto gpu_place = new platform::CUDAPlace(0); platform::CUDADeviceContext gpu_ctx(*gpu_place); - CopyFrom(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor); + Copy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor); // GPU Tensor to CPU Tensor auto cpu_place = new platform::CPUPlace(); - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -83,10 +84,10 @@ TEST(CopyFrom, Tensor) { Tensor slice_tensor = src_tensor.Slice(1, 2); // CPU Slice Tensor to GPU Tensor - CopyFrom(slice_tensor, *gpu_place, gpu_ctx, &gpu_tensor); + Copy(slice_tensor, *gpu_place, gpu_ctx, &gpu_tensor); // GPU Tensor to CPU Tensor - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Slice Tensors gpu_ctx.Wait(); @@ -154,7 +155,7 @@ TEST(CopyFromVector, Tensor) { CUDADeviceContext gpu_ctx(*gpu_place); CopyFromVector(src_vec, gpu_ctx, &gpu_tensor); // Copy from GPU to CPU tensor for comparison - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -174,7 +175,7 @@ TEST(CopyFromVector, Tensor) { CopyFromVector(src_vec, cpu_ctx, &cpu_tensor); gpu_tensor.Resize(make_ddim({2, 2})); CopyFromVector(src_vec, gpu_ctx, &gpu_tensor); - CopyFrom(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); + Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -230,5 +231,78 @@ TEST(CopyToVector, Tensor) { #endif } +TEST(HasNAN, CPU) { + using namespace paddle::framework; + using namespace paddle::platform; + Tensor src; + float* buf = src.mutable_data({3}, CPUPlace()); + buf[0] = 0.0; + buf[1] = NAN; + buf[2] = 0.0; + + ASSERT_TRUE(HasNAN(src)); +} + +TEST(HasInf, CPU) { + using namespace paddle::framework; + using namespace paddle::platform; + Tensor src; + double* buf = src.mutable_data({3}, CPUPlace()); + buf[0] = 1.0; + buf[1] = INFINITY; + buf[2] = 0.0; + ASSERT_TRUE(HasInf(src)); +} + +TEST(Tensor, SerializeAndDeserialize) { + framework::Tensor src_tensor; + int array[6] = {1, 2, 3, 4, 5, 6}; + src_tensor.Resize({2, 3}); + int* src_ptr = src_tensor.mutable_data(platform::CPUPlace()); + for (int i = 0; i < 6; ++i) { + src_ptr[i] = array[i]; + } + { + framework::Tensor dst_tensor; + auto place = new platform::CPUPlace(); + platform::CPUDeviceContext cpu_ctx(*place); + std::ostringstream oss; + SerializeToStream(oss, src_tensor, cpu_ctx); + + std::istringstream iss(oss.str()); + DeserializeFromStream(iss, &dst_tensor, cpu_ctx); + int* dst_ptr = dst_tensor.mutable_data(platform::CPUPlace()); + for (int i = 0; i < 5; ++i) { + ASSERT_EQ(dst_ptr[i], array[i]); + } + ASSERT_EQ(dst_tensor.dims(), src_tensor.dims()); + delete place; + } +#ifdef PADDLE_WITH_CUDA + { + Tensor gpu_tensor; + gpu_tensor.Resize({2, 3}); + Tensor dst_tensor; + + auto gpu_place = new platform::CUDAPlace(); + platform::CUDADeviceContext gpu_ctx(*gpu_place); + + Copy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor); + + std::ostringstream oss; + SerializeToStream(oss, gpu_tensor, gpu_ctx); + + std::istringstream iss(oss.str()); + DeserializeFromStream(iss, &dst_tensor, gpu_ctx); + + int* dst_ptr = dst_tensor.mutable_data(platform::CPUPlace()); + for (int i = 0; i < 6; ++i) { + ASSERT_EQ(dst_ptr[i], array[i]); + } + delete gpu_place; + } +#endif +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_util_test.cu b/paddle/framework/tensor_util_test.cu new file mode 100644 index 0000000000000000000000000000000000000000..ebd35fdf6c2a1388fec23057070f723c8ef9da9c --- /dev/null +++ b/paddle/framework/tensor_util_test.cu @@ -0,0 +1,57 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "gtest/gtest.h" +#include "paddle/framework/tensor_util.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/place.h" + +namespace paddle { +namespace framework { + +static __global__ void FillNAN(float* buf) { + buf[0] = 0.0; + buf[1] = 0.1; + buf[2] = NAN; +} +static __global__ void FillInf(float* buf) { + buf[0] = 0.0; + buf[1] = INFINITY; + buf[2] = 0.5; +} + +TEST(HasNAN, GPU) { + Tensor tensor; + platform::CUDAPlace gpu(0); + auto& pool = platform::DeviceContextPool::Instance(); + auto* cuda_ctx = pool.GetByPlace(gpu); + float* buf = tensor.mutable_data({3}, gpu); + FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf); + cuda_ctx->Wait(); + ASSERT_TRUE(HasNAN(tensor)); +} + +TEST(HasInf, GPU) { + Tensor tensor; + platform::CUDAPlace gpu(0); + auto& pool = platform::DeviceContextPool::Instance(); + auto* cuda_ctx = pool.GetByPlace(gpu); + float* buf = tensor.mutable_data({3}, gpu); + FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf); + cuda_ctx->Wait(); + ASSERT_TRUE(HasInf(tensor)); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/threadpool.h b/paddle/framework/threadpool.h index 5f6b2d458f7ee764c22d203f285b78023b6012f3..3ac345851c38557f82698786dd3bc8e1202a4256 100644 --- a/paddle/framework/threadpool.h +++ b/paddle/framework/threadpool.h @@ -16,6 +16,7 @@ limitations under the License. */ #include #include +#include #include #include #include @@ -25,10 +26,10 @@ limitations under the License. */ namespace paddle { namespace framework { -typedef std::function Task; - class ThreadPool { public: + typedef std::packaged_task Task; + /** * @brief Get a instance of threadpool, the thread number will * be specified as the number of hardware thread contexts @@ -61,13 +62,19 @@ class ThreadPool { /** * @brief Push a function to the queue, and will be scheduled and * executed if a thread is available. - * @param[in] Task will be pushed to the task queue. + * @param[in] Task, will be pushed to the task queue. + * @return std::future, we could wait for the task finished by + * f.wait(). */ - void Run(const Task& fn) { + template + std::future Run(Callback fn) { std::unique_lock lock(mutex_); - tasks_.push(fn); + Task task(std::bind(fn)); + std::future f = task.get_future(); + tasks_.push(std::move(task)); lock.unlock(); scheduled_.notify_one(); + return f; } /** @@ -110,7 +117,7 @@ class ThreadPool { break; } // pop a task from the task queue - auto task = tasks_.front(); + auto task = std::move(tasks_.front()); tasks_.pop(); --available_; @@ -152,5 +159,13 @@ class ThreadPool { std::condition_variable completed_; }; +// Run a function asynchronously. +// NOTE: The function must return void. If the function need to return a value, +// you can use lambda to capture a value pointer. +template +std::future Async(Callback callback) { + return ThreadPool::GetInstance()->Run(callback); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/threadpool_test.cc b/paddle/framework/threadpool_test.cc index 012d92a5edc415f0bb2f8a0ea38ffeb9549d54fa..50b6238cd8786be9d8cf2d5f821daadea12bd208 100644 --- a/paddle/framework/threadpool_test.cc +++ b/paddle/framework/threadpool_test.cc @@ -20,16 +20,21 @@ limitations under the License. */ namespace framework = paddle::framework; void do_sum(framework::ThreadPool* pool, std::atomic& sum, int cnt) { + std::vector> fs; for (int i = 0; i < cnt; ++i) { - pool->Run([&sum]() { sum.fetch_add(1); }); + auto f = pool->Run([&sum]() { sum.fetch_add(1); }); + fs.push_back(std::move(f)); + } + for (auto& f : fs) { + f.wait(); } } TEST(ThreadPool, ConcurrentInit) { framework::ThreadPool* pool; - int concurrent_cnt = 50; + int n = 50; std::vector threads; - for (int i = 0; i < concurrent_cnt; ++i) { + for (int i = 0; i < n; ++i) { std::thread t([&pool]() { pool = framework::ThreadPool::GetInstance(); }); threads.push_back(std::move(t)); } @@ -38,13 +43,13 @@ TEST(ThreadPool, ConcurrentInit) { } } -TEST(ThreadPool, ConcurrentStart) { +TEST(ThreadPool, ConcurrentRun) { framework::ThreadPool* pool = framework::ThreadPool::GetInstance(); std::atomic sum(0); std::vector threads; - int concurrent_cnt = 50; + int n = 50; // sum = (n * (n + 1)) / 2 - for (int i = 1; i <= concurrent_cnt; ++i) { + for (int i = 1; i <= n; ++i) { std::thread t(do_sum, pool, std::ref(sum), i); threads.push_back(std::move(t)); } @@ -52,5 +57,5 @@ TEST(ThreadPool, ConcurrentStart) { t.join(); } pool->Wait(); - EXPECT_EQ(sum, ((concurrent_cnt + 1) * concurrent_cnt) / 2); + EXPECT_EQ(sum, ((n + 1) * n) / 2); } diff --git a/paddle/framework/var_desc.cc b/paddle/framework/var_desc.cc index 7d002b9ea0b597730685ee03b021c4982f787f49..62ab6593ef23c195e3caa2336574796ecaf35bc8 100644 --- a/paddle/framework/var_desc.cc +++ b/paddle/framework/var_desc.cc @@ -52,7 +52,7 @@ void VarDesc::SetLoDLevel(int32_t lod_level) { } } -int32_t VarDesc::GetLodLevel() const { +int32_t VarDesc::GetLoDLevel() const { switch (desc_.type()) { case proto::VarDesc::LOD_TENSOR: return desc_.lod_tensor().lod_level(); @@ -74,7 +74,7 @@ const proto::TensorDesc &VarDesc::tensor_desc() const { case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.tensor_array().tensor(); default: - PADDLE_THROW("The type of var '", this->Name(), "' is unsupported."); + PADDLE_THROW("The type of var %s is unsupported.", this->Name()); } } diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h index 4fd2abe7fb215c3ac454de3e30754685111eb570..fc482c467404a6b9dfed64c43871d91d3d10c766 100644 --- a/paddle/framework/var_desc.h +++ b/paddle/framework/var_desc.h @@ -76,7 +76,7 @@ class VarDesc { void SetLoDLevel(int32_t lod_level); - int32_t GetLodLevel() const; + int32_t GetLoDLevel() const; proto::VarDesc::VarType GetType() const; diff --git a/paddle/framework/var_type.h b/paddle/framework/var_type.h index 0e6ea8dc69fe9b7fdaa1163b8d63295624cd3abc..5b7a08a08732a6ccbc206f6a4f0aa4788ce4a219 100644 --- a/paddle/framework/var_type.h +++ b/paddle/framework/var_type.h @@ -17,6 +17,8 @@ limitations under the License. */ #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor_array.h" +#include "paddle/framework/selected_rows.h" +#include "paddle/framework/variable.h" namespace paddle { namespace framework { @@ -35,7 +37,7 @@ inline proto::VarDesc::VarType ToVarType(std::type_index type) { } template -inline void VisitVarType(const Variable& var, Visitor visitor) { +inline void VisitVarType(const framework::Variable& var, Visitor visitor) { switch (ToVarType(var.Type())) { case proto::VarDesc_VarType_LOD_TENSOR: visitor(var.Get()); diff --git a/paddle/framework/variable.h b/paddle/framework/variable.h index e5a94759f9230ab4ce9d2cc24849a2debb8a5e2f..36b76fb196cfd4c7b3697dcf0cda9a23ff53deb3 100644 --- a/paddle/framework/variable.h +++ b/paddle/framework/variable.h @@ -32,6 +32,8 @@ class Variable { return *static_cast(holder_->Ptr()); } + bool IsInitialized() const { return holder_ != nullptr; } + template T* GetMutable() { if (!IsType()) { diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index de7b70e271b38ebe3a4c38704d0cced47d010788..cbdbf5335d32d55a0221728758025c9d2cb3e7d1 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -126,14 +126,165 @@ public: inputData += inputChannels * inputHeight * inputWidth; outputData += outputChannels * outputHeight * outputWidth; } + } +}; + #ifdef PADDLE_MOBILE_INFERENCE - if (Device == DEVICE_TYPE_CPU) { - memory_.reset(); + +/* + * \brief Forward calculation of convolution, optimized for mobile. + */ +template +class GemmConvMobileFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void check(const BufferArgs& inputs, const BufferArgs& outputs) override { + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + checkShape(input, filter, output); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + check(inputs, outputs); + // TODO(hedaoyuan): Need to define some index macros, + // to avoid useing 0 and 1. + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + + real beta; + if (outputs[0].getArgType() == ADD_TO) { + beta = 1.0; + } else { + beta = 0.0; } -#endif + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + + real* inputData = inputs[0].data(); + real* filterData = inputs[1].data(); + real* outputData = outputs[0].data(); + bool needIm2col = isNeedIm2col(filter); + + TensorShape imShape = + TensorShape({inputChannels / groups_, inputHeight, inputWidth}); + + TensorShape colShape; + real* colData = NULL; + + size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth; + size_t colWidth = outputHeight * outputWidth; + // Max col matrix height 256, Max col matrix width 1024 + size_t stepColHeight = std::min(colHeight, static_cast(256)); + size_t stepColWidth = std::min(colWidth, static_cast(2048)); + + if (needIm2col) { + colShape = TensorShape({inputChannels / groups_, + filterHeight, + filterWidth, + outputHeight, + outputWidth}); + + resizeBuffer(stepColHeight * stepColWidth * sizeof(real)); + colData = reinterpret_cast(memory_->getBuf()); + } + + Im2ColMobileFunctor im2col; + size_t inputOffset = imShape.getElements(); + size_t outputOffset = + (outputChannels / groups_) * outputHeight * outputWidth; + size_t filterOffset = filter.getElements() / groups_; + + int nStride = colWidth; + int kStride = colHeight; + for (size_t i = 0; i < batchSize; i++) { + for (size_t g = 0; g < groups_; g++) { + if (needIm2col) { + real beta_ = beta; + for (size_t colHeightStart = 0; colHeightStart < colHeight; + colHeightStart += stepColHeight) { + for (size_t colWidthStart = 0; colWidthStart < colWidth; + colWidthStart += stepColWidth) { + int N = std::min(colWidth - colWidthStart, stepColWidth); + int K = std::min(colHeight - colHeightStart, stepColHeight); + // im2col + im2col(inputData + g * inputOffset, + imShape, + colData, + colShape, + strideH(), + strideW(), + paddingH(), + paddingW(), + dilationH(), + dilationW(), + colHeightStart, + K, + colWidthStart, + N); + + // gemm + int M = outputChannels / groups_; + BlasGemm::compute( + false, + false, + M, + N, + K, + 1.0f, + filterData + g * filterOffset + colHeightStart, + kStride, + colData, + N, + beta_, + outputData + g * outputOffset + colWidthStart, + nStride); + } + beta_ = 1.0; + } + } else { + int M = outputChannels / groups_; + int N = outputHeight * outputWidth; + int K = inputChannels / groups_ * filterHeight * filterWidth; + BlasGemm::compute(false, + false, + M, + N, + K, + 1.0f, + filterData + g * filterOffset, + K, + inputData + g * inputOffset, + N, + beta, + outputData + g * outputOffset, + N); + } + } + inputData += inputChannels * inputHeight * inputWidth; + outputData += outputChannels * outputHeight * outputWidth; + } + + memory_.reset(); } }; +#endif + /* * \brief Backward input calculation of convolution. */ @@ -348,7 +499,11 @@ public: } }; +#ifdef PADDLE_MOBILE_INFERENCE +REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction); +#else REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction); +#endif REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction); REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction); #ifdef PADDLE_WITH_CUDA diff --git a/paddle/function/Im2Col.h b/paddle/function/Im2Col.h index 0c37fc972484bfbede01d23652e384071bf883af..36a9bcf84e4b14965c83627821b71d1c7c0da1b2 100644 --- a/paddle/function/Im2Col.h +++ b/paddle/function/Im2Col.h @@ -98,4 +98,54 @@ public: int dilationWidth = 1); }; +template +class Im2ColMobileFunctor { +public: + void operator()(const T* imData, + const TensorShape& imShape, + T* colData, + const TensorShape& colShape, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int dilationHeight, + int dilationWidth, + int colHeightStart, + int colHeightSize, + int colWidthStart, + int colWidthSize) { + int inputHeight = imShape[1]; + int inputWidth = imShape[2]; + int filterHeight = colShape[1]; + int filterWidth = colShape[2]; + int outputWidth = colShape[4]; + + for (int colh = 0; colh < colHeightSize; colh++) { + int wOffset = (colHeightStart + colh) % filterWidth; + int hOffset = ((colHeightStart + colh) / filterWidth) % filterHeight; + int c_im = (colHeightStart + colh) / filterWidth / filterHeight; + + for (int colw = 0; colw < colWidthSize; colw++) { + int h = (colWidthStart + colw) / outputWidth; + int w = (colWidthStart + colw) % outputWidth; + + int imRowIdx = h * strideHeight + hOffset * dilationHeight; + int imColIdx = w * strideWidth + wOffset * dilationWidth; + if ((imRowIdx - paddingHeight) < 0 || + (imRowIdx - paddingHeight) >= inputHeight || + (imColIdx - paddingWidth) < 0 || + (imColIdx - paddingWidth) >= inputWidth) { + colData[colh * colWidthSize + colw] = static_cast(0); + } else { + imRowIdx += c_im * inputHeight - paddingHeight; + imColIdx -= paddingWidth; + colData[colh * colWidthSize + colw] = + imData[imRowIdx * inputWidth + imColIdx]; + } + } + } + } +}; + } // namespace paddle diff --git a/paddle/function/Im2ColTest.cpp b/paddle/function/Im2ColTest.cpp index 1f085538d81904dbd5b5d6bcd014adaed22e37d7..3ba866dcdd845403d52f7a85adfef08cbb11c305 100644 --- a/paddle/function/Im2ColTest.cpp +++ b/paddle/function/Im2ColTest.cpp @@ -138,4 +138,86 @@ TEST(Im2ColFunctor, GPU) { TestIm2ColFunctor(); } #endif +template +void TestIm2ColMobileFunctor() { + for (size_t channels : {32}) { + for (size_t inputHeight : {33, 100}) { + for (size_t inputWidth : {32, 96}) { + for (size_t filterHeight : {5}) { + for (size_t filterWidth : {7}) { + for (size_t stride : {2}) { + for (size_t padding : {1}) { + for (size_t dilation : {1, 3}) { + size_t filterSizeH = (filterHeight - 1) * dilation + 1; + size_t filterSizeW = (filterWidth - 1) * dilation + 1; + if (inputHeight + 2 * padding < filterSizeH || + inputWidth + 2 * padding < filterSizeW) + break; + if (padding >= filterSizeH || padding >= filterSizeW) break; + size_t outputHeight = + (inputHeight - filterSizeH + 2 * padding) / stride + 1; + size_t outputWidth = + (inputWidth - filterSizeW + 2 * padding) / stride + 1; + + TensorShape imShape = + TensorShape({channels, inputHeight, inputWidth}); + TensorShape colShape1 = TensorShape({channels, + filterHeight, + filterWidth, + outputHeight, + outputWidth}); + + size_t height = channels * filterHeight * filterWidth; + size_t width = outputHeight * outputWidth; + VectorPtr input1 = + Vector::create(imShape.getElements(), false); + VectorPtr input2 = + Vector::create(imShape.getElements(), false); + MatrixPtr output1 = + Matrix::create(height, width, false, false); + MatrixPtr output2 = + Matrix::create(height, width, false, false); + input1->uniform(0.001, 1); + input2->copyFrom(*input1); + + Im2ColFunctor im2Col1; + Im2ColMobileFunctor im2Col2; + im2Col1(input1->getData(), + imShape, + output1->getData(), + colShape1, + stride, + stride, + padding, + padding, + dilation, + dilation); + im2Col2(input2->getData(), + imShape, + output2->getData(), + colShape1, + stride, + stride, + padding, + padding, + dilation, + dilation, + 0, + height, + 0, + width); + + autotest::TensorCheckEqual(*output1, *output2); + } + } + } + } + } + } + } + } +} + +TEST(Im2ColFunctor, Mobile) { TestIm2ColMobileFunctor(); } + } // namespace paddle diff --git a/paddle/gserver/CMakeLists.txt b/paddle/gserver/CMakeLists.txt index 41ead3c5ecef248830cfb0f8be360f21dcd58e7b..3d6ced713f00bd72622d8aeed3967642b6774ffe 100644 --- a/paddle/gserver/CMakeLists.txt +++ b/paddle/gserver/CMakeLists.txt @@ -34,6 +34,16 @@ else() message(STATUS "Compile with MKLDNNLayers and MKLDNNActivations") endif() +if(NOT WITH_MKLML) + file(GLOB_RECURSE MKL_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLPacked*.h") + file(GLOB_RECURSE MKL_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLPacked*.cpp") + list(REMOVE_ITEM GSERVER_HEADER ${MKL_HEADER}) + list(REMOVE_ITEM GSERVER_SOURCES ${MKL_SOURCES}) + message(STATUS "Skip compiling with MKLPackedLayers") +else() + message(STATUS "Compile with MKLPackedLayers") +endif() + if(NOT WITH_GPU) list(REMOVE_ITEM GSERVER_HEADER layers/CudnnConvBaseLayer.h diff --git a/paddle/gserver/gradientmachines/GradientMachine.h b/paddle/gserver/gradientmachines/GradientMachine.h index ebfe0573cfdbfb2ef54a29b038e8b85356cc6c27..4ab54a5022a3d30215c7557bca2e69c4d011fc5f 100644 --- a/paddle/gserver/gradientmachines/GradientMachine.h +++ b/paddle/gserver/gradientmachines/GradientMachine.h @@ -233,6 +233,13 @@ public: (void)numProcessed; } + /** + * @brief Release the middle layer's output memory. + * + * @note This function is used for memory optimization in inference. + */ + virtual void releaseOutput() {} + protected: virtual void onLoadParameter() {} diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index 68bf37d59db65ddc8096e2db3391be25c37b57e6..1f2aa61b6f86eebf7b002f1e48aa56d1d14d4820 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -187,6 +187,31 @@ void NeuralNetwork::init(const ModelConfig& config, CHECK(it != layerMap_.end()); outputLayers_.push_back(it->second); } + + for (const auto& layer : layers_) { + const auto& name = layer->getName(); + bool isMiddleLayer = true; + + // if data layer + for (const auto& dataLayer : dataLayers_) { + if (name == dataLayer->getName()) { + isMiddleLayer = false; + break; + } + } + + // if output layer + for (const auto& dataLayer : outputLayers_) { + if (name == dataLayer->getName()) { + isMiddleLayer = false; + break; + } + } + + if (isMiddleLayer) { + middleLayers_.push_back(layer); + } + } } void NeuralNetwork::connect(LayerPtr agentLayer, @@ -327,6 +352,13 @@ void NeuralNetwork::onPassEnd() { } } +void NeuralNetwork::releaseOutput() { + for (auto& layer : middleLayers_) { + Argument& arg = layer->getOutput(); + arg.value.reset(); + } +} + #ifndef PADDLE_MOBILE_INFERENCE class CombinedEvaluator : public Evaluator { diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.h b/paddle/gserver/gradientmachines/NeuralNetwork.h index 6888380290074318fe7f94d168b2931e776dda47..968e198cf6608c47089d40fc98c6691f9e5bda5c 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.h +++ b/paddle/gserver/gradientmachines/NeuralNetwork.h @@ -137,6 +137,13 @@ public: /// some finish work, like convert the weight format of MKLDNNLayers void finish(); + /** + * @brief Release the middle layer's output memory. + * + * @note This function is used for memory optimization in inference. + */ + void releaseOutput(); + protected: /** * The constructor of NeuralNetwork. @@ -158,6 +165,7 @@ protected: std::vector dataLayers_; std::vector outputLayers_; + std::vector middleLayers_; static std::map dllInitMap; diff --git a/paddle/gserver/layers/MKLDNNLRNLayer.cpp b/paddle/gserver/layers/MKLDNNLRNLayer.cpp index 741984bb68d3881f6ac26eaca7790190ed6e572a..ac217f1363dbd0360645bbe07cd71a17cc931a79 100644 --- a/paddle/gserver/layers/MKLDNNLRNLayer.cpp +++ b/paddle/gserver/layers/MKLDNNLRNLayer.cpp @@ -29,7 +29,7 @@ bool MKLDNNLRNLayer::init(const LayerMap& layerMap, } /* the size of inputs for norm-layer is 1 */ - CHECK_EQ(config_.inputs_size(), 1UL); + CHECK_EQ(config_.inputs_size(), 1); const NormConfig& conf = config_.inputs(0).norm_conf(); localSize_ = conf.size(); alpha_ = conf.scale(); diff --git a/paddle/gserver/layers/MKLPackedRecurrentLayer.cpp b/paddle/gserver/layers/MKLPackedRecurrentLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..dd75555fae134664d92ba9f8ffdea8af78166b7e --- /dev/null +++ b/paddle/gserver/layers/MKLPackedRecurrentLayer.cpp @@ -0,0 +1,132 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLPackedRecurrentLayer.h" + +namespace paddle { + +REGISTER_LAYER(mkl_packed_recurrent, MKLPackedRecurrentLayer); + +bool MKLPackedRecurrentLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!RecurrentLayer::init(layerMap, parameterMap)) return false; + packed_weight_.reset(new MKLPackedWeight(weight_->getW())); + packed_weight_->pack(); + if (needGradient_) { + packed_weightT_.reset(new MKLPackedWeight(weight_->getW(), true)); + packed_weightT_->pack(); + } + return true; +} + +void MKLPackedRecurrentLayer::backward(const UpdateCallback& callback) { + RecurrentLayer::backward(callback); + packed_weight_->pack(); + if (needGradient_) { + packed_weightT_->pack(); + } +} + +void MKLPackedRecurrentLayer::forwardBatch(int batchSize, + size_t numSequences, + const int* starts) { + if (!batchValue_) { + batchValue_.reset(new SequenceToBatch(useGpu_)); + } + + batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_); + + batchValue_->copyFromSeq(*output_.value); + + { + REGISTER_TIMER_INFO("RecurrentFwBatch", getName().c_str()); + /* forward one batch */ + for (size_t n = 0; n < batchValue_->getNumBatch(); n++) { + MatrixPtr batchValue = batchValue_->getBatchValue(n); + + if (n != 0) { + MatrixPtr preBatchValue = + batchValue_->getBatchValue(n - 1, batchValue->getHeight()); + + packed_weight_->gemm_compute(preBatchValue, batchValue); + } + Argument arg; + arg.value = batchValue; + activation_->forward(arg).check(); + } + } + batchValue_->copyBackSeq(*output_.value); +} + +void MKLPackedRecurrentLayer::backwardBatch(int batchSize, + size_t numSequences, + const int* starts) { + if (!batchGrad_) { + batchGrad_.reset(new SequenceToBatch(useGpu_)); + } + batchGrad_->shareIndexWith(*batchValue_); + + size_t numBatch = batchGrad_->getNumBatch(); + bool backwardByBatch = numBatch < numSequences; + + batchGrad_->copyFromSeq(*output_.grad); + { + REGISTER_TIMER_INFO("RecurrentBwData", getName().c_str()); + /* backward one batch */ + for (int n = (int)numBatch - 1; n >= 0; n--) { + MatrixPtr batchGrad = batchGrad_->getBatchValue(n); + MatrixPtr batchValue = + batchValue_->getBatchValue(n, batchGrad->getHeight()); + + Argument arg; + arg.value = batchValue; + arg.grad = batchGrad; + activation_->backward(arg).check(); + + if (n != 0) { + batchValue = batchGrad_->getBatchValue(n - 1, batchGrad->getHeight()); + packed_weightT_->gemm_compute(batchGrad, batchValue); + } + + if (backwardByBatch && weight_->getWGrad()) { + if (n != 0) { + /* backward weight */ + batchValue = + batchValue_->getBatchValue(n - 1, batchGrad->getHeight()); + weight_->getWGrad()->mul( + *batchValue->getTranspose(), *batchGrad, 1, 1); + } + } + } + } + + batchGrad_->copyBackSeq(*output_.grad); + + if (!backwardByBatch && weight_->getWGrad()) { + REGISTER_TIMER_INFO("RecurrentBwWeight", getName().c_str()); + for (size_t seq = 0; seq < numSequences; ++seq) { + int len = starts[seq + 1] - starts[seq]; + weight_->getWGrad()->mul( + *output_.value + ->subMatrix(reversed_ ? starts[seq] + 1 : starts[seq], len - 1) + ->getTranspose(), + *output_.grad->subMatrix(reversed_ ? starts[seq] : starts[seq] + 1, + len - 1), + 1, + 1); + } + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLPackedRecurrentLayer.h b/paddle/gserver/layers/MKLPackedRecurrentLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..bded523a8fbd6ff18f28859bd2a1bf3c1a25e2a0 --- /dev/null +++ b/paddle/gserver/layers/MKLPackedRecurrentLayer.h @@ -0,0 +1,58 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLPackedWeight.h" +#include "RecurrentLayer.h" + +DECLARE_bool(rnn_use_batch); + +namespace paddle { + +/** + * @brief MKLPackedRecurrentLayer is almost the same with RecurrentLayer + * but is optimized with MKL cblas packed gemm. + * More details: + * https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/mkl/mkl_packed.md + */ + +class MKLPackedRecurrentLayer : public RecurrentLayer { +public: + explicit MKLPackedRecurrentLayer(const LayerConfig& config) + : RecurrentLayer(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void backward(const UpdateCallback& callback) override; + +protected: + void forwardBatch(int batchSize, + size_t numSequences, + const int* starts) override; + + void backwardBatch(int batchSize, + size_t numSequences, + const int* starts) override; + +protected: + /// packed_weight_ contains same data with + /// RecurrentLayer::weight_ but is packed + std::unique_ptr packed_weight_; + /// packed_weightT_ is the transposition matrix of packed_weight_ + std::unique_ptr packed_weightT_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLPackedWeight.h b/paddle/gserver/layers/MKLPackedWeight.h new file mode 100644 index 0000000000000000000000000000000000000000..15d5093beb43e2f086601c2616ace033da34f341 --- /dev/null +++ b/paddle/gserver/layers/MKLPackedWeight.h @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/math/MathFunctions.h" +#include "paddle/parameter/Parameter.h" +#include "paddle/parameter/Weight.h" + +namespace paddle { + +class MKLPackedWeight { +protected: + /// The pointer of weight + real *weight_; + /// The pointer of cblas packed gemm to weight + real *packedWeight_; + size_t height_; + size_t width_; + bool transW_; + +public: + explicit MKLPackedWeight(MatrixPtr weight, bool transW = false) { + packedWeight_ = nullptr; + weight_ = weight->getData(); + height_ = weight->getHeight(); + width_ = weight->getWidth(); + transW_ = transW; + } + + ~MKLPackedWeight() { free_(); } + + void pack() { pack_(weight_); } + + void gemm_compute(const MatrixPtr src, MatrixPtr dst) { + cblas_sgemm_compute(CblasRowMajor, + CblasNoTrans, + CblasPacked, + src->getHeight(), + transW_ ? height_ : width_, + transW_ ? width_ : height_, + src->getData(), + src->getWidth(), + packedWeight_, + width_, + 1.0, + dst->getData(), + dst->getWidth()); + } + +protected: + void pack_(real *src) { + if (!packedWeight_) { + packedWeight_ = cblas_sgemm_alloc(CblasBMatrix, 1, width_, height_); + } + cblas_sgemm_pack(CblasRowMajor, + CblasBMatrix, + transW_ ? CblasTrans : CblasNoTrans, + 1, + transW_ ? height_ : width_, + transW_ ? width_ : height_, + 1.0, + src, + width_, + packedWeight_); + } + + void free_() { + if (packedWeight_) { + cblas_sgemm_free(packedWeight_); + } + } +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/RecurrentLayer.cpp b/paddle/gserver/layers/RecurrentLayer.cpp index e4c2b483d2fa4032735858dab17647592791a9c7..6bd42c06cadf755e8703f3fc299d0e6248dd1478 100644 --- a/paddle/gserver/layers/RecurrentLayer.cpp +++ b/paddle/gserver/layers/RecurrentLayer.cpp @@ -12,119 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include -#include "Layer.h" -#include "SequenceToBatch.h" -#include "paddle/utils/Stat.h" +#include "RecurrentLayer.h" DEFINE_bool(rnn_use_batch, false, "Using the batch method for calculation."); namespace paddle { -/** - * @brief RecurrentLayer takes 1 input layer. The output size is the same with - * input layer. - * For each sequence [start, end] it performs the following computation: - * \f[ - * out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\ - * out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end - * - * \f] - * If reversed is true, the order is reversed: - * \f[ - * out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\ - * out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end - * \f] - * There are two methods to calculate rnn. One way is to compute rnn one - * sequence by one sequence. The other way is to reorganize the input - * into batches, then compute rnn one batch by one batch. Users can select - * them by rnn_use_batch flag. - */ - -class RecurrentLayer : public Layer { -public: - explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {} - - bool init(const LayerMap& layerMap, - const ParameterMap& parameterMap) override; - - void forward(PassType passType) override; - - void backward(const UpdateCallback& callback) override; - - void resetState() override; - - void setState(LayerStatePtr state) override; - - LayerStatePtr getState() override; - -protected: - /** - * @brief If user do not set --rnn_use_batch=true, it will - * compute rnn forward one sequence by one sequence in default. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void forwardSequence(int batchSize, size_t numSequences, const int* starts); - /** - * @brief Compute rnn forward by one sequence. - * @param start The start position of this sequence (or sample). - * @param length The length of this sequence (or sample), namely the words - * number of this sequence. - */ - void forwardOneSequence(int start, int length); - /** - * @brief Compute rnn backward one sequence by onesequence. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void backwardSequence(int batchSize, size_t numSequences, const int* starts); - /** - * @brief Compute rnn backward by one sequence. - * @param start The start position of this sequence (or sample). - * @param length The length of this sequence (or sample), namely the words - * number of this sequence. - */ - void backwardOneSequence(int start, int length); - - /** - * @brief Reorganize input into batches and compute rnn forward batch - * by batch. It will convert batch shape to sequence after finishing forward. - * The batch info can refer to SequenceToBatch class. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void forwardBatch(int batchSize, size_t numSequences, const int* starts); - - /** - * @brief Reorganize input into batches and compute rnn forward batch - * by batch. - * @param batchSize Total words number of all samples in this batch. - * @param numSequences The sample number. - * @param starts Each start position of each samples. - */ - void backwardBatch(int batchSize, size_t numSequences, const int* starts); - -protected: - std::unique_ptr weight_; - std::unique_ptr bias_; - - /// frameOutput_[i] is used to hold the i-th sample of output_ - std::vector frameOutput_; - MatrixPtr prevOutput_; - /// Whether compute rnn by reverse. - bool reversed_; - /// If compute batch by batch, batchValue_ will be used to save the - /// reorganized input value. - std::unique_ptr batchValue_; - /// If compute batch by batch, batchGrad_ will be used to save the - /// gradient with respect to reorganized input value. - std::unique_ptr batchGrad_; -}; - REGISTER_LAYER(recurrent, RecurrentLayer); bool RecurrentLayer::init(const LayerMap& layerMap, @@ -260,7 +153,6 @@ void RecurrentLayer::backward(const UpdateCallback& callback) { bias_->getWGrad()->collectBias(*output_.grad, 1); bias_->getParameterPtr()->incUpdate(callback); } - weight_->getParameterPtr()->incUpdate(callback); } diff --git a/paddle/gserver/layers/RecurrentLayer.h b/paddle/gserver/layers/RecurrentLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..f40dbe150fa93becfc26f6ea9e55e40eaf208860 --- /dev/null +++ b/paddle/gserver/layers/RecurrentLayer.h @@ -0,0 +1,130 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#pragma once +#include +#include "Layer.h" +#include "SequenceToBatch.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +/** + * @brief RecurrentLayer takes 1 input layer. The output size is the same with + * input layer. + * For each sequence [start, end] it performs the following computation: + * \f[ + * out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\ + * out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end + * + * \f] + * If reversed is true, the order is reversed: + * \f[ + * out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\ + * out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end + * \f] + * There are two methods to calculate rnn. One way is to compute rnn one + * sequence by one sequence. The other way is to reorganize the input + * into batches, then compute rnn one batch by one batch. Users can select + * them by rnn_use_batch flag. + */ + +class RecurrentLayer : public Layer { +public: + explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forward(PassType passType) override; + + void backward(const UpdateCallback& callback) override; + + void resetState() override; + + void setState(LayerStatePtr state) override; + + LayerStatePtr getState() override; + +protected: + /** + * @brief If user do not set --rnn_use_batch=true, it will + * compute rnn forward one sequence by one sequence in default. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + void forwardSequence(int batchSize, size_t numSequences, const int* starts); + /** + * @brief Compute rnn forward by one sequence. + * @param start The start position of this sequence (or sample). + * @param length The length of this sequence (or sample), namely the words + * number of this sequence. + */ + void forwardOneSequence(int start, int length); + /** + * @brief Compute rnn backward one sequence by onesequence. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + void backwardSequence(int batchSize, size_t numSequences, const int* starts); + /** + * @brief Compute rnn backward by one sequence. + * @param start The start position of this sequence (or sample). + * @param length The length of this sequence (or sample), namely the words + * number of this sequence. + */ + void backwardOneSequence(int start, int length); + + /** + * @brief Reorganize input into batches and compute rnn forward batch + * by batch. It will convert batch shape to sequence after finishing forward. + * The batch info can refer to SequenceToBatch class. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + virtual void forwardBatch(int batchSize, + size_t numSequences, + const int* starts); + + /** + * @brief Reorganize input into batches and compute rnn forward batch + * by batch. + * @param batchSize Total words number of all samples in this batch. + * @param numSequences The sample number. + * @param starts Each start position of each samples. + */ + virtual void backwardBatch(int batchSize, + size_t numSequences, + const int* starts); + +protected: + std::unique_ptr weight_; + std::unique_ptr bias_; + + /// frameOutput_[i] is used to hold the i-th sample of output_ + std::vector frameOutput_; + MatrixPtr prevOutput_; + /// Whether compute rnn by reverse. + bool reversed_; + /// If compute batch by batch, batchValue_ will be used to save the + /// reorganized input value. + std::unique_ptr batchValue_; + /// If compute batch by batch, batchGrad_ will be used to save the + /// gradient with respect to reorganized input value. + std::unique_ptr batchGrad_; +}; + +} // namespace paddle diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index a2f07937b8834e3f3fa7a6bf2ae10f29a8d84f29..ba83667ebc9a89c37f77a7f71e6df90b54723cc0 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -1472,7 +1472,8 @@ TEST(Layer, RecurrentLayer) { for (auto reversed : {false, true}) { config.layerConfig.set_reversed(reversed); config.testState = !reversed; - testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu); + testLayerGrad( + config, "recurrent", 50, /* trans= */ false, useGpu, false, 1.0); } } } @@ -1494,7 +1495,8 @@ TEST(Layer, LstmLayer) { for (auto reversed : {false, true}) { config.layerConfig.set_reversed(reversed); config.testState = !reversed; - testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu); + testLayerGrad( + config, "lstmemory", 100, /* trans= */ false, useGpu, false, 0.02); } } for (auto useGpu : {true}) { diff --git a/paddle/gserver/tests/test_RecurrentLayer.cpp b/paddle/gserver/tests/test_RecurrentLayer.cpp index 16ab0e6aecb6a895b20389992a44dc542eb3b00a..0e130843339a1030f86f4d48891499bac20e9ca2 100644 --- a/paddle/gserver/tests/test_RecurrentLayer.cpp +++ b/paddle/gserver/tests/test_RecurrentLayer.cpp @@ -222,6 +222,7 @@ TEST(Layer, RecurrentLayer) { #define protected public #include "paddle/gserver/layers/GatedRecurrentLayer.h" #include "paddle/gserver/layers/LstmLayer.h" +#include "paddle/gserver/layers/RecurrentLayer.h" template class TestRecurrentLayer { public: @@ -420,12 +421,151 @@ TEST(Layer, LstmLayer) { } } +#ifdef PADDLE_WITH_MKLML + +#include "paddle/gserver/layers/MKLPackedRecurrentLayer.h" + +LayerPtr initMKLPackedLayer(LayerConfig layerConfig, + bool reversed, + int layerSize, + LayerPtr dataLayer, + ParameterPtr para, + ParameterPtr bias = nullptr) { + LayerMap layerMap; + ParameterMap parameterMap; + layerMap[dataLayer->getName()] = dataLayer; + parameterMap[para->getName()] = para; + if (bias) { + parameterMap[bias->getName()] = bias; + layerConfig.set_bias_parameter_name("bias_0"); + } + + layerConfig.set_size(layerSize); + layerConfig.set_reversed(reversed); + layerConfig.add_inputs(); + LayerInputConfig& input = *(layerConfig.mutable_inputs(0)); + input.set_input_layer_name("layer_0"); + input.set_input_parameter_name("para_0"); + + LayerPtr testLayer = Layer::create(layerConfig); + layerMap[testLayer->getName()] = testLayer; + + testLayer->init(layerMap, parameterMap); + testLayer->setNeedGradient(true); + + return testLayer; +} + +void checkMKLPackedLayer(LayerConfig layerConfig1, + LayerConfig layerConfig2, + bool reversed, + int layerSize, + int batchSize, + bool useBatch1, + bool useBatch2) { + LayerPtr dataLayer; + ParameterPtr para, bias; + + if (layerConfig1.type() == "recurrent") { + dataLayer = creatDataLayer("layer_0", batchSize, layerSize, false); + para = creatParameter("para_0", 0, layerSize * layerSize, false); + bias = nullptr; + } else if (layerConfig1.type() == "gated_recurrent") { + dataLayer = creatDataLayer("layer_0", batchSize, layerSize * 3, false); + para = creatParameter("para_0", 0, layerSize * layerSize * 3, false); + bias = creatParameterBias("bias_0", 1, layerSize * 3, false); + } + + LayerPtr testLayer1 = initMKLPackedLayer( + layerConfig1, reversed, layerSize, dataLayer, para, bias); + LayerPtr testLayer2 = initMKLPackedLayer( + layerConfig2, reversed, layerSize, dataLayer, para, bias); + + const VectorPtr& weightGrad = + (testLayer1->getParameters()[0])->getBuf(PARAMETER_GRADIENT); + const MatrixPtr& inputGrad = testLayer1->getPrev(0)->getOutputGrad(); + CpuVector wgt_grad1(weightGrad->getSize()); + CpuVector wgt_grad2(weightGrad->getSize()); + CpuMatrix input_grad1(inputGrad->getHeight(), inputGrad->getWidth()); + CpuMatrix input_grad2(inputGrad->getHeight(), inputGrad->getWidth()); + + for (int i = 0; i < 2; i++) { + FLAGS_rnn_use_batch = useBatch1; + + testLayer1->forward(PASS_GC); + + FLAGS_rnn_use_batch = useBatch2; + testLayer2->forward(PASS_GC); + + testLayer1->getOutputGrad()->randomizeUniform(); + testLayer2->getOutputGrad()->copyFrom(*testLayer1->getOutputGrad()); + + weightGrad->zero(); + inputGrad->zero(); + FLAGS_rnn_use_batch = useBatch1; + testLayer1->backward(nullptr); + + wgt_grad1.copyFrom(*weightGrad); + input_grad1.copyFrom(*inputGrad); + + weightGrad->zero(); + inputGrad->zero(); + FLAGS_rnn_use_batch = useBatch2; + testLayer2->backward(nullptr); + + wgt_grad2.copyFrom(*weightGrad); + input_grad2.copyFrom(*inputGrad); + + checkError(*testLayer1->getOutputValue(), *testLayer2->getOutputValue()); + checkError(wgt_grad1, wgt_grad2); + checkError(input_grad1, input_grad2); + } +} + +TEST(MKLPackedLayer, RecurrentLayer) { + LayerConfig layerConfig1; + LayerConfig layerConfig2; + + layerConfig1.set_name("paddle-rnn"); + layerConfig1.set_type("recurrent"); + layerConfig1.set_active_type("relu"); + + layerConfig2.set_name("mkl-packed-rnn"); + layerConfig2.set_type("mkl_packed_recurrent"); + layerConfig2.set_active_type("relu"); + + FLAGS_use_gpu = false; + + for (auto layerSize : {32, 64, 128, 256, 512}) { + for (auto batchSize : {1, 5, 100, 500}) { + for (auto reversed : {true, false}) { + for (auto paddle_use_batch : {true, false}) { + for (auto MKLPacked_use_batch : {true, false}) { + LOG(INFO) << " layerSize=" << layerSize + << " batchSize=" << batchSize << " reversed=" << reversed + << " paddle_use_batch=" << paddle_use_batch + << " MKLPacked_use_batch=" << MKLPacked_use_batch; + + checkMKLPackedLayer(layerConfig1, + layerConfig2, + reversed, + layerSize, + batchSize, + paddle_use_batch, + MKLPacked_use_batch); + } + } + } + } + } +} +#endif + int main(int argc, char** argv) { - if (version::isWithGpu()) { - testing::InitGoogleTest(&argc, argv); - initMain(argc, argv); - return RUN_ALL_TESTS(); - } else { - return 0; + testing::InitGoogleTest(&argc, argv); + initMain(argc, argv); + if (!version::isWithGpu()) { + testing::GTEST_FLAG(filter) = "-Layer.*"; } + return RUN_ALL_TESTS(); } diff --git a/paddle/inference/CMakeLists.txt b/paddle/inference/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..8437b2b21942ead544dab8636db1b355b7cf7bd5 --- /dev/null +++ b/paddle/inference/CMakeLists.txt @@ -0,0 +1,47 @@ +set(FLUID_CORE_MODULES + backward proto_desc paddle_memory executor prune init ${GLOB_OP_LIB}) + +cc_library(paddle_fluid_api + SRCS inference.cc + DEPS ${FLUID_CORE_MODULES}) + +# Merge all modules into a simgle static library +cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES}) + +# ptools +# just for testing, we may need to change the storing format for inference_model +# and move the dependent of pickle. +# download from http://www.picklingtools.com/ +# build in the C++ sub-directory, using command +# make -f Makefile.Linux libptools.so +set(PTOOLS_LIB) +set(PTOOLS_ROOT $ENV{PTOOLS_ROOT} CACHE PATH "Folder contains PicklingTools") +find_path(PTOOLS_INC_DIR chooseser.h PATHS ${PTOOLS_ROOT}/C++) +find_library(PTOOLS_SHARED_LIB NAMES ptools PATHS ${PTOOLS_ROOT}/C++) +if(PTOOLS_INC_DIR AND PTOOLS_SHARED_LIB) + add_definitions(-DPADDLE_USE_PTOOLS) + set(PTOOLS_LIB ptools) + message(STATUS "Found PicklingTools: ${PTOOLS_SHARED_LIB}") + add_library(${PTOOLS_LIB} SHARED IMPORTED GLOBAL) + set_property(TARGET ${PTOOLS_LIB} PROPERTY IMPORTED_LOCATION ${PTOOLS_SHARED_LIB}) + include_directories(${PTOOLS_ROOT}/C++) + include_directories(${PTOOLS_ROOT}/C++/opencontainers_1_8_5/include) + add_definitions(-DOC_NEW_STYLE_INCLUDES) # used in ptools +endif() + +add_executable(example example.cc) +if(APPLE) + set(OPTIONAL_LINK_FLAGS) + if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang") + set(OPTIONAL_LINK_FLAGS "-undefined dynamic_lookup") + endif() + target_link_libraries(example + -Wl,-force_load paddle_fluid + ${OPTIONAL_LINK_FLAGS} + ${PTOOLS_LIB}) +else() + target_link_libraries(example + -Wl,--start-group -Wl,--whole-archive paddle_fluid + -Wl,--no-whole-archive -Wl,--end-group + ${PTOOLS_LIB}) +endif() diff --git a/paddle/inference/example.cc b/paddle/inference/example.cc new file mode 100644 index 0000000000000000000000000000000000000000..9711b20e6fb4099a2cc497029468ebd1fd0b3456 --- /dev/null +++ b/paddle/inference/example.cc @@ -0,0 +1,79 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include "gflags/gflags.h" +#include "paddle/inference/inference.h" + +DEFINE_string(dirname, "", "Directory of the inference model."); +DEFINE_string(feed_var_names, "", "Names of feeding variables"); +DEFINE_string(fetch_var_names, "", "Names of fetching variables"); + +int main(int argc, char** argv) { + google::ParseCommandLineFlags(&argc, &argv, true); + if (FLAGS_dirname.empty() || FLAGS_feed_var_names.empty() || + FLAGS_fetch_var_names.empty()) { + // Example: + // ./example --dirname=recognize_digits_mlp.inference.model + // --feed_var_names="x" + // --fetch_var_names="fc_2.tmp_2" + std::cout << "Usage: ./example --dirname=path/to/your/model " + "--feed_var_names=x --fetch_var_names=y" + << std::endl; + exit(1); + } + + std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl; + std::cout << "FLAGS_feed_var_names: " << FLAGS_feed_var_names << std::endl; + std::cout << "FLAGS_fetch_var_names: " << FLAGS_fetch_var_names << std::endl; + + std::string dirname = FLAGS_dirname; + std::vector feed_var_names = {FLAGS_feed_var_names}; + std::vector fetch_var_names = {FLAGS_fetch_var_names}; + + paddle::InferenceEngine* engine = new paddle::InferenceEngine(); + engine->LoadInferenceModel(dirname, feed_var_names, fetch_var_names); + + paddle::framework::LoDTensor input; + srand(time(0)); + float* input_ptr = + input.mutable_data({1, 784}, paddle::platform::CPUPlace()); + for (int i = 0; i < 784; ++i) { + input_ptr[i] = rand() / (static_cast(RAND_MAX)); + } + + std::vector feeds; + feeds.push_back(input); + std::vector fetchs; + engine->Execute(feeds, fetchs); + + for (size_t i = 0; i < fetchs.size(); ++i) { + auto dims_i = fetchs[i].dims(); + std::cout << "dims_i:"; + for (int j = 0; j < dims_i.size(); ++j) { + std::cout << " " << dims_i[j]; + } + std::cout << std::endl; + std::cout << "result:"; + float* output_ptr = fetchs[i].data(); + for (int j = 0; j < paddle::framework::product(dims_i); ++j) { + std::cout << " " << output_ptr[j]; + } + std::cout << std::endl; + } + + delete engine; + return 0; +} diff --git a/paddle/inference/inference.cc b/paddle/inference/inference.cc new file mode 100644 index 0000000000000000000000000000000000000000..37b8b20ddfcf2566b8410f950308309e5b2b2a7c --- /dev/null +++ b/paddle/inference/inference.cc @@ -0,0 +1,195 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "inference.h" +#include +#include "paddle/framework/executor.h" +#include "paddle/framework/feed_fetch_method.h" +#include "paddle/framework/init.h" +#include "paddle/framework/scope.h" + +#ifdef PADDLE_USE_PTOOLS +#include "chooseser.h" +#endif + +namespace paddle { + +void InferenceEngine::LoadInferenceModel( + const std::string& dirname, + const std::vector& feed_var_names, + const std::vector& fetch_var_names) { +#ifdef PADDLE_USE_PTOOLS + std::string model_filename = dirname + "/__model__"; + LOG(INFO) << "Using PicklingTools, loading model from " << model_filename; + Val v; + LoadValFromFile(model_filename.c_str(), v, SERIALIZE_P0); + std::string program_desc_str = v["program_desc_str"]; + LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); +// PicklingTools cannot parse the vector of strings correctly. +#else + std::string model_filename = dirname + "/__model__.dat"; + LOG(INFO) << "loading model from " << model_filename; + std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary); + std::string program_desc_str; + inputfs.seekg(0, std::ios::end); + program_desc_str.resize(inputfs.tellg()); + inputfs.seekg(0, std::ios::beg); + LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); + inputfs.read(&program_desc_str[0], program_desc_str.size()); + inputfs.close(); +#endif + program_ = new framework::ProgramDesc(program_desc_str); + GenerateLoadProgram(dirname); + + if (feed_var_names.empty() || fetch_var_names.empty()) { + LOG(FATAL) << "Please specify the feed_var_names and fetch_var_names."; + } + feed_var_names_ = feed_var_names; + fetch_var_names_ = fetch_var_names; + PrependFeedOp(); + AppendFetchOp(); +} + +bool InferenceEngine::IsParameter(const framework::VarDesc* var) { + if (var->Persistable()) { + // There are many unreachable variables in the program + for (size_t i = 0; i < program_->Size(); ++i) { + const framework::BlockDesc& block = program_->Block(i); + for (auto* op : block.AllOps()) { + for (auto input_argument_name : op->InputArgumentNames()) { + if (input_argument_name == var->Name()) { + return true; + } + } + } + } + } + return false; +} + +void InferenceEngine::GenerateLoadProgram(const std::string& dirname) { + framework::BlockDesc* global_block = program_->MutableBlock(0); + + load_program_ = new framework::ProgramDesc(); + framework::BlockDesc* load_block = load_program_->MutableBlock(0); + for (auto* var : global_block->AllVars()) { + if (IsParameter(var)) { + LOG(INFO) << "parameter's name: " << var->Name(); + + framework::VarDesc* new_var = load_block->Var(var->Name()); + new_var->SetShape(var->Shape()); + new_var->SetDataType(var->GetDataType()); + new_var->SetType(var->GetType()); + new_var->SetLoDLevel(var->GetLoDLevel()); + new_var->SetPersistable(true); + + // append_op + framework::OpDesc* op = load_block->AppendOp(); + op->SetType("load"); + op->SetOutput("Out", {new_var->Name()}); + op->SetAttr("file_path", {dirname + "/" + new_var->Name()}); + op->CheckAttrs(); + } + } +} + +void InferenceEngine::PrependFeedOp() { + if (!program_) { + LOG(FATAL) << "Please initialize the program_ first."; + } + + framework::BlockDesc* global_block = program_->MutableBlock(0); + + // create_var + framework::VarDesc* feed_var = global_block->Var("feed"); + feed_var->SetType(framework::proto::VarDesc::FEED_MINIBATCH); + feed_var->SetPersistable(true); + + // prepend feed_op + for (size_t i = 0; i < feed_var_names_.size(); ++i) { + std::string var_name = feed_var_names_[i]; + LOG(INFO) << "feed var's name: " << var_name; + + // prepend_op + framework::OpDesc* op = global_block->PrependOp(); + op->SetType("feed"); + op->SetInput("X", {"feed"}); + op->SetOutput("Out", {var_name}); + op->SetAttr("col", {static_cast(i)}); + op->CheckAttrs(); + } +} + +void InferenceEngine::AppendFetchOp() { + if (!program_) { + LOG(FATAL) << "Please initialize the program_ first."; + } + + framework::BlockDesc* global_block = program_->MutableBlock(0); + + // create_var + framework::VarDesc* fetch_var = global_block->Var("fetch"); + fetch_var->SetType(framework::proto::VarDesc::FETCH_LIST); + fetch_var->SetPersistable(true); + + // append fetch_op + for (size_t i = 0; i < fetch_var_names_.size(); ++i) { + std::string var_name = fetch_var_names_[i]; + LOG(INFO) << "fetch var's name: " << var_name; + + // append_op + framework::OpDesc* op = global_block->AppendOp(); + op->SetType("fetch"); + op->SetInput("X", {var_name}); + op->SetOutput("Out", {"fetch"}); + op->SetAttr("col", {static_cast(i)}); + op->CheckAttrs(); + } +} + +void InferenceEngine::Execute(const std::vector& feeds, + std::vector& fetchs) { + if (!program_ || !load_program_) { + LOG(FATAL) << "Please initialize the program_ and load_program_ first."; + } + + if (feeds.size() < feed_var_names_.size()) { + LOG(FATAL) << "Please feed " << feed_var_names_.size() << " input Tensors."; + } + + auto* place = new platform::CPUPlace(); + framework::InitDevices(); + framework::Executor* executor = new framework::Executor(*place); + framework::Scope* scope = new framework::Scope(); + + executor->Run(*load_program_, scope, 0, true, true); + + // set_feed_variable + for (size_t i = 0; i < feed_var_names_.size(); ++i) { + framework::SetFeedVariable(scope, feeds[i], "feed", i); + } + + executor->Run(*program_, scope, 0, true, true); + + // get_fetch_variable + fetchs.resize(fetch_var_names_.size()); + for (size_t i = 0; i < fetch_var_names_.size(); ++i) { + fetchs[i] = framework::GetFetchVariable(*scope, "fetch", i); + } + + delete place; + delete scope; + delete executor; +} +} // namespace paddle diff --git a/paddle/inference/inference.h b/paddle/inference/inference.h new file mode 100644 index 0000000000000000000000000000000000000000..a3f3ef4b440036a0b27353cc092eed1bbf96eeb3 --- /dev/null +++ b/paddle/inference/inference.h @@ -0,0 +1,50 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/block_desc.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/program_desc.h" + +namespace paddle { + +class InferenceEngine { +public: + InferenceEngine() : program_(nullptr), load_program_(nullptr) {} + ~InferenceEngine() { + delete program_; + delete load_program_; + } + + void LoadInferenceModel(const std::string& dirname, + const std::vector& feed_var_names, + const std::vector& fetch_var_names); + void Execute(const std::vector& feeds, + std::vector& fetchs); + +private: + bool IsParameter(const framework::VarDesc* var); + void GenerateLoadProgram(const std::string& dirname); + void PrependFeedOp(); + void AppendFetchOp(); + +private: + framework::ProgramDesc* program_; + framework::ProgramDesc* load_program_; + std::vector feed_var_names_; + std::vector fetch_var_names_; +}; + +} // namespace paddle diff --git a/paddle/memory/memory.cc b/paddle/memory/memory.cc index c4bb6baee7ebf2941cee5915ca2723c298689261..1a73a94567e45b81a0b148965a834f03c7407ffe 100644 --- a/paddle/memory/memory.cc +++ b/paddle/memory/memory.cc @@ -114,5 +114,21 @@ void Free(platform::CUDAPlace place, void* p) { #endif +size_t Usage::operator()(const platform::CPUPlace& cpu) const { + return Used(cpu); +} + +size_t Usage::operator()(const platform::CUDAPlace& gpu) const { +#ifdef PADDLE_WITH_CUDA + return Used(gpu); +#else + PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); +#endif +} + +size_t memory_usage(const platform::Place& p) { + return boost::apply_visitor(Usage(), p); +} + } // namespace memory } // namespace paddle diff --git a/paddle/memory/memory.h b/paddle/memory/memory.h index 11bbb881874ec50e1132547336fc6fb6b42bcc4f..7012b6d331d0c4631a3d120fbaf3db7c97298ac7 100644 --- a/paddle/memory/memory.h +++ b/paddle/memory/memory.h @@ -54,6 +54,13 @@ void Free(Place place, void* ptr); template size_t Used(Place place); +struct Usage : public boost::static_visitor { + size_t operator()(const platform::CPUPlace& cpu) const; + size_t operator()(const platform::CUDAPlace& gpu) const; +}; + +size_t memory_usage(const platform::Place& p); + /** * \brief Free memory block in one place. * diff --git a/paddle/memory/memory_test.cc b/paddle/memory/memory_test.cc index f476bf71264da59a5c546968f4689145e1d8801b..b3f699f9b7eff54c06ff69023db082380c83467a 100644 --- a/paddle/memory/memory_test.cc +++ b/paddle/memory/memory_test.cc @@ -44,6 +44,9 @@ TEST(BuddyAllocator, CPUAllocation) { EXPECT_NE(p, nullptr); + paddle::platform::Place place = cpu; + EXPECT_EQ(paddle::memory::Used(cpu), paddle::memory::memory_usage(place)); + paddle::memory::Free(cpu, p); } @@ -99,6 +102,9 @@ TEST(BuddyAllocator, GPUAllocation) { EXPECT_NE(p, nullptr); + paddle::platform::Place place = gpu; + EXPECT_EQ(paddle::memory::Used(gpu), paddle::memory::memory_usage(place)); + paddle::memory::Free(gpu, p); } diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 5aaaf993323c2d4dbef688d0977ec6374fde6512..5889a50db09534b30f0f57b4e659df440901f3b1 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -1,5 +1,6 @@ file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc") string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}") +set(DEPS_OPS "") set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/pybind/pybind.h) file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n") function(op_library TARGET) @@ -48,6 +49,10 @@ function(op_library TARGET) message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file") endif() + list(LENGTH op_library_DEPS op_library_DEPS_len) + if (${op_library_DEPS_len} GREATER 0) + set(DEPS_OPS ${TARGET} ${DEPS_OPS} PARENT_SCOPE) + endif() if (WITH_GPU) nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS} ${op_common_deps}) @@ -56,106 +61,28 @@ function(op_library TARGET) ${op_common_deps}) endif() - # net_op doesn't need pybind - if ("${TARGET}" STREQUAL "net_op") - set(pybind_flag 1) - endif() - - if ("${TARGET}" STREQUAL "compare_op") - set(pybind_flag 1) - file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(equal);\n") - endif() - - # conv_op contains several operators - if ("${TARGET}" STREQUAL "conv_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d);\n") - endif() - - # conv_cudnn_op contains several operators - if ("${TARGET}" STREQUAL "conv_cudnn_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d_cudnn);\n") - endif() - - # pool_op contains several operators - if ("${TARGET}" STREQUAL "pool_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(pool2d);\n") - endif() - - # pool_cudnn_op contains several operators - if ("${TARGET}" STREQUAL "pool_cudnn_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(pool2d_cudnn);\n") - endif() - - if ("${TARGET}" STREQUAL "logical_op") - set(pybind_flag 1) - file(APPEND ${pybind_file} "USE_OP(logical_and);\n") - endif() - - # pool_with_index_op contains several operators - if ("${TARGET}" STREQUAL "pool_with_index_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n") - endif() - - # conv_transpose_op contains several operators - if ("${TARGET}" STREQUAL "conv_transpose_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d_transpose);\n") - endif() - - # conv_transpose_cudnn_op contains two operators - if ("${TARGET}" STREQUAL "conv_transpose_cudnn_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(conv2d_transpose_cudnn);\n") - endif() - - # save_restore_op contains several operators - if ("${TARGET}" STREQUAL "save_restore_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(save);\n") - endif() - - # activation_op contains several operators - if ("${TARGET}" STREQUAL "activation_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(sigmoid);\n") - endif() - - # nccl_op contains several operators - if ("${TARGET}" STREQUAL "nccl_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(ncclAllReduce);\n") - endif() - - # reduce_op contains several operators - if ("${TARGET}" STREQUAL "reduce_op") - set(pybind_flag 1) - # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_OP(reduce_sum);\n") - endif() + # Define operators that don't need pybind here. + foreach(manual_pybind_op "net_op" "compare_op" "logical_op" "nccl_op" "tensor_array_read_write_op") + if ("${TARGET}" STREQUAL "${manual_pybind_op}") + set(pybind_flag 1) + endif() + endforeach() - if ("${TARGET}" STREQUAL "tensor_array_read_write_op") - set(pybind_flag 1) - file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(read_from_array);\nUSE_NO_KERNEL_OP(write_to_array);\n") + # The registration of USE_OP, please refer to paddle/framework/op_registry.h. + # Note that it's enough to just adding one operator to pybind in a *_op.cc file. + # And for detail pybind information, please see generated paddle/pybind/pybind.h. + file(READ ${TARGET}.cc TARGET_CONTENT) + string(REGEX MATCH "REGISTER_OP\\(.*REGISTER_OP\\(" multi_register "${TARGET_CONTENT}") + string(REGEX MATCH "REGISTER_OP\\([a-z0-9_]*," one_register "${multi_register}") + if (one_register STREQUAL "") + string(REPLACE "_op" "" TARGET "${TARGET}") + else () + string(REPLACE "REGISTER_OP(" "" TARGET "${one_register}") + string(REPLACE "," "" TARGET "${TARGET}") endif() # pybind USE_NO_KERNEL_OP # HACK: if REGISTER_OP_CPU_KERNEL presents the operator must have kernel - file(READ ${TARGET}.cc TARGET_CONTENT) string(REGEX MATCH "REGISTER_OP_CPU_KERNEL" regex_result "${TARGET_CONTENT}") string(REPLACE "_op" "" TARGET "${TARGET}") if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "") @@ -166,7 +93,6 @@ function(op_library TARGET) # pybind USE_CPU_ONLY_OP list(LENGTH cu_srcs cu_srcs_len) list(LENGTH cu_cc_srcs cu_cc_srcs_len) - if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0) file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n") set(pybind_flag 1) @@ -181,58 +107,31 @@ endfunction() add_subdirectory(math) add_subdirectory(nccl) -set(DEPS_OPS - cond_op - cross_entropy_op - recurrent_op - softmax_with_cross_entropy_op - softmax_op - sequence_softmax_op - sum_op - pool_op - maxout_op - unpool_op - pool_with_index_op - conv_op - conv_transpose_op - nccl_op - sequence_conv_op - sequence_pool_op - lod_rank_table_op - lod_tensor_to_array_op - array_to_lod_tensor_op - max_sequence_len_op - lstm_op - tensor_array_read_write_op - gru_op - adagrad_op - sgd_op - save_op - load_op - send_op - recv_op) +if(WITH_GPU) + op_library(nccl_op DEPS nccl_common) + file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(ncclAllReduce);\n") +else() + set(DEPS_OPS ${DEPS_OPS} nccl_op) +endif() if(WITH_DISTRIBUTE) -add_subdirectory(detail) -op_library(send_op SRCS send_op.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib_target protobuf) -set_source_files_properties( - send_op.cc - PROPERTIES - COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") - -op_library(recv_op SRCS recv_op.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib_target protobuf) -set_source_files_properties( - recv_op.cc - PROPERTIES - COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") - -cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op recv_op sum_op executor) + add_subdirectory(detail) + set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib_target protobuf) + set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") + op_library(send_op DEPS ${DISTRIBUTE_DEPS}) + set_source_files_properties(send_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + op_library(recv_op DEPS ${DISTRIBUTE_DEPS}) + set_source_files_properties(recv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op recv_op sum_op executor) +else() + set(DEPS_OPS ${DEPS_OPS} send_op recv_op) endif() -op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op) +op_library(cond_op DEPS framework_proto tensor net_op) op_library(cross_entropy_op DEPS cross_entropy) op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) op_library(softmax_op DEPS softmax) +op_library(detection_output_op DEPS softmax) op_library(sequence_softmax_op DEPS softmax) op_library(sum_op DEPS selected_rows_functor) op_library(sgd_op DEPS selected_rows_functor) @@ -242,21 +141,19 @@ op_library(pool_op DEPS pooling) op_library(maxout_op DEPS maxouting) op_library(unpool_op DEPS unpooling) op_library(pool_with_index_op DEPS pooling) -op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table) -op_library(lod_tensor_to_array_op SRCS lod_tensor_to_array_op.cc DEPS lod_rank_table_op) -op_library(array_to_lod_tensor_op SRCS array_to_lod_tensor_op.cc DEPS lod_rank_table_op) -op_library(max_sequence_len_op SRCS max_sequence_len_op.cc DEPS lod_rank_table) -op_library(tensor_array_read_write_op SRCS tensor_array_read_write_op.cc) -if(WITH_GPU) -op_library(nccl_op DEPS nccl_common) -endif() +op_library(lod_rank_table_op DEPS lod_rank_table) +op_library(lod_tensor_to_array_op DEPS lod_rank_table_op) +op_library(array_to_lod_tensor_op DEPS lod_rank_table_op) +op_library(max_sequence_len_op DEPS lod_rank_table) op_library(sequence_conv_op DEPS context_project) op_library(sequence_pool_op DEPS sequence_pooling) op_library(lstm_op DEPS sequence2batch lstm_compute) op_library(conv_transpose_op DEPS vol2col) op_library(gru_op DEPS sequence2batch gru_compute) -op_library(recurrent_op SRCS recurrent_op.cc DEPS executor) - +op_library(recurrent_op DEPS executor) +op_library(warpctc_op DEPS dynload_warpctc sequence_padding math_function) +op_library(cos_sim_op DEPS cos_sim_functor) +op_library(parallel_do_op DEPS executor) # FIXME(typhoonzero): save/load depends lodtensor serialization functions op_library(save_op DEPS lod_tensor) op_library(load_op DEPS lod_tensor) @@ -265,9 +162,10 @@ list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) op_library(${src}) endforeach() +file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n") -set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") +set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") cc_test(gather_test SRCS gather_test.cc DEPS tensor) @@ -276,6 +174,6 @@ cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor) cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) if(WITH_GPU) - cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) + cc_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) endif() cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op) diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index d7baa6e90538484b400f32587a052d394a8d10d5..8e8a3c7dd3036317fac29b709d7a29e18f017503 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -53,7 +53,7 @@ class AccuracyOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Out")->type()), diff --git a/paddle/operators/activation_op.h b/paddle/operators/activation_op.h index 0885f7c570b9b52dc51597347295734fd689da8d..88c3d1c597a853abdee7753a5110be4a1726e905 100644 --- a/paddle/operators/activation_op.h +++ b/paddle/operators/activation_op.h @@ -15,6 +15,7 @@ limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" namespace paddle { namespace operators { @@ -26,12 +27,16 @@ class ActivationKernel using T = typename Functor::ELEMENT_TYPE; void Compute(const framework::ExecutionContext& context) const override { - auto* X = context.Input("X"); - auto* Out = context.Output("Out"); - Out->mutable_data(context.GetPlace()); - - auto x = framework::EigenVector::Flatten(*X); - auto out = framework::EigenVector::Flatten(*Out); + auto& X = detail::Ref(context.Input("X"), + "Cannot get input tensor X, variable name = %s", + context.op().Input("X")); + + auto& Out = detail::Ref(context.Output("Out"), + "Cannot get output tensor Out, variable name = %s", + context.op().Output("Out")); + Out.mutable_data(context.GetPlace()); + auto x = framework::EigenVector::Flatten(X); + auto out = framework::EigenVector::Flatten(Out); auto* place = context.template device_context().eigen_device(); Functor functor; diff --git a/paddle/operators/adagrad_op.cc b/paddle/operators/adagrad_op.cc index 052c793a01907abdc7784d1290f43543ae81bdb1..c83318a272302a474c37ce86365201acf56b9cad 100644 --- a/paddle/operators/adagrad_op.cc +++ b/paddle/operators/adagrad_op.cc @@ -105,48 +105,18 @@ struct SparseAdagradFunctor { const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param) { // 1. g_m.rows = set(g.rows) - auto grad_rows = grad.rows(); - std::set row_set(grad_rows.begin(), grad_rows.end()); - std::vector merge_rows(row_set.begin(), row_set.end()); - auto grad_width = grad.value().dims()[1]; - std::unique_ptr grad_merge{ - new framework::SelectedRows()}; - grad_merge->set_rows(merge_rows); - grad_merge->set_height(grad.height()); - grad_merge->mutable_value()->mutable_data( - framework::make_ddim( - {static_cast(merge_rows.size()), grad_width}), - context.GetPlace()); - - math::SetConstant constant_functor; - constant_functor(context, grad_merge->mutable_value(), 0.0); - - auto* grad_merge_data = grad_merge->mutable_value()->data(); - auto* grad_data = grad.value().data(); - - for (size_t i = 0; i < grad_rows.size(); i++) { - size_t grad_merge_i = FindPos(merge_rows, grad_rows[i]); - for (int64_t j = 0; j < grad_width; j++) { - grad_merge_data[grad_merge_i * grad_width + j] += - grad_data[i * grad_width + j]; - } - } + math::scatter::MergeAdd merge_func; + auto grad_merge = merge_func(context, grad); + auto& merge_rows = grad_merge.rows(); + auto* grad_merge_data = grad_merge.mutable_value()->template data(); // 2. m += g_m * g_m - std::unique_ptr grad_square{ - new framework::SelectedRows()}; - grad_square->set_rows(grad_merge->rows()); - grad_square->set_height(grad_merge->height()); - grad_square->mutable_value()->mutable_data(grad_merge->value().dims(), - context.GetPlace()); - auto gs = - framework::EigenVector::Flatten(*(grad_square->mutable_value())); - auto gm = framework::EigenVector::Flatten(grad_merge->value()); - gs.device(*context.eigen_device()) = gm * gm; + math::scatter::Mul sqare_func; + auto grad_square = sqare_func(context, grad_merge, grad_merge); math::SelectedRowsAddToTensor functor; - functor(context, *grad_square, moment); + functor(context, grad_square, moment); // 3. update parameter auto* lr = learning_rate.data(); diff --git a/paddle/operators/adagrad_op.cu b/paddle/operators/adagrad_op.cu index 75bc7affd6c78beb783e01682b4538f2c259df26..4e579387924a5b0499f29609bc6b1322030a3c0d 100644 --- a/paddle/operators/adagrad_op.cu +++ b/paddle/operators/adagrad_op.cu @@ -78,62 +78,30 @@ struct SparseAdagradFunctor { const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param) { // 1. g_m.rows = set(g.rows) - auto grad_rows = grad.rows(); - std::set row_set(grad_rows.begin(), grad_rows.end()); - std::vector merge_rows(row_set.begin(), row_set.end()); - auto grad_width = grad.value().dims()[1]; - std::unique_ptr grad_merge{ - new framework::SelectedRows()}; - grad_merge->set_rows(merge_rows); - grad_merge->set_height(grad.height()); - grad_merge->mutable_value()->mutable_data( - framework::make_ddim( - {static_cast(merge_rows.size()), grad_width}), - context.GetPlace()); - - math::SetConstant constant_functor; - constant_functor(context, grad_merge->mutable_value(), 0.0); - - auto* grad_merge_data = grad_merge->mutable_value()->data(); - auto* grad_data = grad.value().data(); - - const int block_size = 256; - dim3 threads(block_size, 1); - dim3 grid1(1, grad_rows.size()); - - MergeGradKernel< - T, 256><<(context) - .stream()>>>(grad_data, grad.rows().data(), - grad_merge_data, grad_merge->rows().data(), - grad_merge->rows().size(), grad_width); - + math::scatter::MergeAdd merge_func; + auto grad_merge = merge_func(context, grad); + auto* grad_merge_data = grad_merge.mutable_value()->template data(); + auto& merge_rows = grad_merge.rows(); // 2. m += g_m * g_m - std::unique_ptr grad_square{ - new framework::SelectedRows()}; - grad_square->set_rows(grad_merge->rows()); - grad_square->set_height(grad_merge->height()); - grad_square->mutable_value()->mutable_data(grad_merge->value().dims(), - context.GetPlace()); - auto gs = - framework::EigenVector::Flatten(*(grad_square->mutable_value())); - auto gm = framework::EigenVector::Flatten(grad_merge->value()); - gs.device(*context.eigen_device()) = gm * gm; + math::scatter::Mul sqare_func; + auto grad_square = sqare_func(context, grad_merge, grad_merge); math::SelectedRowsAddToTensor functor; - functor(context, *grad_square, moment); + functor(context, grad_square, moment); // 3. update parameter auto* lr = learning_rate.data(); auto* param_data = param->data(); auto* moment_data = moment->data(); + const int block_size = 256; + dim3 threads(block_size, 1); dim3 grid2(1, merge_rows.size()); SparseAdagradFunctorKernel< T, 256><<(context) - .stream()>>>(grad_merge_data, grad_merge->rows().data(), + .stream()>>>(grad_merge_data, grad_merge.rows().data(), lr, param_data, moment_data, grad_width, epsilon); } diff --git a/paddle/operators/adagrad_op.h b/paddle/operators/adagrad_op.h index 0d77dbcbacd4efb6c1900e57b5c4ea9e9b136771..66f5b0f449a4f11a3c734c98a6a97833763348a1 100644 --- a/paddle/operators/adagrad_op.h +++ b/paddle/operators/adagrad_op.h @@ -47,8 +47,7 @@ class AdagradOpKernel : public framework::OpKernel { *ctx.Input("Grad")); auto moment = framework::EigenVector::Flatten( *ctx.Input("Moment")); - auto lr = framework::EigenVector::Flatten( - *ctx.Input("LearningRate")); + auto* learning_rate = ctx.Input("LearningRate"); auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); @@ -56,8 +55,16 @@ class AdagradOpKernel : public framework::OpKernel { moment_out.device(*place) = moment + grad * grad; Eigen::DSizes m_dsize(moment_out_tensor->numel()); - param_out.device(*place) = - param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); + if (platform::is_cpu_place(ctx.GetPlace())) { + auto* lr = learning_rate->data(); + param_out.device(*place) = + param - lr[0] * grad / (moment_out.sqrt() + epsilon); + } else { + auto lr = framework::EigenVector::Flatten(*learning_rate); + param_out.device(*place) = + param - + lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); + } } else if (grad_var->IsType()) { auto* param_tensor = ctx.Input("Param"); PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor); diff --git a/paddle/operators/adam_op.h b/paddle/operators/adam_op.h index c4e2c8bb88ec9c74bd782570c10fb217178c8e48..9cc34bdded780e61e8700eb4fa4a295c84fb48bc 100644 --- a/paddle/operators/adam_op.h +++ b/paddle/operators/adam_op.h @@ -16,11 +16,14 @@ limitations under the License. */ #include // for sqrt in CPU and CUDA #include "paddle/framework/op_registry.h" #include "paddle/operators/detail/safe_ref.h" +#include "paddle/operators/math/selected_rows_functor.h" #include "paddle/platform/for_range.h" namespace paddle { namespace operators { +namespace scatter = paddle::operators::math::scatter; + template struct AdamFunctor { T beta1_; @@ -79,6 +82,69 @@ struct AdamFunctor { } }; +template +struct SparseAdamFunctor { + T beta1_; + T beta2_; + T epsilon_; + + const T* beta1_pow_; + const T* beta2_pow_; + const T* moment1_; + T* moment1_out_; + const T* moment2_; + T* moment2_out_; + const T* lr_; + const T* grad_; + const T* param_; + T* param_out_; + + const int64_t* rows_; + int64_t row_numel_; + + SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow, + const T* beta2_pow, const T* mom1, T* mom1_out, + const T* mom2, T* mom2_out, const T* lr, const T* grad, + const T* param, T* param_out, const int64_t* rows, + int64_t row_numel) + : beta1_(beta1), + beta2_(beta2), + epsilon_(epsilon), + beta1_pow_(beta1_pow), + beta2_pow_(beta2_pow), + moment1_(mom1), + moment1_out_(mom1_out), + moment2_(mom2), + moment2_out_(mom2_out), + lr_(lr), + grad_(grad), + param_(param), + param_out_(param_out), + rows_(rows), + row_numel_(row_numel) {} + + inline HOSTDEVICE void operator()(size_t i) const { + T beta1_pow = *beta1_pow_; + T beta2_pow = *beta2_pow_; + for (int64_t j = 0; j < row_numel_; ++j) { + T g = grad_[i * row_numel_ + j]; + T mom1 = moment1_[rows_[i] * row_numel_ + j]; + T mom2 = moment2_[rows_[i] * row_numel_ + j]; + T lr = *lr_; + T p = param_[rows_[i] * row_numel_ + j]; + + lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow); + mom1 = beta1_ * mom1 + (1 - beta1_) * g; + mom2 = beta2_ * mom2 + (1 - beta2_) * g * g; + p -= lr * (mom1 / (sqrt(mom2) + epsilon_)); + + moment1_out_[rows_[i] * row_numel_ + j] = mom1; + moment2_out_[rows_[i] * row_numel_ + j] = mom2; + param_out_[rows_[i] * row_numel_ + j] = p; + } // for col id + } +}; + template class AdamOpKernel : public framework::OpKernel { public: @@ -90,7 +156,8 @@ class AdamOpKernel : public framework::OpKernel { T beta2 = static_cast(ctx.Attr("beta2")); T epsilon = static_cast(ctx.Attr("epsilon")); auto& param = Ref(ctx.Input("Param"), "Must set Param"); - auto& grad = Ref(ctx.Input("Grad"), "Must set Grad"); + // auto& grad = Ref(ctx.Input("Grad"), "Must set Grad"); + auto* grad_var = ctx.InputVar("Grad"); auto& mom1 = Ref(ctx.Input("Moment1"), "Must set Moment1"); auto& mom2 = Ref(ctx.Input("Moment2"), "Must set Moment2"); auto& lr = @@ -108,18 +175,48 @@ class AdamOpKernel : public framework::OpKernel { auto& mom2_out = Ref(ctx.Output("Moment2Out"), "Must set Moment1Out"); - AdamFunctor functor(beta1, beta2, epsilon, beta1_pow.template data(), - beta2_pow.template data(), - mom1.template data(), - mom1_out.template mutable_data(ctx.GetPlace()), - mom2.template data(), - mom2_out.template mutable_data(ctx.GetPlace()), - lr.template data(), grad.template data(), - param.template data(), - param_out.template mutable_data(ctx.GetPlace())); - platform::ForRange for_range( - static_cast(ctx.device_context()), param.numel()); - for_range(functor); + if (grad_var->IsType()) { + auto& grad = Ref(ctx.Input("Grad"), "Must set Grad"); + AdamFunctor functor( + beta1, beta2, epsilon, beta1_pow.template data(), + beta2_pow.template data(), mom1.template data(), + mom1_out.template mutable_data(ctx.GetPlace()), + mom2.template data(), + mom2_out.template mutable_data(ctx.GetPlace()), + lr.template data(), grad.template data(), + param.template data(), + param_out.template mutable_data(ctx.GetPlace())); + platform::ForRange for_range( + static_cast(ctx.device_context()), + param.numel()); + for_range(functor); + } else if (grad_var->IsType()) { + auto& grad = + Ref(ctx.Input("Grad"), "Must set Grad"); + // merge duplicated rows if any. + scatter::MergeAdd merge_func; + auto grad_merge = + merge_func(ctx.template device_context(), grad); + auto& grad_tensor = grad_merge.value(); + const T* grad_data = grad_tensor.template data(); + auto* rows = grad_merge.rows().data(); + auto row_numel = grad_tensor.numel() / grad_merge.rows().size(); + + SparseAdamFunctor functor( + beta1, beta2, epsilon, beta1_pow.template data(), + beta2_pow.template data(), mom1.template data(), + mom1_out.template mutable_data(ctx.GetPlace()), + mom2.template data(), + mom2_out.template mutable_data(ctx.GetPlace()), + lr.template data(), grad_data, param.template data(), + param_out.template mutable_data(ctx.GetPlace()), rows, row_numel); + platform::ForRange for_range( + static_cast(ctx.device_context()), + grad_merge.rows().size()); + for_range(functor); + } else { + PADDLE_THROW("Variable type not supported by adam_op"); + } } }; diff --git a/paddle/operators/array_operator.h b/paddle/operators/array_operator.h index 060ffac8273724fad48753d9a7e2b0affbb6f25e..3fdad5ad9b1246e06bbb71e582a96c212de1b0d5 100644 --- a/paddle/operators/array_operator.h +++ b/paddle/operators/array_operator.h @@ -35,14 +35,14 @@ class ArrayOp : public framework::OperatorBase { PADDLE_ENFORCE_EQ(i_tensor.numel(), 1); // get device context from pool - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); size_t offset; if (platform::is_gpu_place(i_tensor.place())) { // FIXME: Avoid copy from GPU to CPU framework::Tensor t; - framework::CopyFrom(i_tensor, platform::CPUPlace(), dev_ctx, &t); + framework::Copy(i_tensor, platform::CPUPlace(), dev_ctx, &t); dev_ctx.Wait(); offset = static_cast(*t.data()); } else { diff --git a/paddle/operators/array_to_lod_tensor_op.cc b/paddle/operators/array_to_lod_tensor_op.cc index 0aa04c268bd65dc246341a2f335c362496050bdb..ba5c6bd3c681b4ae4f612da96df866227961df3d 100644 --- a/paddle/operators/array_to_lod_tensor_op.cc +++ b/paddle/operators/array_to_lod_tensor_op.cc @@ -106,11 +106,12 @@ class ArrayToLoDTensorOp : public framework::OperatorBase { } auto slice = out->Slice(out_offset, out_offset + len); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); - framework::CopyFrom(x[x_idx].Slice(start_offset, end_offset), place, - dev_ctx, &slice); + framework::Copy(x[x_idx].Slice(start_offset, end_offset), place, + dev_ctx, &slice); out_offset += len; } } diff --git a/paddle/operators/assign_op.cc b/paddle/operators/assign_op.cc index 0560040509026e84eb543331996a6846751b8506..e04aa2d28cff7b106b30304bfa19ba18e2affd21 100644 --- a/paddle/operators/assign_op.cc +++ b/paddle/operators/assign_op.cc @@ -45,7 +45,7 @@ class AssignFunctor { out_rows.set_height(rows.height()); auto &t = rows.value(); auto *m = out_rows.mutable_value(); - framework::CopyFrom(t, t.place(), dev_ctx_, m); + framework::Copy(t, t.place(), dev_ctx_, m); } template @@ -57,7 +57,7 @@ class AssignFunctor { void copy_tensor(const framework::LoDTensor &lod_tensor, framework::LoDTensor *out) const { auto &out_tensor = *out; - CopyFrom(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor); + Copy(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor); out_tensor.set_lod(lod_tensor.lod()); } @@ -82,8 +82,8 @@ class AssignOp : public framework::OperatorBase { out != nullptr, "The Output(Out) should not be null if the Input(X) is set."); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); framework::VisitVarType(*x, AssignFunctor(out, dev_ctx)); } diff --git a/paddle/operators/auc_op.cc b/paddle/operators/auc_op.cc index c16bc11931e6733d567107913521eafc34a30066..b6494f95097bdc87081950815e910beda5d6850d 100644 --- a/paddle/operators/auc_op.cc +++ b/paddle/operators/auc_op.cc @@ -39,7 +39,7 @@ class AucOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Out")->type()), diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc index 98db28ddee7c6cdb37fe7732649d4fc38de7b873..0e984c38ba78bddc232ce43bd0982408e837abe3 100644 --- a/paddle/operators/batch_norm_op.cc +++ b/paddle/operators/batch_norm_op.cc @@ -64,7 +64,7 @@ class BatchNormOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "Input X must have 2 to 5 dimensions."); - const int C = + const int64_t C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); @@ -78,6 +78,7 @@ class BatchNormOp : public framework::OperatorWithKernel { ctx->SetOutputDim("VarianceOut", {C}); ctx->SetOutputDim("SavedMean", {C}); ctx->SetOutputDim("SavedVariance", {C}); + ctx->ShareLoD("X", "Y"); } }; @@ -305,7 +306,7 @@ class BatchNormGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { const auto *var = ctx.InputVar(framework::GradVarName("Y")); if (var == nullptr) { diff --git a/paddle/operators/beam_search_decode_op.cc b/paddle/operators/beam_search_decode_op.cc index 52c28e7f532f9751589176c8d37362620167cf63..72e05607b0b612807d552b4c45b58f9d9ce9c2af 100644 --- a/paddle/operators/beam_search_decode_op.cc +++ b/paddle/operators/beam_search_decode_op.cc @@ -57,8 +57,8 @@ class BeamSearchDecodeOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope& scope, const platform::Place& dev_place) const override { - platform::DeviceContextPool& pool = platform::DeviceContextPool::Get(); - auto& dev_ctx = *pool.Borrow(dev_place); + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto& dev_ctx = *pool.Get(dev_place); framework::ExecutionContext ctx(*this, scope, dev_ctx); diff --git a/paddle/operators/beam_search_op.cc b/paddle/operators/beam_search_op.cc index 2e0513b37a24b9737532b3a71f8f0724fbdd2c13..ed2e7b738acd81140467ff22ad077155bba2fde1 100644 --- a/paddle/operators/beam_search_op.cc +++ b/paddle/operators/beam_search_op.cc @@ -39,7 +39,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, std::map> hash; framework::LoD new_lod; - auto *ids_data = selected_ids->mutable_data(platform::CPUPlace()); + auto *ids_data = selected_ids->mutable_data(platform::CPUPlace()); auto *scores_data = selected_scores->mutable_data(platform::CPUPlace()); @@ -66,7 +66,7 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids, void BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids, std::vector> *items) { - auto *pre_ids_data = pre_ids.data(); + auto *pre_ids_data = pre_ids.data(); for (size_t offset = 0; offset < items->size(); offset++) { auto prefix_id = pre_ids_data[offset]; @@ -127,7 +127,7 @@ bool BeamSearch::NextItemSet(std::vector *items) { auto abs_lod = framework::ToAbsOffset(ids.lod()); PADDLE_ENFORCE_GE(source_abs_two_level_lod.size(), 2UL); - auto *ids_data = ids.data(); + auto *ids_data = ids.data(); auto *scores_data = scores.data(); size_t instance_dim = 1; diff --git a/paddle/operators/chunk_eval_op.cc b/paddle/operators/chunk_eval_op.cc index a040404266c3cd44230b141cfed1aaede3f05187..44f667aead9ac88fee57310e06e3192732a8d908 100644 --- a/paddle/operators/chunk_eval_op.cc +++ b/paddle/operators/chunk_eval_op.cc @@ -55,10 +55,10 @@ class ChunkEvalOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType(framework::proto::DataType::FP32, - ctx.device_context()); + platform::CPUPlace()); } }; diff --git a/paddle/operators/chunk_eval_op.h b/paddle/operators/chunk_eval_op.h index 74ab435c860b22b2ee3f485743540976a7a31b96..300aff90c0af666a95b7d4a0329de709e48ceddb 100644 --- a/paddle/operators/chunk_eval_op.h +++ b/paddle/operators/chunk_eval_op.h @@ -145,6 +145,7 @@ class ChunkEvalKernel : public framework::OpKernel { context.Attr>("excluded_chunk_types").end()); auto* inference = context.Input("Inference"); + auto place = inference->place(); auto* label = context.Input("Label"); auto* precision = context.Output("Precision"); auto* recall = context.Output("Recall"); @@ -155,15 +156,15 @@ class ChunkEvalKernel : public framework::OpKernel { const int64_t* inference_data = inference->data(); const int64_t* label_data = label->data(); - T* precision_data = precision->mutable_data(context.GetPlace()); - T* racall_data = recall->mutable_data(context.GetPlace()); - T* f1_data = f1->mutable_data(context.GetPlace()); + T* precision_data = precision->mutable_data(place); + T* racall_data = recall->mutable_data(place); + T* f1_data = f1->mutable_data(place); int64_t* num_infer_chunks_data = - num_infer_chunks->mutable_data(context.GetPlace()); + num_infer_chunks->mutable_data(place); int64_t* num_label_chunks_data = - num_label_chunks->mutable_data(context.GetPlace()); + num_label_chunks->mutable_data(place); int64_t* num_correct_chunks_data = - num_correct_chunks->mutable_data(context.GetPlace()); + num_correct_chunks->mutable_data(place); *num_infer_chunks_data = 0; *num_label_chunks_data = 0; *num_correct_chunks_data = 0; diff --git a/paddle/operators/compare_op.cc b/paddle/operators/compare_op.cc index 44665b7872acab8178552e5504916408cf566d13..daa2c193b48fe216ff284169a3dce1b4cd40a791 100644 --- a/paddle/operators/compare_op.cc +++ b/paddle/operators/compare_op.cc @@ -66,9 +66,9 @@ class CompareOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { - framework::OpKernelType kt = OperatorWithKernel::GetActualKernelType(ctx); + framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // CompareOp kernel's device type is decided by input tensor place kt.place_ = ctx.Input("X")->place(); return kt; diff --git a/paddle/operators/cond_op.cc b/paddle/operators/cond_op.cc index 455fbd8ca3f5083fac51776524daca6f6a029667..e333002bfd1ab40c62882f09cd207a12a0939648 100644 --- a/paddle/operators/cond_op.cc +++ b/paddle/operators/cond_op.cc @@ -195,8 +195,8 @@ void CondOp::MergeDataFromSubnet(const framework::Scope& scope, void CondOp::Run(const Scope& scope, const platform::Place& place) const { // get device context from pool - platform::DeviceContextPool& pool = platform::DeviceContextPool::Get(); - auto& dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto& dev_ctx = *pool.Get(place); PrepareDataForSubnet(scope, dev_ctx); std::vector& sub_scopes = GetSubScopes(scope); diff --git a/paddle/operators/conv_cudnn_op.cu.cc b/paddle/operators/conv_cudnn_op.cu.cc index 0aa7dd48cafc3e2387ac902882d84ce9029cfcd0..0c5ed3e4e80304c6fd174975166804347feb18b1 100644 --- a/paddle/operators/conv_cudnn_op.cu.cc +++ b/paddle/operators/conv_cudnn_op.cu.cc @@ -315,10 +315,7 @@ class CudnnConvGradOpKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_KERNEL(conv2d, CUDNN, paddle::platform::CUDAPlace, - paddle::operators::CudnnConvOpKernel, - paddle::operators::CudnnConvOpKernel); - +// TODO(dzhwinter) : below register should be removed REGISTER_OP_CUDA_KERNEL(conv2d_cudnn, paddle::operators::CudnnConvOpKernel, paddle::operators::CudnnConvOpKernel); diff --git a/paddle/operators/conv_op.cc b/paddle/operators/conv_op.cc index ab52a41b539236f1691ce8bc02d31e336ee4ccbb..1468e3eb960a2b7c2e7af83ff701338596606922 100644 --- a/paddle/operators/conv_op.cc +++ b/paddle/operators/conv_op.cc @@ -31,8 +31,6 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { std::vector paddings = ctx->Attrs().Get>("paddings"); int groups = ctx->Attrs().Get("groups"); std::vector dilations = ctx->Attrs().Get>("dilations"); - int input_channels = in_dims[1]; - int output_channels = filter_dims[0]; PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5, "Conv intput should be 4-D or 5-D tensor."); @@ -45,11 +43,13 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ( paddings.size(), strides.size(), "Conv paddings dimension and Conv strides dimension should be the same."); - PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups, + + PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups, "The number of input channels should be equal to filter " "channels * groups."); + PADDLE_ENFORCE_EQ( - output_channels % groups, 0, + filter_dims[0] % groups, 0, "The number of output channels should be divided by groups."); std::vector output_shape({in_dims[0], filter_dims[0]}); @@ -64,6 +64,7 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { dilations[i], paddings[i], strides[i])); } ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); + ctx->ShareLoD("Input", "Output"); } Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker) @@ -229,7 +230,6 @@ void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const { namespace ops = paddle::operators; REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad, ops::ConvOpGrad); -namespace ops = paddle::operators; REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad, ops::ConvOpGrad); diff --git a/paddle/operators/cos_sim_op.h b/paddle/operators/cos_sim_op.h index e2b6282c0913e8ad16f8e3f6c3054f9567822d15..eadcca55f9bfc3e59f329df8ff419ad4c5a29007 100644 --- a/paddle/operators/cos_sim_op.h +++ b/paddle/operators/cos_sim_op.h @@ -13,19 +13,15 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once -#include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/math/cos_sim_functor.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/platform/for_range.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; -template -using EigenMatrix = framework::EigenMatrix; -template -using EigenVector = framework::EigenVector; template class CosSimKernel : public framework::OpKernel { @@ -41,28 +37,25 @@ class CosSimKernel : public framework::OpKernel { out_x_norm->mutable_data(context.GetPlace()); out_y_norm->mutable_data(context.GetPlace()); - // convert Tensor to Eigen Tensor int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; - auto x = EigenMatrix::Reshape(*in_x, 1); - auto y = EigenMatrix::Reshape(*in_y, 1); - auto z = EigenVector::Flatten(*out_z); - auto x_norm = EigenVector::Flatten(*out_x_norm); - auto y_norm = EigenVector::Flatten(*out_y_norm); - // compute - auto& place = - *context.template device_context().eigen_device(); - auto row_along = Eigen::array({{1}}); - x_norm.device(place) = x.square().sum(row_along).sqrt(); - y_norm.device(place) = y.square().sum(row_along).sqrt(); + int cols = framework::product(in_x->dims()) / rows_x; + if (rows_x == rows_y) { - auto xy = (x * y).sum(Eigen::array({{1}})); - z.device(place) = xy / x_norm / y_norm; + math::CosSimFunctor functor( + in_x->data(), in_y->data(), out_x_norm->data(), + out_y_norm->data(), out_z->data(), cols); + platform::ForRange for_range( + static_cast(context.device_context()), rows_x); + for_range(functor); } else { - Eigen::DSizes bcast(rows_x, 1); - auto xy = (x * y.broadcast(bcast)).sum(row_along); - z.device(place) = xy / x_norm / y_norm.broadcast(bcast); + math::CosSimFunctor functor( + in_x->data(), in_y->data(), out_x_norm->data(), + out_y_norm->data(), out_z->data(), cols); + platform::ForRange for_range( + static_cast(context.device_context()), rows_x); + for_range(functor); } } }; @@ -81,62 +74,54 @@ class CosSimGradKernel : public framework::OpKernel { auto* out_grad_y = context.Output(framework::GradVarName("Y")); auto* in_grad_z = context.Input(framework::GradVarName("Out")); - // convert Tensor to Eigen Tensor - auto x = EigenMatrix::Reshape(*in_x, 1); - auto y = EigenMatrix::Reshape(*in_y, 1); - auto z = EigenMatrix::Reshape(*in_z, 1); - auto x_norm = EigenMatrix::Reshape(*in_x_norm, 1); - auto y_norm = EigenMatrix::Reshape(*in_y_norm, 1); - auto dz = EigenMatrix::Reshape(*in_grad_z, 1); - // compute gradident int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; int cols = framework::product(in_x->dims()) / rows_x; - Eigen::DSizes bcast_cols(1, cols); - auto z_bcast = z.broadcast(bcast_cols); - auto dz_bcast = dz.broadcast(bcast_cols); - auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols); - auto& place = - *context.template device_context().eigen_device(); + if (rows_x == rows_y) { - auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols); - auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols); - // compute dx if (out_grad_x) { - out_grad_x->mutable_data(context.GetPlace()); - auto dx = EigenMatrix::Reshape(*out_grad_x, 1); - auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast; - dx.device(place) = dz_bcast * grad; + math::CosSimGradFunctor functor( + in_x_norm->data(), in_y_norm->data(), in_x->data(), + in_y->data(), in_z->data(), in_grad_z->data(), + out_grad_x->mutable_data(context.GetPlace()), cols); + platform::ForRange for_range( + static_cast(context.device_context()), + rows_x); + for_range(functor); } - // compute dy if (out_grad_y) { - out_grad_y->mutable_data(context.GetPlace()); - auto dy = EigenMatrix::Reshape(*out_grad_y, 1); - auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast; - dy.device(place) = dz_bcast * grad; + math::CosSimGradFunctor functor( + in_y_norm->data(), in_x_norm->data(), in_y->data(), + in_x->data(), in_z->data(), in_grad_z->data(), + out_grad_y->mutable_data(context.GetPlace()), cols); + platform::ForRange for_range( + static_cast(context.device_context()), + rows_x); + for_range(functor); } } else { - Eigen::DSizes bcast_rows(rows_x, 1); - Eigen::DSizes bcast_rows_cols(rows_x, cols); - auto y_bcast = y.broadcast(bcast_rows); - auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols); - auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows)) - .eval() - .broadcast(bcast_cols); - // compute dx if (out_grad_x) { - out_grad_x->mutable_data(context.GetPlace()); - auto dx = EigenMatrix::Reshape(*out_grad_x, 1); - auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast; - dx.device(place) = dz_bcast * grad; + math::CosSimDxFunctor functor( + in_x_norm->data(), in_y_norm->data(), in_x->data(), + in_y->data(), in_z->data(), in_grad_z->data(), + out_grad_x->mutable_data(context.GetPlace()), cols); + platform::ForRange for_range( + static_cast(context.device_context()), + rows_x); + for_range(functor); } - // compute dy if (out_grad_y) { out_grad_y->mutable_data(context.GetPlace()); - auto dy = EigenVector::Flatten(*out_grad_y); - auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast; - dy.device(place) = (dz_bcast * grad).sum(Eigen::array({{0}})); + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); + set_zero(dev_ctx, out_grad_y, static_cast(0)); + + math::CosSimDyFunctor functor; + functor(dev_ctx, in_x_norm->data(), in_y_norm->data(), + in_x->data(), in_y->data(), in_z->data(), + in_grad_z->data(), static_cast(rows_x), + static_cast(cols), out_grad_y->data()); } } } diff --git a/paddle/operators/crf_decoding_op.cc b/paddle/operators/crf_decoding_op.cc index 024e1d061a5b2eabc27110d5379cb8226a104079..30626028c137a4ac3acf67f37ba5c5bb75215b3a 100644 --- a/paddle/operators/crf_decoding_op.cc +++ b/paddle/operators/crf_decoding_op.cc @@ -120,17 +120,11 @@ class CRFDecodingOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Emission")->type()), - ctx.device_context()); - } - - framework::OpKernelType GetExpectedKernelType( - const framework::OpKernelType& actual_kernel_type) const override { - return framework::OpKernelType(actual_kernel_type.data_type_, - platform::CPUPlace()); + platform::CPUPlace()); } }; } // namespace operators diff --git a/paddle/operators/crf_decoding_op.h b/paddle/operators/crf_decoding_op.h index f6827b7b1128251b2bb7e0a6a032389e5adc1371..ce2f4e6622c21e1e5383b4a3aefc2987bf155aec 100644 --- a/paddle/operators/crf_decoding_op.h +++ b/paddle/operators/crf_decoding_op.h @@ -28,9 +28,6 @@ template class CRFDecodingOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), - "The crf_decoding operator can only run on CPU."); - auto* emission_weights = ctx.Input("Emission"); auto* transition_weights = ctx.Input("Transition"); auto* label = ctx.Input("Label"); diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index a9c5c7046f8642072f2fdef14e1800ce7b05915b..7abd5b1c61d610f4f723b13ad6ce61791b96d06d 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -51,7 +51,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of cross_entropy // is determined by its input "X". - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -101,7 +101,7 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of cross_entropy // is determined by its input "X". - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -114,15 +114,15 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { CrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", - "(Tensor, default Tensor), a 2-D tensor with shape N x D, " - "where N is the batch size and D is the number of classes. " + "(Tensor, default Tensor), a 2-D tensor with shape [N x D]," + " where N is the batch size and D is the number of classes. " "This input is a probability computed by the previous operator, " "which is almost always the result of a softmax operator."); AddInput("Label", "(Tensor), the ground truth which is a 2-D tensor. When " "soft_label is set to false, Label is a Tensor with shape " "[N x 1]. When soft_label is set to true, Label is a " - "Tensor with shape [N x K]."); + "Tensor with shape [N x D]."); AddOutput("Y", "(Tensor, default Tensor), a 2-D tensor with shape " "[N x 1]. The cross entropy loss."); diff --git a/paddle/operators/detail/recv_impl.cc b/paddle/operators/detail/recv_impl.cc index b746f9df4640bac7b5c4e83091f2c2ab67e778be..319404e56a5f3c407f313991240bbbb85fd39a2a 100644 --- a/paddle/operators/detail/recv_impl.cc +++ b/paddle/operators/detail/recv_impl.cc @@ -21,14 +21,9 @@ namespace detail { Status SendRecvServerImpl::SendVariable(ServerContext *context, const VariableMessage *in_var, VoidMessage *out_var) { - // TODO(typhoonzero): support different variable types. - std::istringstream iss(in_var->serialized()); - framework::LoDTensor t; - framework::DeserializeFromStream(iss, &t); - TensorWithName tensor_with_name = - std::make_pair(in_var->varname(), std::move(t)); - - var_recv_queue_.Push(std::move(tensor_with_name)); + MessageWithName msg_with_name = + std::make_pair(in_var->varname(), std::move(*in_var)); + var_recv_queue_.Push(std::move(msg_with_name)); return Status::OK; } @@ -37,14 +32,8 @@ Status SendRecvServerImpl::GetVariable(ServerContext *context, VariableMessage *out_var) { std::string get_var_name = in_var->varname(); auto *var = scope_->FindVar(get_var_name); - auto tensor = var->Get(); - std::ostringstream oss; - framework::SerializeToStream(oss, tensor, platform::CPUDeviceContext()); - std::string *varname = out_var->mutable_varname(); - *varname = get_var_name; - std::string *serialized = out_var->mutable_serialized(); - *serialized = oss.str(); + SerializeToMessage(get_var_name, var, platform::CPUDeviceContext(), out_var); return Status::OK; } diff --git a/paddle/operators/detail/send_impl.cc b/paddle/operators/detail/send_impl.cc index a812fcf39bc19a6e06dc594c13076696e7949372..ae85cf2cec2cd8e046c0c7fd3408f2212f225819 100644 --- a/paddle/operators/detail/send_impl.cc +++ b/paddle/operators/detail/send_impl.cc @@ -27,14 +27,8 @@ bool RPCClient::SendVariable(const framework::Scope& scope, auto ctx = platform::CPUDeviceContext(); auto* var = scope.FindVar(inname); PADDLE_ENFORCE(var); - // TODO(typhoonzero): support SelectedRows - PADDLE_ENFORCE(var->IsType(), - "Only support LoDTensor, %s has wrong type", inname); - const framework::LoDTensor& tensor = var->Get(); - std::ostringstream oss; - framework::SerializeToStream(oss, tensor, ctx); - msg.set_varname(inname); - msg.set_serialized(oss.str()); + SerializeToMessage(inname, var, ctx, &msg); + Status status = stub_->SendVariable(&context, msg, &out_msg); if (!status.ok()) { LOG(ERROR) << "gRPC error: " << status.error_message(); @@ -50,19 +44,15 @@ bool RPCClient::GetVariable(const framework::Scope& scope, call_msg.set_varname(outname); auto ctx = platform::CPUDeviceContext(); Status status = stub_->GetVariable(&context, call_msg, &ret_msg); + auto* outvar = scope.FindVar(outname); if (!status.ok()) { LOG(ERROR) << "gRPC error: " << status.error_message(); return false; } std::istringstream iss(ret_msg.serialized()); + DeserializeFromMessage(ret_msg, ctx, outvar); - framework::LoDTensor ret_tensor; - framework::DeserializeFromStream(iss, &ret_tensor); - auto* outvar = scope.FindVar(outname); - framework::LoDTensor* out_tensor = outvar->GetMutable(); - // FIXME(typhoonzero): do not copy. - framework::CopyFrom(ret_tensor, ctx.GetPlace(), ctx, out_tensor); return true; } diff --git a/paddle/operators/detail/send_recv.proto b/paddle/operators/detail/send_recv.proto index 95c8e708986eac2a27ece70864efd7eac5f84ce8..f141c755ce14ef540aeab32c11c289179aff3f8c 100644 --- a/paddle/operators/detail/send_recv.proto +++ b/paddle/operators/detail/send_recv.proto @@ -1,7 +1,6 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under +the Apache License, Version 2.0 (the "License"); you may not use this file +except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 @@ -13,7 +12,6 @@ See the License for the specific language governing permissions and limitations under the License. */ syntax = "proto3"; - package sendrecv; service SendRecvService { @@ -29,12 +27,18 @@ service SendRecvService { // VariableMessage is serialized paddle variable message. // It can be: -// Tensor // LoDTensor // SelectedRows +enum VarType { + LOD_TENSOR = 0; + SELECTED_ROWS = 1; +} + message VariableMessage { string varname = 1; - bytes serialized = 2; + // TODO(Yancey1989): reference framework::proto::VarDesc::VarType + VarType type = 2; + bytes serialized = 3; } message VoidMessage {} diff --git a/paddle/operators/detail/send_recv_impl.h b/paddle/operators/detail/send_recv_impl.h index 47f730f7ae897096fbdd23a55252448cf6655fb4..1fe54f1f0536aed7d41bbdeeca076534abafe98d 100644 --- a/paddle/operators/detail/send_recv_impl.h +++ b/paddle/operators/detail/send_recv_impl.h @@ -14,10 +14,10 @@ limitations under the License. */ #pragma once -#include "paddle/framework/data_type.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/scope.h" #include "paddle/framework/selected_rows.h" +#include "paddle/framework/var_type.h" #include "paddle/operators/detail/simple_block_queue.h" #include "paddle/operators/detail/send_recv.grpc.pb.h" @@ -44,7 +44,7 @@ namespace paddle { namespace operators { namespace detail { -typedef std::pair TensorWithName; +typedef std::pair MessageWithName; class SendRecvServerImpl final : public SendRecvService::Service { public: @@ -60,13 +60,13 @@ class SendRecvServerImpl final : public SendRecvService::Service { void Done(); void SetScope(framework::Scope *scope) { scope_ = scope; }; - const TensorWithName Get() { return this->var_recv_queue_.Pop(); } + const MessageWithName Get() { return this->var_recv_queue_.Pop(); } - void Push(const TensorWithName &msg) { this->var_recv_queue_.Push(msg); } + void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); } private: // received variable from RPC, operators fetch variable from this queue. - SimpleBlockQueue var_recv_queue_; + SimpleBlockQueue var_recv_queue_; framework::Scope *scope_; // condition of the sub program std::mutex mutex_; @@ -89,6 +89,53 @@ class RPCClient { std::unique_ptr stub_; }; +inline void SerializeToMessage(const std::string &name, + const framework::Variable *var, + const platform::DeviceContext &ctx, + VariableMessage *msg) { + msg->set_varname(name); + std::ostringstream oss; + switch (framework::ToVarType(var->Type())) { + case framework::proto::VarDesc_VarType_LOD_TENSOR: + msg->set_type(sendrecv::VarType::LOD_TENSOR); + framework::SerializeToStream(oss, var->Get(), ctx); + break; + case framework::proto::VarDesc_VarType_SELECTED_ROWS: + msg->set_type(sendrecv::VarType::SELECTED_ROWS); + framework::SerializeToStream(oss, var->Get(), + ctx); + break; + default: { + PADDLE_THROW("Serialize does not support type: %s", + typeid(var->Type()).name()); + break; + } + } + msg->set_serialized(oss.str()); +} + +inline void DeserializeFromMessage(const VariableMessage &msg, + const platform::DeviceContext &ctx, + framework::Variable *var) { + using namespace paddle::framework::proto; + std::istringstream iss(msg.serialized()); + switch (msg.type()) { + case sendrecv::VarType::LOD_TENSOR: + DeserializeFromStream(iss, var->GetMutable(), ctx); + break; + case sendrecv::VarType::SELECTED_ROWS: { + DeserializeFromStream(iss, var->GetMutable(), + ctx); + break; + } + default: { + PADDLE_THROW("Deserialize does not support type: %s", + typeid(var->Type()).name()); + break; + } + } +} + } // namespace detail } // namespace operators } // namespace paddle diff --git a/paddle/operators/detection_output_op.cc b/paddle/operators/detection_output_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..ea44cd32678d7e8a5836c1886cf9c1b4961970aa --- /dev/null +++ b/paddle/operators/detection_output_op.cc @@ -0,0 +1,89 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/detection_output_op.h" +namespace paddle { +namespace operators { + +class DetectionOutputOpMaker : public framework::OpProtoAndCheckerMaker { + public: + DetectionOutputOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Loc", + "(Tensor) The input tensor of detection_output operator." + "The input predict locations" + "The format of input tensor is kNCHW. Where K is priorbox point " + "numbers," + "N is How many boxes are there on each point, " + "C is 4, H and W both are 1."); + AddInput("Conf", + "(Tensor) The input tensor of detection_output operator." + "The input priorbox confidence." + "The format of input tensor is kNCHW. Where K is priorbox point " + "numbers," + "N is How many boxes are there on each point, " + "C is the number of classes, H and W both are 1."); + AddInput("PriorBox", + "(Tensor) The input tensor of detection_output operator." + "The format of input tensor is the position and variance " + "of the boxes"); + AddOutput("Out", + "(Tensor) The output tensor of detection_output operator."); + AddAttr("background_label_id", "(int), The background class index."); + AddAttr("num_classes", "(int), The number of the classification."); + AddAttr("nms_threshold", + "(float), The Non-maximum suppression threshold."); + AddAttr("confidence_threshold", + "(float), The classification confidence threshold."); + AddAttr("top_k", "(int), The bbox number kept of the layer’s output."); + AddAttr("nms_top_k", + "(int), The bbox number kept of the NMS’s output."); + AddComment(R"DOC( + detection output for SSD(single shot multibox detector) + Apply the NMS to the output of network and compute the predict + bounding box location. The output’s shape of this layer could + be zero if there is no valid bounding box. + )DOC"); + } +}; + +class DetectionOutputOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Loc"), + "Input(X) of DetectionOutputOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Conf"), + "Input(X) of DetectionOutputOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasInput("PriorBox"), + "Input(X) of DetectionOutputOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of DetectionOutputOp should not be null."); + std::vector output_shape({1, 7}); + ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(detection_output, ops::DetectionOutputOp, + ops::DetectionOutputOpMaker); +REGISTER_OP_CPU_KERNEL( + detection_output, + ops::DetectionOutputKernel, + ops::DetectionOutputKernel); diff --git a/paddle/operators/detection_output_op.cu.cc b/paddle/operators/detection_output_op.cu.cc new file mode 100644 index 0000000000000000000000000000000000000000..4a6560e0492c559afd06e5152c34fab545b7ce61 --- /dev/null +++ b/paddle/operators/detection_output_op.cu.cc @@ -0,0 +1,21 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/detection_output_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + detection_output, + ops::DetectionOutputKernel, + ops::DetectionOutputKernel); diff --git a/paddle/operators/detection_output_op.h b/paddle/operators/detection_output_op.h new file mode 100644 index 0000000000000000000000000000000000000000..86285b748a7fe57437ddaa8cc4262d9ac1b0403a --- /dev/null +++ b/paddle/operators/detection_output_op.h @@ -0,0 +1,167 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/framework/tensor.h" +#include "paddle/operators/math/detection_util.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/softmax.h" +#include "paddle/operators/strided_memcpy.h" +namespace paddle { +namespace operators { +template +inline void transpose_fun(const framework::ExecutionContext& context, + const framework::Tensor& src, + framework::Tensor* dst) { + int input_nums = src.dims()[0]; + int offset = 0; + for (int j = 0; j < input_nums; ++j) { + framework::Tensor in_p_tensor = src.Slice(j, j + 1); + std::vector shape_vec( + {in_p_tensor.dims()[0], in_p_tensor.dims()[1], in_p_tensor.dims()[3], + in_p_tensor.dims()[4], in_p_tensor.dims()[2]}); + framework::DDim shape(framework::make_ddim(shape_vec)); + framework::Tensor in_p_tensor_transpose; + in_p_tensor_transpose.mutable_data(shape, context.GetPlace()); + std::vector shape_axis({0, 1, 3, 4, 2}); + math::Transpose trans5; + trans5(context.template device_context(), in_p_tensor, + &in_p_tensor_transpose, shape_axis); + auto dst_stride = framework::stride(dst->dims()); + auto src_stride = framework::stride(in_p_tensor_transpose.dims()); + StridedMemcpy(context.device_context(), in_p_tensor_transpose.data(), + src_stride, in_p_tensor_transpose.dims(), dst_stride, + dst->data() + offset); + offset += in_p_tensor_transpose.dims()[4] * src_stride[4]; + } +} +template +class DetectionOutputKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_loc = context.Input("Loc"); + const framework::Tensor* in_conf = context.Input("Conf"); + const framework::Tensor* in_priorbox = + context.Input("PriorBox"); + auto* out = context.Output("Out"); + int num_classes = context.template Attr("num_classes"); + int top_k = context.template Attr("top_k"); + int nms_top_k = context.template Attr("nms_top_k"); + int background_label_id = context.template Attr("background_label_id"); + float nms_threshold = context.template Attr("nms_threshold"); + float confidence_threshold = + context.template Attr("confidence_threshold"); + size_t batch_size = in_conf->dims()[1]; + int conf_sum_size = in_conf->numel(); + // for softmax + std::vector conf_shape_softmax_vec( + {conf_sum_size / num_classes, num_classes}); + framework::DDim conf_shape_softmax( + framework::make_ddim(conf_shape_softmax_vec)); + // for knchw => nhwc + std::vector loc_shape_vec({1, in_loc->dims()[1], in_loc->dims()[3], + in_loc->dims()[4], + in_loc->dims()[2] * in_loc->dims()[0]}); + std::vector conf_shape_vec( + {1, in_conf->dims()[1], in_conf->dims()[3], in_conf->dims()[4], + in_conf->dims()[2] * in_conf->dims()[0]}); + framework::DDim loc_shape(framework::make_ddim(loc_shape_vec)); + framework::DDim conf_shape(framework::make_ddim(conf_shape_vec)); + framework::Tensor loc_tensor; + framework::Tensor conf_tensor; + loc_tensor.mutable_data(loc_shape, context.GetPlace()); + conf_tensor.mutable_data(conf_shape, context.GetPlace()); + // for cpu + framework::Tensor loc_cpu; + framework::Tensor conf_cpu; + framework::Tensor priorbox_cpu; + const T* priorbox_data = in_priorbox->data(); + transpose_fun(context, *in_loc, &loc_tensor); + transpose_fun(context, *in_conf, &conf_tensor); + conf_tensor.Resize(conf_shape_softmax); + math::SoftmaxFunctor()( + context.template device_context(), &conf_tensor, + &conf_tensor); + T* loc_data = loc_tensor.data(); + T* conf_data = conf_tensor.data(); + if (platform::is_gpu_place(context.GetPlace())) { + loc_cpu.mutable_data(loc_tensor.dims(), platform::CPUPlace()); + framework::Copy(loc_tensor, platform::CPUPlace(), + context.device_context(), &loc_cpu); + loc_data = loc_cpu.data(); + conf_cpu.mutable_data(conf_tensor.dims(), platform::CPUPlace()); + framework::Copy(conf_tensor, platform::CPUPlace(), + context.device_context(), &conf_cpu); + conf_data = conf_cpu.data(); + priorbox_cpu.mutable_data(in_priorbox->dims(), platform::CPUPlace()); + framework::Copy(*in_priorbox, platform::CPUPlace(), + context.device_context(), &priorbox_cpu); + priorbox_data = priorbox_cpu.data(); + } + // get decode bboxes + size_t num_priors = in_priorbox->numel() / 8; + std::vector>> all_decoded_bboxes; + for (size_t n = 0; n < batch_size; ++n) { + std::vector> decoded_bboxes; + for (size_t i = 0; i < num_priors; ++i) { + size_t prior_offset = i * 8; + size_t loc_pred_offset = n * num_priors * 4 + i * 4; + std::vector> prior_bbox_vec; + math::GetBBoxFromPriorData(priorbox_data + prior_offset, 1, + prior_bbox_vec); + std::vector> prior_bbox_var; + math::GetBBoxVarFromPriorData(priorbox_data + prior_offset, 1, + prior_bbox_var); + std::vector loc_pred_data; + for (size_t j = 0; j < 4; ++j) + loc_pred_data.push_back(*(loc_data + loc_pred_offset + j)); + math::BBox bbox = math::DecodeBBoxWithVar( + prior_bbox_vec[0], prior_bbox_var[0], loc_pred_data); + decoded_bboxes.push_back(bbox); + } + all_decoded_bboxes.push_back(decoded_bboxes); + } + std::vector>> all_indices; + int num_kept = math::GetDetectionIndices( + conf_data, num_priors, num_classes, background_label_id, batch_size, + confidence_threshold, nms_top_k, nms_threshold, top_k, + all_decoded_bboxes, &all_indices); + + if (num_kept <= 0) { + std::vector out_shape_vec({0, 0}); + framework::DDim out_shape(framework::make_ddim(out_shape_vec)); + out->Resize(out_shape); + return; + } + std::vector out_shape_vec({num_kept, 7}); + framework::DDim out_shape(framework::make_ddim(out_shape_vec)); + out->mutable_data(out_shape, context.GetPlace()); + framework::Tensor out_cpu; + T* out_data = out->data(); + if (platform::is_gpu_place(context.GetPlace())) { + out_cpu.mutable_data(out->dims(), platform::CPUPlace()); + out_data = out_cpu.data(); + } + math::GetDetectionOutput(conf_data, num_kept, num_priors, num_classes, + batch_size, all_indices, all_decoded_bboxes, + out_data); + if (platform::is_gpu_place(context.GetPlace())) { + framework::Copy(out_cpu, platform::CUDAPlace(), context.device_context(), + out); + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/expand_op.h b/paddle/operators/expand_op.h index 1d9012cd4a4c6ad596e7d434b5c4ecea1ddcde87..a4994cf3a5becb8198f01f9252f3e96beba5a3c3 100644 --- a/paddle/operators/expand_op.h +++ b/paddle/operators/expand_op.h @@ -126,8 +126,7 @@ class ExpandGradKernel : public framework::OpKernel { auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); - framework::CopyFrom(*in0, context.GetPlace(), context.device_context(), - out0); + framework::Copy(*in0, context.GetPlace(), context.device_context(), out0); } else { switch (dims) { REP_EXPAND_GRAD_TEMPLATE(72) diff --git a/paddle/operators/feed_op.cc b/paddle/operators/feed_op.cc index cecbb7226aedabc3bee63c518d0ab9da496fca11..d738e1850ca4f658f4fca5c9bf643c44f676cce9 100644 --- a/paddle/operators/feed_op.cc +++ b/paddle/operators/feed_op.cc @@ -49,10 +49,10 @@ class FeedOp : public framework::OperatorBase { auto *out_item = out_var->GetMutable(); // get device context from pool - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); - framework::CopyFrom(feed_item, place, dev_ctx, out_item); + framework::Copy(feed_item, place, dev_ctx, out_item); out_item->set_lod(feed_item.lod()); } }; diff --git a/paddle/operators/fetch_op.cc b/paddle/operators/fetch_op.cc index fa20a06540efef05d6a15669b1f8dfb8bd5927bc..7205ee2a879dfff711ad1cabebe197ef53377a1c 100644 --- a/paddle/operators/fetch_op.cc +++ b/paddle/operators/fetch_op.cc @@ -52,10 +52,10 @@ class FetchOp : public framework::OperatorBase { // FIXME(yuyang18): Should we assume the fetch operator always generate // CPU outputs? - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(src_item.place()); - CopyFrom(src_item, platform::CPUPlace(), dev_ctx, &dst_item); + Copy(src_item, platform::CPUPlace(), dev_ctx, &dst_item); dev_ctx.Wait(); dst_item.set_lod(src_item.lod()); diff --git a/paddle/operators/fill_constant_batch_size_like_op.cc b/paddle/operators/fill_constant_batch_size_like_op.cc index 852ecdfe45e7f4737a505c1f722d25457ad6ad32..c74a5b6ced3af27847dd36511aeab0ee9614415a 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.cc +++ b/paddle/operators/fill_constant_batch_size_like_op.cc @@ -49,7 +49,7 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( static_cast(ctx.Attr("dtype")), diff --git a/paddle/operators/fill_constant_op.cc b/paddle/operators/fill_constant_op.cc index fe0706c4a9da864025737584b72c02cca83c956b..dcd43a30c86b62d79f52ac640f14b295a062146c 100644 --- a/paddle/operators/fill_constant_op.cc +++ b/paddle/operators/fill_constant_op.cc @@ -49,8 +49,8 @@ class FillConstantOp : public framework::OperatorBase { out.mutable_data(dev_place, framework::ToTypeIndex(data_type)); } - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(dev_place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); math::set_constant(dev_ctx, &out, value); } }; diff --git a/paddle/operators/fill_op.cc b/paddle/operators/fill_op.cc index 57b4ec69384a55cef6d6d8d0c0145caae837b3f6..4f5a2ed169565771629fe8df7c25cf23bc94e339 100644 --- a/paddle/operators/fill_op.cc +++ b/paddle/operators/fill_op.cc @@ -69,9 +69,10 @@ class FillOp : public framework::OperatorBase { if (!force_cpu && platform::is_gpu_place(place)) { // Copy tensor to out - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); - framework::CopyFrom(tensor, place, dev_ctx, &out); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::Copy(tensor, place, dev_ctx, &out); } } }; diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index 45e9d8df702403e66f9100e4edaf5c17470eb20d..597fdad0794ec076669a0b2e6157e5c74c80d735 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -40,7 +40,7 @@ class GatherOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -57,7 +57,7 @@ class GatherGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index 9ed493a7d027e1bd3e8c5fca376678fd5fcf14f1..2dca05760ecc98f822b8c426af3152d365526d2b 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -60,7 +60,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( static_cast(ctx.Attr("dtype")), diff --git a/paddle/operators/get_places_op.cc b/paddle/operators/get_places_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..24fafb23074c358669715f1840246c3520f948c7 --- /dev/null +++ b/paddle/operators/get_places_op.cc @@ -0,0 +1,117 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" +#include "paddle/platform/place.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/platform/gpu_info.h" +#endif + +namespace paddle { +namespace operators { + +static size_t CUDADevCount() { +#ifdef PADDLE_WITH_CUDA + return platform::GetCUDADeviceCount(); +#else + return 0UL; +#endif +} + +class GetPlacesOp : public framework::OperatorBase { + public: + GetPlacesOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + bool is_gpu; + if (Attr("device_type") == "AUTO") { + is_gpu = platform::is_gpu_place(place); + } else { + is_gpu = Attr("device_type") == "CUDA"; + } + auto device_count = static_cast(Attr("device_count")); + if (device_count == 0) { + device_count = + is_gpu ? CUDADevCount() : std::thread::hardware_concurrency(); + } + PADDLE_ENFORCE_NE(device_count, 0, "Cannot indicate %s device count", + is_gpu ? "GPU" : "CPU"); + + auto out_var_name = Output("Out"); + auto &places = + *(detail::Ref(scope.FindVar(out_var_name), + "Output variable %s cannot be found", out_var_name) + .GetMutable()); + places.reserve(device_count); + if (is_gpu) { + PADDLE_ENFORCE_LE(device_count, CUDADevCount(), + "Only %d CUDA devices found, cannot set to %d", + CUDADevCount(), device_count); + for (size_t i = 0; i < device_count; ++i) { + places.emplace_back(platform::CUDAPlace(static_cast(i))); + } + } else { + for (size_t i = 0; i < device_count; ++i) { + places.emplace_back(platform::CPUPlace()); + } + } + } +}; + +class GetPlacesOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + GetPlacesOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddOutput("Out", "vector of Place"); + AddAttr("device_count", "device count").SetDefault(0); + AddAttr("device_type", "device type") + .InEnum({"CUDA", "CPU", "AUTO"}) + .SetDefault("AUTO"); + AddComment(R"DOC( +Returns a list of places based on flags. The list will be used for parallel +execution. +)DOC"); + } +}; + +class GetPlacesInferVarType : public framework::VarTypeInference { + public: + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { + for (auto &o_name : op_desc.Output("Out")) { + block->FindRecursiveOrCreateVar(o_name).SetType( + framework::proto::VarDesc::PLACE_LIST); + } + } +}; + +class GetPlacesInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + // Do nothing + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; + +REGISTER_OPERATOR(get_places, ops::GetPlacesOp, ops::GetPlacesOpProtoMaker, + ops::GetPlacesInferVarType, ops::GetPlacesInferShape, + paddle::framework::EmptyGradOpMaker); diff --git a/paddle/operators/gru_op.h b/paddle/operators/gru_op.h index c6228864d7ec042ff99e4521d1d707ba091e8ed5..b1957fb9ce6add8628cb206abf2c569d3f615c85 100644 --- a/paddle/operators/gru_op.h +++ b/paddle/operators/gru_op.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once +#include "paddle/operators/math/detail/activation_functions.h" #include "paddle/operators/math/gru_compute.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/sequence2batch.h" @@ -70,7 +71,7 @@ class GRUKernel : public framework::OpKernel { } int frame_size = hidden_dims[1]; - math::hl_gru_value gru_value; + math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); @@ -89,6 +90,10 @@ class GRUKernel : public framework::OpKernel { } auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; + auto active_node = math::detail::GetActivationType( + context.Attr("activation")); + auto active_gate = math::detail::GetActivationType( + context.Attr("gate_activation")); for (size_t n = 0; n < num_batch; n++) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); @@ -101,9 +106,8 @@ class GRUKernel : public framework::OpKernel { gru_value.gate_value = gate_t.data(); gru_value.reset_output_value = reset_hidden_prev_t.data(); math::GRUUnitFunctor::compute( - dev_ctx, gru_value, frame_size, cur_batch_size, - math::ActiveType(context.Attr("activation")), - math::ActiveType(context.Attr("gate_activation"))); + dev_ctx, gru_value, frame_size, cur_batch_size, active_node, + active_gate); gru_value.prev_out_value = gru_value.output_value; } @@ -170,12 +174,12 @@ class GRUGradKernel : public framework::OpKernel { batch_hidden_grad.set_lod(batch_hidden->lod()); to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse); - math::hl_gru_value gru_value; + math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); - math::hl_gru_grad gru_grad; + math::GRUMetaGrad gru_grad; if (weight_grad) { gru_grad.gate_weight_grad = weight_grad->mutable_data(context.GetPlace()); @@ -189,6 +193,10 @@ class GRUGradKernel : public framework::OpKernel { auto batch_starts = batch_hidden_grad.lod()[0]; size_t num_batch = batch_starts.size() - 1; + auto active_node = math::detail::GetActivationType( + context.Attr("activation")); + auto active_gate = math::detail::GetActivationType( + context.Attr("gate_activation")); for (int n = static_cast(num_batch) - 1; n >= 0; n--) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); @@ -219,9 +227,8 @@ class GRUGradKernel : public framework::OpKernel { } math::GRUUnitGradFunctor::compute( - dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, - math::ActiveType(context.Attr("activation")), - math::ActiveType(context.Attr("gate_activation"))); + dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node, + active_gate); } if (input_grad) { input_grad->mutable_data(context.GetPlace()); diff --git a/paddle/operators/linear_chain_crf_op.cc b/paddle/operators/linear_chain_crf_op.cc index 666207ea07628ca5f2a8313fa3f5febda140a294..975e394c78db037a125adeb2c86e3c74dc0eb6f8 100644 --- a/paddle/operators/linear_chain_crf_op.cc +++ b/paddle/operators/linear_chain_crf_op.cc @@ -183,7 +183,7 @@ class LinearChainCRFOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of linear_chain_crf // is determined by its input "Emission". - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Emission")->type()), @@ -242,7 +242,7 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of output of the linear_chain_crf_grad // operator is determined by its input: gradients of LogLikelihood. - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType( diff --git a/paddle/operators/linear_chain_crf_op.h b/paddle/operators/linear_chain_crf_op.h index 19c6715ec877dea6dcf0babc7373333a4d9eed0f..f502ebefde1fbd4b366f76d2915d94a23a124e5f 100644 --- a/paddle/operators/linear_chain_crf_op.h +++ b/paddle/operators/linear_chain_crf_op.h @@ -196,7 +196,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel { auto copyLoDTensor = [](const platform::DeviceContext& ctx, const LoDTensor& src, LoDTensor* dst) { dst->mutable_data(src.dims(), platform::CPUPlace()); - framework::CopyFrom(src, platform::CPUPlace(), ctx, dst); + framework::Copy(src, platform::CPUPlace(), ctx, dst); }; copyLoDTensor(ctx, emission_weights_src, emission_weights_dst); @@ -204,8 +204,8 @@ class LinearChainCRFOpKernel : public framework::OpKernel { transition_weights_dst->mutable_data(transition_weights_src.dims(), platform::CPUPlace()); - framework::CopyFrom(transition_weights_src, platform::CPUPlace(), ctx, - transition_weights_dst); + framework::Copy(transition_weights_src, platform::CPUPlace(), ctx, + transition_weights_dst); } void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx, @@ -220,7 +220,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel { auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src, Tensor* dst) { dst->mutable_data(platform::CUDAPlace()); - framework::CopyFrom(src, platform::CUDAPlace(), ctx, dst); + framework::Copy(src, platform::CUDAPlace(), ctx, dst); }; copyTensor(ctx, emission_exps_src, emission_exps_dst); copyTensor(ctx, transition_exps_src, transition_exps_dst); @@ -410,12 +410,12 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { // Copy the inputs from GPU memory to CPU memory when this operators runs on // GPU device. label_dst->mutable_data(label_src.dims(), platform::CPUPlace()); - framework::CopyFrom(label_src, platform::CPUPlace(), ctx, label_dst); + framework::Copy(label_src, platform::CPUPlace(), ctx, label_dst); auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src, Tensor* dst) { dst->mutable_data(src.dims(), platform::CPUPlace()); - framework::CopyFrom(src, platform::CPUPlace(), ctx, dst); + framework::Copy(src, platform::CPUPlace(), ctx, dst); }; copyTensor(ctx, emission_exps_src, emission_exps_dst); copyTensor(ctx, transition_exps_src, transition_exps_dst); @@ -434,7 +434,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { Tensor* dst) { if (src && dst) { dst->mutable_data(platform::CUDAPlace()); - framework::CopyFrom(*src, platform::CUDAPlace(), ctx, dst); + framework::Copy(*src, platform::CUDAPlace(), ctx, dst); } }; copyTensor(ctx, emission_grad_src, emission_grad_dst); diff --git a/paddle/operators/load_op.cc b/paddle/operators/load_op.cc index 5425375c1ffa16c223ec1b05506ffb4b4394d6e1..f886b423ac7cb89961d1fdb5c6d3776ccafcaf60 100644 --- a/paddle/operators/load_op.cc +++ b/paddle/operators/load_op.cc @@ -38,10 +38,10 @@ class LoadOp : public framework::OperatorBase { out_var_name); auto *tensor = out_var->GetMutable(); - framework::DeserializeFromStream(fin, tensor); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + DeserializeFromStream(fin, tensor, dev_ctx); if (platform::is_gpu_place(place)) { // copy CPU to GPU @@ -53,7 +53,7 @@ class LoadOp : public framework::OperatorBase { out_var->Clear(); tensor = out_var->GetMutable(); tensor->set_lod(cpu_tensor.lod()); - CopyFrom(cpu_tensor, place, dev_ctx, tensor); + Copy(cpu_tensor, place, dev_ctx, tensor); } } }; diff --git a/paddle/operators/lod_rank_table_op.cc b/paddle/operators/lod_rank_table_op.cc index 8711dd62c886fdada083d316d6aabc93a050ff82..692b9bf3710d764eceafda8390eedb8590794ddf 100644 --- a/paddle/operators/lod_rank_table_op.cc +++ b/paddle/operators/lod_rank_table_op.cc @@ -66,7 +66,7 @@ class LoDRankTableInferVarType : public framework::VarTypeInference { void operator()(const framework::OpDesc &op_desc, framework::BlockDesc *block) const override { for (auto &o : op_desc.Output("Out")) { - block->FindRecursiveOrCreateVar(o)->SetType( + block->FindRecursiveOrCreateVar(o).SetType( framework::proto::VarDesc::LOD_RANK_TABLE); } } diff --git a/paddle/operators/lod_reset_op.cc b/paddle/operators/lod_reset_op.cc index f3c0badf2a74431b980abd532e51ba3d251524a1..3d7b15edcfece84ffea539591a4db2690bd82029 100644 --- a/paddle/operators/lod_reset_op.cc +++ b/paddle/operators/lod_reset_op.cc @@ -38,7 +38,7 @@ class LoDResetOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -97,7 +97,7 @@ class LoDResetGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/lod_reset_op.h b/paddle/operators/lod_reset_op.h index 306373fb1fb6f16a0db7f0e836e38fd8c49f7e86..c1bbba7a83a3d63a94c54390cacbcdf773ab6b98 100644 --- a/paddle/operators/lod_reset_op.h +++ b/paddle/operators/lod_reset_op.h @@ -33,8 +33,8 @@ class LoDResetKernel : public framework::OpKernel { auto* lod = lod_t->data(); if (platform::is_gpu_place(ctx.GetPlace())) { framework::Tensor lod_cpu; - framework::CopyFrom(*lod_t, platform::CPUPlace(), ctx.device_context(), - &lod_cpu); + framework::Copy(*lod_t, platform::CPUPlace(), ctx.device_context(), + &lod_cpu); lod = lod_cpu.data(); } level0 = std::vector(lod, lod + lod_t->numel()); diff --git a/paddle/operators/lod_tensor_to_array_op.cc b/paddle/operators/lod_tensor_to_array_op.cc index ed99915bb7fc312cac955b50ffbc3237aee503b0..685a807a8acafd36f44161fb17e0e88070d0bf43 100644 --- a/paddle/operators/lod_tensor_to_array_op.cc +++ b/paddle/operators/lod_tensor_to_array_op.cc @@ -88,12 +88,13 @@ class LoDTensorToArrayOp : public framework::OperatorBase { auto slice = out[i].Slice(static_cast(offset), static_cast(offset + len)); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); - framework::CopyFrom(x.Slice(static_cast(each_range.begin), - static_cast(each_range.end)), - x.place(), dev_ctx, &slice); + framework::Copy(x.Slice(static_cast(each_range.begin), + static_cast(each_range.end)), + x.place(), dev_ctx, &slice); offset += len; } } diff --git a/paddle/operators/logical_op.cc b/paddle/operators/logical_op.cc index 7417192479a13ca9537e2d40f9779a3bf5f1eb61..fedd325cf4f7b5a779d17e0259a16d5cf39b77b7 100644 --- a/paddle/operators/logical_op.cc +++ b/paddle/operators/logical_op.cc @@ -99,9 +99,9 @@ class LogicalOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { - framework::OpKernelType kt = OperatorWithKernel::GetActualKernelType(ctx); + framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // LogicalOp kernel's device type is decided by input tensor place kt.place_ = ctx.Input("X")->place(); return kt; diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 6e5cbd6f8cefc965d6c8d24b16eb3bafde55cc49..bb03def4391da80c6219f7863d300fd3c8d8c7ac 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -41,7 +41,7 @@ class LookupTableOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("W")->type()), @@ -98,7 +98,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("W")->type()), diff --git a/paddle/operators/lstm_op.cc b/paddle/operators/lstm_op.cc index b8fcec0f29b46e838f91ad1ee0fded8e42f27bd5..3b90b64b4effacf7240fb1bee8c0aa44251ad727 100644 --- a/paddle/operators/lstm_op.cc +++ b/paddle/operators/lstm_op.cc @@ -92,7 +92,7 @@ class LSTMOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), @@ -260,7 +260,7 @@ class LSTMGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index bf47879f772a3013bd7ce78c6f8a6aefe65298f9..fd59eef7d650b48feae68c89be54ec4e48cbcc7e 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -9,13 +9,15 @@ if(WITH_GPU) nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS device_context) nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context) nv_library(sequence_pooling SRCS sequence_pooling.cc sequence_pooling.cu DEPS device_context math_function) - nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context) + nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context tensor) nv_library(context_project SRCS context_project.cc context_project.cu DEPS device_context math_function) - nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context) + nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context tensor) + nv_library(sequence_padding SRCS sequence_padding.cc sequence_padding.cu DEPS lod_tensor device_context) nv_library(lstm_compute SRCS lstm_compute.cc lstm_compute.cu DEPS device_context activation_functions) nv_library(maxouting SRCS maxouting.cc maxouting.cu DEPS device_context) nv_library(unpooling SRCS unpooling.cc unpooling.cu DEPS device_context) nv_library(gru_compute SRCS gru_compute.cc gru_compute.cu DEPS device_context activation_functions math_function) + nv_library(cos_sim_functor SRCS cos_sim_functor.cc cos_sim_functor.cu DEPS device_context) else() cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context framework_proto) cc_library(selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function) @@ -23,16 +25,19 @@ else() cc_library(cross_entropy SRCS cross_entropy.cc DEPS device_context) cc_library(pooling SRCS pooling.cc DEPS device_context) cc_library(sequence_pooling SRCS sequence_pooling.cc DEPS device_context math_function) - cc_library(vol2col SRCS vol2col.cc DEPS device_context) + cc_library(vol2col SRCS vol2col.cc DEPS device_context tensor) cc_library(context_project SRCS context_project.cc DEPS device_context math_function) - cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context) + cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context tensor) + cc_library(sequence_padding SRCS sequence_padding.cc DEPS lod_tensor device_context) cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions) cc_library(maxouting SRCS maxouting.cc DEPS device_context) cc_library(unpooling SRCS unpooling.cc DEPS device_context) cc_library(gru_compute SRCS gru_compute.cc DEPS device_context activation_functions math_function) + cc_library(cos_sim_functor SRCS cos_sim_functor.cc DEPS device_context) endif() cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) cc_test(selected_rows_functor_test SRCS selected_rows_functor_test.cc DEPS selected_rows_functor) cc_test(im2col_test SRCS im2col_test.cc DEPS math_function tensor) cc_test(vol2col_test SRCS vol2col_test.cc DEPS vol2col tensor) +cc_test(sequence_padding_test SRCS sequence_padding_test.cc DEPS sequence_padding) diff --git a/paddle/operators/math/context_project.h b/paddle/operators/math/context_project.h index 4036614086e1eb724a4a647db6ef13b6fe7aaaa0..218de9fb9564fa0fa30227a6710f57bb89f1a2c8 100644 --- a/paddle/operators/math/context_project.h +++ b/paddle/operators/math/context_project.h @@ -149,7 +149,7 @@ class ContextProjectFunctor { Tensor out_t_sub = out_t.Slice(k * context_length, k * context_length + padding_size); Tensor w_sub = padding_data.Slice(k, k + padding_size); - framework::CopyFrom(w_sub, context.GetPlace(), context, &out_t_sub); + framework::Copy(w_sub, context.GetPlace(), context, &out_t_sub); } } if (down_pad > 0) { // add down pad @@ -179,7 +179,7 @@ class ContextProjectFunctor { (down_pad_begin_row + t) * context_length); Tensor w_sub = padding_data.Slice( up_pad + padding_idx, up_pad + padding_idx + padding_size); - framework::CopyFrom(w_sub, context.GetPlace(), context, &out_t_sub); + framework::Copy(w_sub, context.GetPlace(), context, &out_t_sub); } } out_t.Resize({sequence_height, context_length * sequence_width}); diff --git a/paddle/operators/math/cos_sim_functor.cc b/paddle/operators/math/cos_sim_functor.cc new file mode 100644 index 0000000000000000000000000000000000000000..6af9f0fcd967b4e8e9e338c155d5a8ee2866fbfa --- /dev/null +++ b/paddle/operators/math/cos_sim_functor.cc @@ -0,0 +1,48 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/cos_sim_functor.h" + +namespace paddle { +namespace operators { +namespace math { + +template +struct CosSimDyFunctor { + void operator()(const platform::CPUDeviceContext& ctx, const T* x_norm, + const T* y_norm, const T* x, const T* y, const T* z, + const T* dz, const size_t rows, const size_t cols, + T* dy) const { + for (size_t row_id = 0; row_id < rows; ++row_id) { + auto xy_norm_prod = x_norm[row_id] * y_norm[0]; + auto dz_data = dz[row_id]; + auto z_data = z[row_id]; + auto* x_data = x + cols * row_id; + auto reciprocal_xy_norm_prod = 1 / xy_norm_prod; + + auto y_norm_square = y_norm[0] * y_norm[0]; + auto reciprocal_y_norm_square = 1 / y_norm_square; + for (size_t i = 0; i < cols; ++i) { + dy[i] += dz_data * (x_data[i] * reciprocal_xy_norm_prod - + z_data * y[i] * reciprocal_y_norm_square); + } + } + } +}; + +template struct CosSimDyFunctor; +template struct CosSimDyFunctor; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/cos_sim_functor.cu b/paddle/operators/math/cos_sim_functor.cu new file mode 100644 index 0000000000000000000000000000000000000000..6eb0a4ea4c5b86f84c93b97615255adf55e9e042 --- /dev/null +++ b/paddle/operators/math/cos_sim_functor.cu @@ -0,0 +1,64 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/cos_sim_functor.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +namespace math { + +template +__global__ void CosSimDyKernel(const T* x_norm, const T* y_norm, const T* x, + const T* y, const T* z, const T* dz, + const size_t rows, const size_t cols, T* dy) { + int grid_size = blockDim.x * gridDim.x; + T y_norm_data = y_norm[0]; + for (int row_id = blockIdx.x * blockDim.x + threadIdx.x; row_id < rows; + row_id += grid_size) { + T xy_norm_prod = x_norm[row_id] * y_norm_data; + T dz_data = dz[row_id]; + T z_data = z[row_id]; + const T* x_data = x + cols * row_id; + T reciprocal_xy_norm_prod = 1 / xy_norm_prod; + + T y_norm_square = y_norm_data * y_norm_data; + T reciprocal_y_norm_square = 1 / y_norm_square; + for (size_t i = 0; i < cols; ++i) { + T dy_data = dz_data * (x_data[i] * reciprocal_xy_norm_prod - + z_data * y[i] * reciprocal_y_norm_square); + platform::CudaAtomicAdd(dy + i, dy_data); + } + } +} + +template +struct CosSimDyFunctor { + void operator()(const platform::CUDADeviceContext& ctx, const T* x_norm, + const T* y_norm, const T* x, const T* y, const T* z, + const T* dz, const size_t rows, const size_t cols, + T* dy) const { + const int block_size = 512; + dim3 threads(block_size, 1); + dim3 grid(1, (rows + block_size - 1) / block_size); + CosSimDyKernel<<>>( + x_norm, y_norm, x, y, z, dz, rows, cols, dy); + } +}; + +template struct CosSimDyFunctor; +template struct CosSimDyFunctor; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/cos_sim_functor.h b/paddle/operators/math/cos_sim_functor.h new file mode 100644 index 0000000000000000000000000000000000000000..aae8ab5b7a937c016e8a45e34b22aba7a1df3066 --- /dev/null +++ b/paddle/operators/math/cos_sim_functor.h @@ -0,0 +1,166 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include "paddle/platform/device_context.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { +namespace math { + +template +struct CosSimFunctor { + CosSimFunctor(const T* x, const T* y, T* x_norm, T* y_norm, T* z, int cols) + : x_norm_(x_norm), + y_norm_(y_norm), + x_(x), + y_(y), + z_(z), + cols_(static_cast(cols)) {} + + inline HOSTDEVICE void operator()(size_t row_id) const { + auto* x = x_ + cols_ * row_id; + T xx = 0, xy = 0, yy = 0; + if (same_row) { + auto* y = y_ + cols_ * row_id; + T tep_x, tep_y; + for (size_t i = 0; i < cols_; ++i) { + tep_x = x[i]; + tep_y = y[i]; + xx += tep_x * tep_x; + yy += tep_y * tep_y; + xy += tep_x * tep_y; + } + xx = sqrt(xx); + yy = sqrt(yy); + y_norm_[row_id] = yy; + x_norm_[row_id] = xx; + z_[row_id] = xy / (xx * yy); + } else { // This can be wrote in a better way. + T tep_x, tep_y; + for (size_t i = 0; i < cols_; ++i) { + tep_x = x[i]; + tep_y = y_[i]; + xx += tep_x * tep_x; + yy += tep_y * tep_y; + xy += tep_x * tep_y; + } + xx = sqrt(xx); + yy = sqrt(yy); + if (row_id == 0) y_norm_[0] = yy; + x_norm_[row_id] = xx; + z_[row_id] = xy / (xx * yy); + } + } + + T* x_norm_; + T* y_norm_; + const T* x_; + const T* y_; + T* z_; + const size_t cols_; +}; + +template +struct CosSimGradFunctor { + CosSimGradFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y, + const T* z, const T* dz, T* dx, int cols) + : x_norm_(x_norm), + y_norm_(y_norm), + x_(x), + y_(y), + z_(z), + dz_(dz), + dx_(dx), + cols_(static_cast(cols)) {} + + inline HOSTDEVICE void operator()(size_t row_id) const { + auto x_norm_square = x_norm_[row_id] * x_norm_[row_id]; + auto xy_norm_prod = x_norm_[row_id] * y_norm_[row_id]; + auto dz = dz_[row_id]; + auto z = z_[row_id]; + + auto* dx = dx_ + cols_ * row_id; + auto* x = x_ + cols_ * row_id; + auto* y = y_ + cols_ * row_id; + + auto reciprocal_xy_norm_prod = 1 / xy_norm_prod; + auto reciprocal_x_norm_square = 1 / x_norm_square; + for (size_t i = 0; i < cols_; ++i) { + dx[i] = dz * (y[i] * reciprocal_xy_norm_prod - + z * x[i] * reciprocal_x_norm_square); + } + } + + const T* x_norm_; + const T* y_norm_; + const T* x_; + const T* y_; + const T* z_; + const T* dz_; + T* dx_; + const size_t cols_; +}; + +template +struct CosSimDxFunctor { + CosSimDxFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y, + const T* z, const T* dz, T* dx, int cols) + : x_norm_(x_norm), + y_norm_(y_norm), + x_(x), + y_(y), + z_(z), + dz_(dz), + dx_(dx), + cols_(static_cast(cols)) {} + + inline HOSTDEVICE void operator()(size_t row_id) const { + auto xy_norm_prod = x_norm_[row_id] * y_norm_[0]; + auto dz = dz_[row_id]; + auto z = z_[row_id]; + auto* x = x_ + cols_ * row_id; + auto reciprocal_xy_norm_prod = 1 / xy_norm_prod; + auto x_norm_square = x_norm_[row_id] * x_norm_[row_id]; + auto* dx = dx_ + cols_ * row_id; + auto reciprocal_x_norm_square = 1 / x_norm_square; + + for (size_t i = 0; i < cols_; ++i) { + dx[i] = dz * (y_[i] * reciprocal_xy_norm_prod - + z * x[i] * reciprocal_x_norm_square); + } + } + const T* x_norm_; + const T* y_norm_; + const T* x_; + const T* y_; + const T* z_; + const T* dz_; + T* dx_; + const size_t cols_; +}; + +template +struct CosSimDyFunctor { + void operator()(const DeviceContext& ctx, const T* x_norm, const T* y_norm, + const T* x, const T* y, const T* z, const T* dz, + const size_t rows, const size_t cols, T* dy) const; +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/detail/gru_cpu_kernel.h b/paddle/operators/math/detail/gru_cpu_kernel.h index 4c67dec9cbeb48f400f79f5ed7ba3c939fa2540c..a61b232f4275d93cae1d9a71d49a779216c3555b 100644 --- a/paddle/operators/math/detail/gru_cpu_kernel.h +++ b/paddle/operators/math/detail/gru_cpu_kernel.h @@ -28,7 +28,7 @@ template void hl_naive_gru_forward_reset_output(OpResetOutput op_reset_output, T *gate_value, T *reset_output_value, T *prev_output_value, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { T r_value_update_gate; T r_value_reset_gate; T r_value_reset_output; @@ -56,7 +56,7 @@ template void hl_naive_gru_forward_final_output(OpFinalOutput op_final_output, T *gate_value, T *prev_output_value, T *output_value, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { T r_value_update_gate; T r_value_frame_state; T r_prev_out = 0; @@ -83,7 +83,7 @@ template void hl_avx_gru_forward_reset_output(OpResetOutput op_reset_output, T *gate_value, T *reset_output_value, T *prev_output_value, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { #ifdef __AVX__ __m256 r_value_update_gate; __m256 r_value_reset_gate; @@ -113,7 +113,7 @@ template void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output, T *gate_value, T *prev_output_value, T *output_value, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { #ifdef __AVX__ __m256 r_value_update_gate; __m256 r_value_frame_state; @@ -140,9 +140,8 @@ void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output, template inline void forward_reset_output(OpResetOutput op_reset_output, - hl_gru_value value, int frame_size, - int batch_size, - activation_mode_t active_gate) { + GRUMetaValue value, int frame_size, + int batch_size, ActivationType active_gate) { for (int b = 0; b < batch_size; b++) { if (OpResetOutput::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_forward_reset_output( @@ -164,9 +163,8 @@ inline void forward_reset_output(OpResetOutput op_reset_output, template inline void forward_final_output(OpFinalOutput op_final_output, - hl_gru_value value, int frame_size, - int batch_size, - activation_mode_t active_node) { + GRUMetaValue value, int frame_size, + int batch_size, ActivationType active_node) { for (int b = 0; b < batch_size; b++) { if (OpFinalOutput::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_forward_final_output(op_final_output, value.gate_value, @@ -191,7 +189,7 @@ void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *output_grad, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { T r_update_gate_value; T r_update_gate_grad; T r_frame_state_value; @@ -232,7 +230,7 @@ void hl_naive_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *reset_output_grad, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { T r_update_gate_value; T r_update_gate_grad; T r_reset_gate_value; @@ -277,7 +275,7 @@ void hl_avx_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *output_grad, int frame_size, - activation_mode_t active_node) { + ActivationType active_node) { #ifdef __AVX__ __m256 r_update_gate_value; __m256 r_update_gate_grad; @@ -320,7 +318,7 @@ void hl_avx_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *reset_output_grad, int frame_size, - activation_mode_t active_gate) { + ActivationType active_gate) { #ifdef __AVX__ __m256 r_update_gate_value; __m256 r_update_gate_grad; @@ -364,9 +362,9 @@ void hl_avx_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value, template inline void backward_state_grad(OpStateGrad op_state_grad, - hl_gru_value value, hl_gru_grad grad, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_node) { + ActivationType active_node) { for (int b = 0; b < batch_size; b++) { if (OpStateGrad::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_backward_state_grad( @@ -393,9 +391,9 @@ inline void backward_state_grad(OpStateGrad op_state_grad, template inline void backward_reset_grad(OpResetGrad op_reset_grad, - hl_gru_value value, hl_gru_grad grad, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_gate) { + ActivationType active_gate) { for (int b = 0; b < batch_size; b++) { if (OpResetGrad::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) { hl_avx_gru_backward_reset_grad( diff --git a/paddle/operators/math/detail/gru_gpu_kernel.h b/paddle/operators/math/detail/gru_gpu_kernel.h index d2edcb7f258b387530799b967fc0fff61acc5b83..1783d46096858c874b27ce75760342082835b180 100644 --- a/paddle/operators/math/detail/gru_gpu_kernel.h +++ b/paddle/operators/math/detail/gru_gpu_kernel.h @@ -19,8 +19,6 @@ limitations under the License. */ #include "paddle/platform/cuda_helper.h" #include "paddle/platform/device_context.h" -#include - namespace paddle { namespace operators { namespace math { @@ -35,7 +33,7 @@ __global__ void KeGruForwardResetOutput(OpResetOutput op_reset_output, T *gate_value, T *reset_output_value, T *prev_output_value, int frame_size, int batch_size, - activation_mode_t active_gate) { + ActivationType active_gate) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; @@ -74,7 +72,7 @@ __global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output, T *gate_value, T *prev_output_value, T *output_value, int frame_size, int batch_size, - activation_mode_t active_node) { + ActivationType active_node) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; int batch_idx = 0; @@ -111,7 +109,7 @@ __global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *output_grad, int frame_size, int batch_size, - activation_mode_t active_node) { + ActivationType active_node) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; int batch_idx = 0; @@ -159,7 +157,7 @@ __global__ void KeGruBackwardResetGrad(OpResetGrad op_reset_grad, T *gate_value, T *gate_grad, T *prev_out_value, T *prev_out_grad, T *reset_output_grad, int frame_size, int batch_size, - activation_mode_t active_gate) { + ActivationType active_gate) { const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; if (frame_idx >= frame_size) return; int batch_idx = 0; diff --git a/paddle/operators/math/detail/gru_kernel.h b/paddle/operators/math/detail/gru_kernel.h index acd84be01db9ddaf06d165d8be353b253f324dd2..4d8245cb5d03b33edbda5d8350be02b4fa87ab95 100644 --- a/paddle/operators/math/detail/gru_kernel.h +++ b/paddle/operators/math/detail/gru_kernel.h @@ -30,7 +30,7 @@ class gru_resetOutput { public: HOSTDEVICE void operator()(T &value_update_gate, T &value_reset_gate, T &prev_out, T &value_reset_output, - activation_mode_t act_gate) { + ActivationType act_gate) { value_update_gate = activation(value_update_gate, act_gate); value_reset_gate = activation(value_reset_gate, act_gate); value_reset_output = prev_out * value_reset_gate; @@ -43,7 +43,7 @@ class gru_resetOutput { HOSTDEVICE void operator()(__m256 &value_update_gate, __m256 &value_reset_gate, __m256 &prev_out, __m256 &value_reset_output, - activation_mode_t act_gate) { + ActivationType act_gate) { value_update_gate = activation(value_update_gate, act_gate); value_reset_gate = activation(value_reset_gate, act_gate); value_reset_output = _mm256_mul_ps(prev_out, value_reset_gate); @@ -57,7 +57,7 @@ class gru_finalOutput { public: HOSTDEVICE void operator()(T &value_update_gate, T &value_frame_state, T &prev_out, T &value_output, - activation_mode_t act_input) { + ActivationType act_input) { value_frame_state = activation(value_frame_state, act_input); value_output = prev_out - (value_update_gate * prev_out) + (value_update_gate * value_frame_state); @@ -69,8 +69,7 @@ class gru_finalOutput { static const bool avx = true; HOSTDEVICE void operator()(__m256 &value_update_gate, __m256 &value_frame_state, __m256 &prev_out, - __m256 &value_output, - activation_mode_t act_input) { + __m256 &value_output, ActivationType act_input) { value_frame_state = activation(value_frame_state, act_input); value_output = _mm256_add_ps( _mm256_sub_ps(prev_out, _mm256_mul_ps(value_update_gate, prev_out)), @@ -89,7 +88,7 @@ class gru_stateGrad { HOSTDEVICE void operator()(T &value_update_gate, T &grad_update_gate, T &value_frame_state, T &grad_frame_state, T &value_prev_out, T &grad_prev_out, - T &grad_output, activation_mode_t act_input) { + T &grad_output, ActivationType act_input) { grad_update_gate = (grad_output * value_frame_state); grad_update_gate -= (grad_output * value_prev_out); grad_prev_out -= (grad_output * value_update_gate); @@ -107,7 +106,7 @@ class gru_stateGrad { __m256 &value_frame_state, __m256 &grad_frame_state, __m256 &value_prev_out, __m256 &grad_prev_out, __m256 &grad_output, - activation_mode_t act_input) { + ActivationType act_input) { grad_update_gate = _mm256_mul_ps(grad_output, value_frame_state); grad_update_gate = _mm256_sub_ps( grad_update_gate, _mm256_mul_ps(grad_output, value_prev_out)); @@ -128,7 +127,7 @@ class gru_resetGrad { HOSTDEVICE void operator()(T &value_update_gate, T &grad_update_gate, T &value_reset_gate, T &grad_reset_gate, T &value_prev_out, T &grad_prev_out, - T &grad_reset_output, activation_mode_t act_gate) { + T &grad_reset_output, ActivationType act_gate) { grad_reset_gate = (grad_reset_output * value_prev_out); grad_prev_out += (grad_reset_output * value_reset_gate); grad_update_gate = @@ -144,7 +143,7 @@ class gru_resetGrad { __m256 &grad_update_gate, __m256 &value_reset_gate, __m256 &grad_reset_gate, __m256 &value_prev_out, __m256 &grad_prev_out, __m256 &grad_reset_output, - activation_mode_t act_gate) { + ActivationType act_gate) { grad_reset_gate = _mm256_mul_ps(grad_reset_output, value_prev_out); grad_prev_out = _mm256_add_ps( grad_prev_out, _mm256_mul_ps(grad_reset_output, value_reset_gate)); diff --git a/paddle/operators/math/detection_util.h b/paddle/operators/math/detection_util.h new file mode 100644 index 0000000000000000000000000000000000000000..e3a3ef2badc37924d866ded8ee7a7338fbc4b2d2 --- /dev/null +++ b/paddle/operators/math/detection_util.h @@ -0,0 +1,300 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#pragma once +#include +#include "paddle/framework/selected_rows.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { +namespace math { +template +struct BBox { + BBox(T x_min, T y_min, T x_max, T y_max) + : x_min(x_min), + y_min(y_min), + x_max(x_max), + y_max(y_max), + is_difficult(false) {} + + BBox() {} + + T get_width() const { return x_max - x_min; } + + T get_height() const { return y_max - y_min; } + + T get_center_x() const { return (x_min + x_max) / 2; } + + T get_center_y() const { return (y_min + y_max) / 2; } + + T get_area() const { return get_width() * get_height(); } + + // coordinate of bounding box + T x_min; + T y_min; + T x_max; + T y_max; + // whether difficult object (e.g. object with heavy occlusion is difficult) + bool is_difficult; +}; +// KNCHW ==> NHWC +// template +template +void GetBBoxFromPriorData(const T* prior_data, const size_t num_bboxes, + std::vector>& bbox_vec); +template +void GetBBoxVarFromPriorData(const T* prior_data, const size_t num, + std::vector>& var_vec); +template +BBox DecodeBBoxWithVar(BBox& prior_bbox, + const std::vector& prior_bbox_var, + const std::vector& loc_pred_data); +template +bool SortScorePairDescend(const std::pair& pair1, + const std::pair& pair2); +template +bool SortScorePairDescend(const std::pair>& pair1, + const std::pair>& pair2); +template +T jaccard_overlap(const BBox& bbox1, const BBox& bbox2); + +template +void ApplyNmsFast(const std::vector>& bboxes, const T* conf_score_data, + size_t class_idx, size_t top_k, T conf_threshold, + T nms_threshold, size_t num_priors, size_t num_classes, + std::vector* indices); +template +int GetDetectionIndices( + const T* conf_data, const size_t num_priors, const size_t num_classes, + const size_t background_label_id, const size_t batch_size, + const T conf_threshold, const size_t nms_top_k, const T nms_threshold, + const size_t top_k, + const std::vector>>& all_decoded_bboxes, + std::vector>>* all_detection_indices); +template +BBox ClipBBox(const BBox& bbox); +template +void GetDetectionOutput( + const T* conf_data, const size_t num_kept, const size_t num_priors, + const size_t num_classes, const size_t batch_size, + const std::vector>>& all_indices, + const std::vector>>& all_decoded_bboxes, T* out_data); +template +void GetBBoxFromPriorData(const T* prior_data, const size_t num_bboxes, + std::vector>& bbox_vec) { + size_t out_offset = bbox_vec.size(); + bbox_vec.resize(bbox_vec.size() + num_bboxes); + for (size_t i = 0; i < num_bboxes; ++i) { + BBox bbox; + bbox.x_min = *(prior_data + i * 8); + bbox.y_min = *(prior_data + i * 8 + 1); + bbox.x_max = *(prior_data + i * 8 + 2); + bbox.y_max = *(prior_data + i * 8 + 3); + bbox_vec[out_offset + i] = bbox; + } +} +template +void GetBBoxVarFromPriorData(const T* prior_data, const size_t num, + std::vector>& var_vec) { + size_t out_offset = var_vec.size(); + var_vec.resize(var_vec.size() + num); + for (size_t i = 0; i < num; ++i) { + std::vector var; + var.push_back(*(prior_data + i * 8 + 4)); + var.push_back(*(prior_data + i * 8 + 5)); + var.push_back(*(prior_data + i * 8 + 6)); + var.push_back(*(prior_data + i * 8 + 7)); + var_vec[out_offset + i] = var; + } +} +template +BBox DecodeBBoxWithVar(BBox& prior_bbox, + const std::vector& prior_bbox_var, + const std::vector& loc_pred_data) { + T prior_bbox_width = prior_bbox.get_width(); + T prior_bbox_height = prior_bbox.get_height(); + T prior_bbox_center_x = prior_bbox.get_center_x(); + T prior_bbox_center_y = prior_bbox.get_center_y(); + + T decoded_bbox_center_x = + prior_bbox_var[0] * loc_pred_data[0] * prior_bbox_width + + prior_bbox_center_x; + T decoded_bbox_center_y = + prior_bbox_var[1] * loc_pred_data[1] * prior_bbox_height + + prior_bbox_center_y; + T decoded_bbox_width = + std::exp(prior_bbox_var[2] * loc_pred_data[2]) * prior_bbox_width; + T decoded_bbox_height = + std::exp(prior_bbox_var[3] * loc_pred_data[3]) * prior_bbox_height; + + BBox decoded_bbox; + decoded_bbox.x_min = decoded_bbox_center_x - decoded_bbox_width / 2; + decoded_bbox.y_min = decoded_bbox_center_y - decoded_bbox_height / 2; + decoded_bbox.x_max = decoded_bbox_center_x + decoded_bbox_width / 2; + decoded_bbox.y_max = decoded_bbox_center_y + decoded_bbox_height / 2; + + return decoded_bbox; +} +template +bool SortScorePairDescend(const std::pair& pair1, + const std::pair& pair2) { + return pair1.first > pair2.first; +} +template +T jaccard_overlap(const BBox& bbox1, const BBox& bbox2) { + if (bbox2.x_min > bbox1.x_max || bbox2.x_max < bbox1.x_min || + bbox2.y_min > bbox1.y_max || bbox2.y_max < bbox1.y_min) { + return 0.0; + } else { + T inter_x_min = std::max(bbox1.x_min, bbox2.x_min); + T inter_y_min = std::max(bbox1.y_min, bbox2.y_min); + T interX_max = std::min(bbox1.x_max, bbox2.x_max); + T interY_max = std::min(bbox1.y_max, bbox2.y_max); + + T inter_width = interX_max - inter_x_min; + T inter_height = interY_max - inter_y_min; + T inter_area = inter_width * inter_height; + + T bbox_area1 = bbox1.get_area(); + T bbox_area2 = bbox2.get_area(); + + return inter_area / (bbox_area1 + bbox_area2 - inter_area); + } +} + +template +void ApplyNmsFast(const std::vector>& bboxes, const T* conf_score_data, + size_t class_idx, size_t top_k, T conf_threshold, + T nms_threshold, size_t num_priors, size_t num_classes, + std::vector* indices) { + std::vector> scores; + for (size_t i = 0; i < num_priors; ++i) { + size_t conf_offset = i * num_classes + class_idx; + if (conf_score_data[conf_offset] > conf_threshold) + scores.push_back(std::make_pair(conf_score_data[conf_offset], i)); + } + std::stable_sort(scores.begin(), scores.end(), + SortScorePairDescend); + if (top_k > 0 && top_k < scores.size()) scores.resize(top_k); + while (scores.size() > 0) { + const size_t idx = scores.front().second; + bool keep = true; + for (size_t i = 0; i < indices->size(); ++i) { + if (keep) { + const size_t saved_idx = (*indices)[i]; + T overlap = jaccard_overlap(bboxes[idx], bboxes[saved_idx]); + keep = overlap <= nms_threshold; + } else { + break; + } + } + if (keep) indices->push_back(idx); + scores.erase(scores.begin()); + } +} +template +int GetDetectionIndices( + const T* conf_data, const size_t num_priors, const size_t num_classes, + const size_t background_label_id, const size_t batch_size, + const T conf_threshold, const size_t nms_top_k, const T nms_threshold, + const size_t top_k, + const std::vector>>& all_decoded_bboxes, + std::vector>>* all_detection_indices) { + int total_keep_num = 0; + for (size_t n = 0; n < batch_size; ++n) { + const std::vector>& decoded_bboxes = all_decoded_bboxes[n]; + size_t num_detected = 0; + std::map> indices; + size_t conf_offset = n * num_priors * num_classes; + for (size_t c = 0; c < num_classes; ++c) { + if (c == background_label_id) continue; + ApplyNmsFast(decoded_bboxes, conf_data + conf_offset, c, nms_top_k, + conf_threshold, nms_threshold, num_priors, num_classes, + &(indices[c])); + num_detected += indices[c].size(); + } + if (top_k > 0 && num_detected > top_k) { + // std::vector> score_index_pairs; + std::vector>> score_index_pairs; + for (size_t c = 0; c < num_classes; ++c) { + const std::vector& label_indices = indices[c]; + for (size_t i = 0; i < label_indices.size(); ++i) { + size_t idx = label_indices[i]; + score_index_pairs.push_back( + std::make_pair((conf_data + conf_offset)[idx * num_classes + c], + std::make_pair(c, idx))); + } + } + std::sort(score_index_pairs.begin(), score_index_pairs.end(), + SortScorePairDescend>); + score_index_pairs.resize(top_k); + std::map> new_indices; + for (size_t i = 0; i < score_index_pairs.size(); ++i) { + size_t label = score_index_pairs[i].second.first; + size_t idx = score_index_pairs[i].second.second; + new_indices[label].push_back(idx); + } + all_detection_indices->push_back(new_indices); + total_keep_num += top_k; + } else { + all_detection_indices->push_back(indices); + total_keep_num += num_detected; + } + } + return total_keep_num; +} +template +BBox ClipBBox(const BBox& bbox) { + T one = static_cast(1.0); + T zero = static_cast(0.0); + BBox clipped_bbox; + clipped_bbox.x_min = std::max(std::min(bbox.x_min, one), zero); + clipped_bbox.y_min = std::max(std::min(bbox.y_min, one), zero); + clipped_bbox.x_max = std::max(std::min(bbox.x_max, one), zero); + clipped_bbox.y_max = std::max(std::min(bbox.y_max, one), zero); + return clipped_bbox; +} +template +void GetDetectionOutput( + const T* conf_data, const size_t num_kept, const size_t num_priors, + const size_t num_classes, const size_t batch_size, + const std::vector>>& all_indices, + const std::vector>>& all_decoded_bboxes, T* out_data) { + size_t count = 0; + for (size_t n = 0; n < batch_size; ++n) { + for (std::map>::const_iterator it = + all_indices[n].begin(); + it != all_indices[n].end(); ++it) { + size_t label = it->first; + const std::vector& indices = it->second; + const std::vector>& decoded_bboxes = all_decoded_bboxes[n]; + for (size_t i = 0; i < indices.size(); ++i) { + size_t idx = indices[i]; + size_t conf_offset = n * num_priors * num_classes + idx * num_classes; + out_data[count * 7] = n; + out_data[count * 7 + 1] = label; + out_data[count * 7 + 2] = (conf_data + conf_offset)[label]; + BBox clipped_bbox = ClipBBox(decoded_bboxes[idx]); + out_data[count * 7 + 3] = clipped_bbox.x_min; + out_data[count * 7 + 4] = clipped_bbox.y_min; + out_data[count * 7 + 5] = clipped_bbox.x_max; + out_data[count * 7 + 6] = clipped_bbox.y_max; + ++count; + } + } + } +} +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/gru_compute.cc b/paddle/operators/math/gru_compute.cc index d570c68cd458914c8951c4ce50a02e3c5b1acab0..101ab859624869bf34d171cd42d46d0c5bdac29c 100644 --- a/paddle/operators/math/gru_compute.cc +++ b/paddle/operators/math/gru_compute.cc @@ -21,9 +21,9 @@ namespace math { template struct GRUUnitFunctor { static void compute(const platform::CPUDeviceContext &context, - hl_gru_value value, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { + GRUMetaValue value, int frame_size, int batch_size, + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { #ifndef __NVCC__ if (value.prev_out_value) { math::gemm( @@ -51,10 +51,10 @@ struct GRUUnitFunctor { template struct GRUUnitGradFunctor { static void compute(const platform::CPUDeviceContext &context, - hl_gru_value value, hl_gru_grad grad, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { #ifndef __NVCC__ detail::backward_state_grad(detail::backward::gru_stateGrad(), value, grad, frame_size, batch_size, active_node); diff --git a/paddle/operators/math/gru_compute.cu b/paddle/operators/math/gru_compute.cu index dd518cd1e4bea52f0d463150114feed3ceea0ccb..d5a0e630ea0eadea990988c3170395c842a91900 100644 --- a/paddle/operators/math/gru_compute.cu +++ b/paddle/operators/math/gru_compute.cu @@ -21,9 +21,9 @@ namespace math { template struct GRUUnitFunctor { static void compute(const platform::CUDADeviceContext &context, - hl_gru_value value, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { + GRUMetaValue value, int frame_size, int batch_size, + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { auto stream = context.stream(); dim3 threads; dim3 grid; @@ -88,10 +88,10 @@ struct GRUUnitFunctor { template struct GRUUnitGradFunctor { static void compute(const platform::CUDADeviceContext &context, - hl_gru_value value, hl_gru_grad grad, + GRUMetaValue value, GRUMetaGrad grad, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate) { + const detail::ActivationType active_node, + const detail::ActivationType active_gate) { auto stream = context.stream(); dim3 threads; dim3 grid; diff --git a/paddle/operators/math/gru_compute.h b/paddle/operators/math/gru_compute.h index ca1343cb2c5c1eb8da92c2f06b25902c1c2fe8b3..bf69147b506661692a6d71823043cd3506ea8b5d 100644 --- a/paddle/operators/math/gru_compute.h +++ b/paddle/operators/math/gru_compute.h @@ -11,7 +11,7 @@ limitations under the License. */ #pragma once -#include "paddle/operators/math/lstm_compute.h" +#include "paddle/operators/math/detail/activation_functions.h" #include "paddle/platform/device_context.h" #include "paddle/platform/enforce.h" @@ -19,9 +19,8 @@ namespace paddle { namespace operators { namespace math { -// TODO(guosheng): refine code style in gru_compute template -struct hl_gru_value { +struct GRUMetaValue { T *gate_weight; T *state_weight; T *gate_value; @@ -31,7 +30,7 @@ struct hl_gru_value { }; template -struct hl_gru_grad { +struct GRUMetaGrad { T *gate_weight_grad; T *state_weight_grad; T *gate_grad; @@ -42,18 +41,18 @@ struct hl_gru_grad { template struct GRUUnitFunctor { - static void compute(const DeviceContext &context, hl_gru_value value, + static void compute(const DeviceContext &context, GRUMetaValue value, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate); + const detail::ActivationType active_node, + const detail::ActivationType active_gate); }; template struct GRUUnitGradFunctor { - static void compute(const DeviceContext &context, hl_gru_value value, - hl_gru_grad grad, int frame_size, int batch_size, - activation_mode_t active_node, - activation_mode_t active_gate); + static void compute(const DeviceContext &context, GRUMetaValue value, + GRUMetaGrad grad, int frame_size, int batch_size, + const detail::ActivationType active_node, + const detail::ActivationType active_gate); }; } // namespace math diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index 26c038e435827b401d723ee6eef2255a89670f46..1ba24325ffe3922081f59abfc1c67c95b514bcfa 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -14,7 +14,6 @@ limitations under the License. */ #include "paddle/operators/math/im2col.h" #include -#include template void testIm2col() { @@ -63,7 +62,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } output_cfo.mutable_data( {1, filter_size, filter_size, output_height, output_width}, *place); @@ -88,7 +87,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output_cfo.data(); } else { - CopyFrom(output_cfo, paddle::platform::CPUPlace(), *context, &output_tmp); + Copy(output_cfo, paddle::platform::CPUPlace(), *context, &output_tmp); out_cfo_ptr = output_tmp.data(); } for (int i = 0; i < 6; ++i) { @@ -99,9 +98,10 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { out_ocf_ptr = output_ocf.data(); } else { - CopyFrom(output_ocf, paddle::platform::CPUPlace(), *context, &output_tmp); + Copy(output_ocf, paddle::platform::CPUPlace(), *context, &output_tmp); out_ocf_ptr = output_tmp.data(); } + for (int i = 0; i < 6; ++i) { EXPECT_EQ(out_ocf_ptr[i], out_ocf_data[i]); } @@ -119,7 +119,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } col2im(*context, output_cfo, dilation, stride, padding, &input); @@ -128,7 +128,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - CopyFrom(input, paddle::platform::CPUPlace(), *context, &input_tmp); + Copy(input, paddle::platform::CPUPlace(), *context, &input_tmp); in_ptr = input_tmp.data(); } for (int i = 0; i < 6; ++i) { @@ -140,7 +140,7 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } col2im_ocf(*context, output_ocf, dilation, stride, padding, &input); @@ -148,12 +148,15 @@ void testIm2col() { if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - CopyFrom(input, paddle::platform::CPUPlace(), *context, &input_tmp); + Copy(input, paddle::platform::CPUPlace(), *context, &input_tmp); in_ptr = input_tmp.data(); } for (int i = 0; i < 6; ++i) { EXPECT_EQ(in_ptr[i], col2im_data[i]); } + + delete place; + delete context; } TEST(math, im2col) { diff --git a/paddle/operators/math/lstm_compute.h b/paddle/operators/math/lstm_compute.h index 954762f92286fe13bd2c08ec03c3ac96bb663cca..e1ad6b64d201ef99d83eaa2a821356008dcc9c8e 100644 --- a/paddle/operators/math/lstm_compute.h +++ b/paddle/operators/math/lstm_compute.h @@ -22,14 +22,6 @@ namespace paddle { namespace operators { namespace math { -typedef enum { - HL_ACTIVATION_SIGMOID = 0, - HL_ACTIVATION_RELU = 1, - HL_ACTIVATION_TANH = 2, - HL_ACTIVATION_LINEAR = 3, - HL_ACTIVATION_END -} activation_mode_t; - template struct LstmMetaValue { T *gate_value; @@ -54,20 +46,6 @@ struct LstmMetaGrad { T *check_og_grad; }; -inline activation_mode_t ActiveType(const std::string &type) { - if (type == "sigmoid") { - return HL_ACTIVATION_SIGMOID; - } else if (type == "relu") { - return HL_ACTIVATION_RELU; - } else if (type == "tanh") { - return HL_ACTIVATION_TANH; - } else if (type == "linear" || type == "identity" || type == "") { - return HL_ACTIVATION_LINEAR; - } else { - PADDLE_THROW("Do not support activation type."); - } -} - template class LstmUnitFunctor { public: diff --git a/paddle/operators/math/math_function.cc b/paddle/operators/math/math_function.cc index d4f12f0a106e077ac31aa37f46857b74e1e99b59..dcf4b85e1aadf88e4b1ca70ac7e8b5416fc58cd8 100644 --- a/paddle/operators/math/math_function.cc +++ b/paddle/operators/math/math_function.cc @@ -245,9 +245,12 @@ template struct SetConstant; template struct SetConstant; template struct SetConstant; -#define DEFINE_CPU_TRANS(RANK) \ - template struct Transpose; \ - template struct Transpose; +#define DEFINE_CPU_TRANS(RANK) \ + template struct Transpose; \ + template struct Transpose; \ + template struct Transpose; \ + template struct Transpose; \ + template struct Transpose; DEFINE_CPU_TRANS(1); DEFINE_CPU_TRANS(2); diff --git a/paddle/operators/math/math_function_test.cu b/paddle/operators/math/math_function_test.cu index 4325a79664f15cfaea48870cd503ce70cc31044f..d1139ac988c0077fd3e107c6ffee0fd84c5b7041 100644 --- a/paddle/operators/math/math_function_test.cu +++ b/paddle/operators/math/math_function_test.cu @@ -16,15 +16,15 @@ TEST(math_function, notrans_mul_trans) { auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input2_gpu); out_gpu.mutable_data({2, 2}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); - paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out); + paddle::framework::Copy(out_gpu, *cpu_place, context, &out); float* out_ptr = out.data(); context.Wait(); @@ -50,15 +50,15 @@ TEST(math_function, trans_mul_notrans) { auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input2_gpu); out_gpu.mutable_data({3, 3}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); - paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out); + paddle::framework::Copy(out_gpu, *cpu_place, context, &out); float* out_ptr = out.data(); context.Wait(); @@ -99,9 +99,9 @@ TEST(math_function, gemm_notrans_cublas) { auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input2, *gpu_place, context, &input2_gpu); - paddle::framework::CopyFrom(input3, *gpu_place, context, &input3_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input2, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input3, *gpu_place, context, &input3_gpu); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); @@ -109,7 +109,7 @@ TEST(math_function, gemm_notrans_cublas) { paddle::operators::math::gemm( context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); - paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3); + paddle::framework::Copy(input3_gpu, *cpu_place, context, &input3); // numpy code: // a = np.arange(6).reshape(2, 3) @@ -154,9 +154,9 @@ TEST(math_function, gemm_trans_cublas) { auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(input1, *gpu_place, context, &input1_gpu); - paddle::framework::CopyFrom(input2, *gpu_place, context, &input2_gpu); - paddle::framework::CopyFrom(input3, *gpu_place, context, &input3_gpu); + paddle::framework::Copy(input1, *gpu_place, context, &input1_gpu); + paddle::framework::Copy(input2, *gpu_place, context, &input2_gpu); + paddle::framework::Copy(input3, *gpu_place, context, &input3_gpu); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); @@ -164,7 +164,7 @@ TEST(math_function, gemm_trans_cublas) { paddle::operators::math::gemm( context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); - paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3); + paddle::framework::Copy(input3_gpu, *cpu_place, context, &input3); context.Wait(); EXPECT_EQ(input3_ptr[0], 0); @@ -205,15 +205,15 @@ void GemvTest(int m, int n, bool trans) { } paddle::platform::CUDADeviceContext context(*gpu_place); - paddle::framework::CopyFrom(mat_a, *gpu_place, context, &g_mat_a); - paddle::framework::CopyFrom(vec_b, *gpu_place, context, &g_vec_b); + paddle::framework::Copy(mat_a, *gpu_place, context, &g_mat_a); + paddle::framework::Copy(vec_b, *gpu_place, context, &g_vec_b); paddle::operators::math::gemv( context, trans, static_cast(m), static_cast(n), 1., g_data_a, g_data_b, 0., g_data_c); - paddle::framework::CopyFrom(g_vec_c, paddle::platform::CPUPlace(), context, - &vec_c); + paddle::framework::Copy(g_vec_c, paddle::platform::CPUPlace(), context, + &vec_c); if (!trans) { for (int i = 0; i < m; ++i) { diff --git a/paddle/operators/math/selected_rows_functor.cc b/paddle/operators/math/selected_rows_functor.cc index ab758d1e7fd8ab361948b28e8cb735b9a742a339..8a1ebb58c26578f076bf243adfbd51d10c682b99 100644 --- a/paddle/operators/math/selected_rows_functor.cc +++ b/paddle/operators/math/selected_rows_functor.cc @@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/operators/math/selected_rows_functor.h" +#include + #include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/selected_rows_functor.h" namespace paddle { namespace operators { @@ -179,6 +181,118 @@ template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; +// This is a separated namespace for manipulate SelectedRows typed +// data. Like merge duplicated rows, adding two SelectedRows etc. +// +// Another group of functors is called "scatter updates", which means +// use SelectedRows to update a dense tensor with different Ops, like +// add or mul. +namespace scatter { + +size_t FindPos(const std::vector& rows, int64_t value) { + return std::find(rows.begin(), rows.end(), value) - rows.begin(); +} + +template +struct MergeAdd { + framework::SelectedRows operator()(const platform::CPUDeviceContext& context, + const framework::SelectedRows& input) { + framework::SelectedRows out; + auto input_rows = input.rows(); + std::set row_set(input_rows.begin(), input_rows.end()); + std::vector merge_rows(row_set.begin(), row_set.end()); + + auto input_width = input.value().dims()[1]; + out.set_rows(merge_rows); + out.set_height(input.height()); + out.mutable_value()->mutable_data( + framework::make_ddim( + {static_cast(merge_rows.size()), input_width}), + context.GetPlace()); + + math::SetConstant constant_functor; + constant_functor(context, out.mutable_value(), 0.0); + + auto* out_data = out.mutable_value()->data(); + auto* input_data = input.value().data(); + + for (size_t i = 0; i < input_rows.size(); i++) { + size_t out_i = FindPos(merge_rows, input_rows[i]); + for (int64_t j = 0; j < input_width; j++) { + out_data[out_i * input_width + j] += input_data[i * input_width + j]; + } + } + return out; + } +}; + +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; + +template +struct UpdateToTensor { + void operator()(const platform::CPUDeviceContext& context, + const ScatterOps& op, const framework::SelectedRows& input1, + framework::Tensor* input2) { + auto in1_height = input1.height(); + auto in2_dims = input2->dims(); + PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]); + + auto& in1_value = input1.value(); + auto& in1_rows = input1.rows(); + + int64_t in1_row_numel = in1_value.numel() / in1_rows.size(); + PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height); + + auto* in1_data = in1_value.data(); + auto* input2_data = input2->data(); + + // FIXME(typhoonzero): use macro fix the below messy code. + switch (op) { + case ScatterOps::ASSIGN: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] = + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::ADD: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] += + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::SUB: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] -= + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::SUBBY: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] = + in1_data[i * in1_row_numel + j] - + input2_data[in1_rows[i] * in1_row_numel + j]; + break; + case ScatterOps::MUL: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] *= + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::DIV: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] /= + in1_data[i * in1_row_numel + j]; + break; + case ScatterOps::DIVBY: + INLINE_FOR2(in1_rows.size(), in1_row_numel) + input2_data[in1_rows[i] * in1_row_numel + j] = + in1_data[i * in1_row_numel + j] / + input2_data[in1_rows[i] * in1_row_numel + j]; + break; + } + } +}; + +} // namespace scatter } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor.cu b/paddle/operators/math/selected_rows_functor.cu index 9fddd97a36f7fdb6628d6eeb192cb216fdae3e5b..0ee456f9bc61436bd0f2f8ef20dd1654e7e56d56 100644 --- a/paddle/operators/math/selected_rows_functor.cu +++ b/paddle/operators/math/selected_rows_functor.cu @@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include + #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/selected_rows_functor.h" #include "paddle/platform/cuda_helper.h" @@ -222,6 +224,157 @@ template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; template struct SelectedRowsAddToTensor; + +namespace scatter { + +template +__global__ void MergeAddKernel(const T* input, const int64_t* input_rows, + T* out, const int64_t* out_rows, + size_t out_rows_size, int64_t row_numel) { + const int ty = blockIdx.y; + int tid = threadIdx.x; + __shared__ size_t out_idx; + + if (tid == 0) { + for (size_t i = 0; i < out_rows_size; i++) { + if (input_rows[ty] == out_rows[i]) { + out_idx = i; + } + } + } + + __syncthreads(); + + input += ty * row_numel; + out += out_idx * row_numel; + for (int index = tid; index < row_numel; index += block_size) { + paddle::platform::CudaAtomicAdd(out + index, input[index]); + } +} + +template +struct MergeAdd { + framework::SelectedRows operator()(const platform::CUDADeviceContext& context, + const framework::SelectedRows& input) { + framework::SelectedRows out; + auto input_rows = input.rows(); + std::set row_set(input_rows.begin(), input_rows.end()); + std::vector merge_rows(row_set.begin(), row_set.end()); + + auto input_width = input.value().dims()[1]; + + out.set_rows(merge_rows); + out.set_height(input.height()); + out.mutable_value()->mutable_data( + framework::make_ddim( + {static_cast(merge_rows.size()), input_width}), + context.GetPlace()); + + math::SetConstant constant_functor; + constant_functor(context, out.mutable_value(), 0.0); + + auto* out_data = out.mutable_value()->data(); + auto* input_data = input.value().data(); + + const int block_size = 256; + dim3 threads(block_size, 1); + dim3 grid1(1, input_rows.size()); + + MergeAddKernel< + T, 256><<(context) + .stream()>>>(input_data, input.rows().data(), out_data, + out.rows().data(), out.rows().size(), + input_width); + return out; + } +}; + +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; +template struct MergeAdd; + +template +__global__ void UpdateToTensorKernel(const T* selected_rows, + const int64_t* rows, const ScatterOps& op, + T* tensor_out, int64_t row_numel) { + const int ty = blockIdx.y; + int tid = threadIdx.x; + + selected_rows += ty * row_numel; + tensor_out += rows[ty] * row_numel; + // FIXME(typhoonzero): use macro fix the below messy code. + switch (op) { + case ScatterOps::ASSIGN: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] = selected_rows[index]; + } + break; + case ScatterOps::ADD: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] += selected_rows[index]; + } + break; + case ScatterOps::SUB: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] -= selected_rows[index]; + } + break; + case ScatterOps::SUBBY: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] = selected_rows[index] - tensor_out[index]; + } + break; + case ScatterOps::MUL: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] *= selected_rows[index]; + } + break; + case ScatterOps::DIV: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] /= selected_rows[index]; + } + break; + case ScatterOps::DIVBY: + for (int index = tid; index < row_numel; index += block_size) { + tensor_out[index] = selected_rows[index] / tensor_out[index]; + } + break; + } +} + +template +struct UpdateToTensor { + void operator()(const platform::CUDADeviceContext& context, + const ScatterOps& op, const framework::SelectedRows& input1, + framework::Tensor* input2) { + // NOTE: Use SelectedRowsAddToTensor for better performance + // no additional MergeAdd called. + MergeAdd merge_func; + auto merged_in1 = merge_func(context, input1); + + auto in1_height = merged_in1.height(); + auto in2_dims = input2->dims(); + PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]); + + auto& in1_value = merged_in1.value(); + auto& in1_rows = merged_in1.rows(); + + int64_t in1_row_numel = in1_value.numel() / in1_rows.size(); + PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height); + + auto* in1_data = in1_value.template data(); + auto* in2_data = input2->data(); + + dim3 threads(platform::PADDLE_CUDA_NUM_THREADS, 1); + dim3 grid(1, in1_rows.size()); + UpdateToTensorKernel<<< + grid, threads, 0, context.stream()>>>(in1_data, in1_rows.data(), op, + in2_data, in1_row_numel); + } +}; +} // namespace scatter } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor.h b/paddle/operators/math/selected_rows_functor.h index 1149075abf16547a120ac8928c45b4972409fc72..09d4631905f90f78772368ad71b11826877bdc34 100644 --- a/paddle/operators/math/selected_rows_functor.h +++ b/paddle/operators/math/selected_rows_functor.h @@ -12,9 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include "paddle/framework/eigen.h" #include "paddle/framework/selected_rows.h" #include "paddle/platform/device_context.h" +#define INLINE_FOR2(sizei, sizej) \ + for (int64_t i = 0; i < sizei; i++) \ + for (int64_t j = 0; j < sizej; j++) + namespace paddle { namespace operators { namespace math { @@ -52,6 +57,78 @@ struct SelectedRowsAddToTensor { framework::Tensor* input2); }; +namespace scatter { +// functors for manuplating SelectedRows data +template +struct MergeAdd { + // unary functor, merge by adding duplicated rows in + // the input SelectedRows object. + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input); +}; + +template +struct Add { + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input1, + const framework::SelectedRows& input2) { + framework::SelectedRows out; + out.set_rows(input1.rows()); + out.set_height(input1.height()); + out.mutable_value()->mutable_data(input1.value().dims(), + context.GetPlace()); + auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); + auto e_in1 = framework::EigenVector::Flatten(input1.value()); + auto e_in2 = framework::EigenVector::Flatten(input2.value()); + e_out.device(*context.eigen_device()) = e_in1 + e_in2; + return out; + } +}; + +template +struct Mul { + // multiply two SelectedRows + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input1, + const framework::SelectedRows& input2) { + framework::SelectedRows out; + out.set_rows(input1.rows()); + out.set_height(input1.height()); + out.mutable_value()->mutable_data(input1.value().dims(), + context.GetPlace()); + auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); + auto e_in1 = framework::EigenVector::Flatten(input1.value()); + auto e_in2 = framework::EigenVector::Flatten(input2.value()); + e_out.device(*context.eigen_device()) = e_in1 * e_in2; + return out; + } + // multiply scalar to SelectedRows + framework::SelectedRows operator()(const DeviceContext& context, + const framework::SelectedRows& input1, + const T input2) { + framework::SelectedRows out; + out.set_rows(input1.rows()); + out.set_height(input1.height()); + out.mutable_value()->mutable_data(input1.value().dims(), + context.GetPlace()); + auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); + auto e_in1 = framework::EigenVector::Flatten(input1.value()); + e_out.device(*context.eigen_device()) = input2 * e_in1; + return out; + } +}; + +enum class ScatterOps { ASSIGN, ADD, SUB, SUBBY, MUL, DIV, DIVBY }; + +// out = seleted_rows_in / tensor +template +struct UpdateToTensor { + void operator()(const DeviceContext& context, const ScatterOps& op, + const framework::SelectedRows& input1, + framework::Tensor* input2); +}; + +} // namespace scatter } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor_test.cu b/paddle/operators/math/selected_rows_functor_test.cu index 0a2e36f68acee04bd6b272d37679c18231cb8760..38808e13014c581fb3d10c3e712f1dd1fa6523e2 100644 --- a/paddle/operators/math/selected_rows_functor_test.cu +++ b/paddle/operators/math/selected_rows_functor_test.cu @@ -67,7 +67,7 @@ TEST(selected_rows_functor, gpu_add) { EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; - CopyFrom(*out_value, cpu_place, ctx, &out_cpu); + Copy(*out_value, cpu_place, ctx, &out_cpu); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); @@ -94,7 +94,7 @@ TEST(selected_rows_functor, gpu_add) { add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); Tensor tensor2_cpu; - CopyFrom(*tensor2, cpu_place, ctx, &tensor2_cpu); + Copy(*tensor2, cpu_place, ctx, &tensor2_cpu); ctx.Wait(); auto* tensor2_cpu_data = tensor2_cpu.data(); @@ -167,7 +167,7 @@ TEST(selected_rows_functor, gpu_add_to) { EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; - CopyFrom(*out_value, cpu_place, ctx, &out_cpu); + Copy(*out_value, cpu_place, ctx, &out_cpu); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); @@ -191,7 +191,7 @@ TEST(selected_rows_functor, gpu_add_to) { add_to_tensor_functor(ctx, *output, tensor1.get()); Tensor tensor1_cpu; - CopyFrom(*tensor1, cpu_place, ctx, &tensor1_cpu); + Copy(*tensor1, cpu_place, ctx, &tensor1_cpu); ctx.Wait(); auto* tensor1_cpu_data = tensor1_cpu.data(); diff --git a/paddle/operators/math/sequence_padding.cc b/paddle/operators/math/sequence_padding.cc new file mode 100644 index 0000000000000000000000000000000000000000..fd66455eaef60209b9ca334480951a9f7687729b --- /dev/null +++ b/paddle/operators/math/sequence_padding.cc @@ -0,0 +1,144 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_padding.h" + +namespace paddle { +namespace operators { +namespace math { + +template +class PaddingLoDTensorFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + const framework::LoDTensor& seq, framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The LoD of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequence_length, num_sequences, sequence_width]."); + + const size_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be the " + "maximum length of all sequences in LoDTensor seq."); + + const size_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be the " + "number of sequences in LoDTensor seq."); + + const size_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + const T* seq_data = seq.data(); + T* padding_data = padding.data(); + for (size_t i = 0; i < max_sequence_length; ++i) { + for (size_t j = 0; j < num_sequences; ++j) { + size_t start_pos = abs_offset_lod[level][j]; + size_t sequence_length = abs_offset_lod[level][j + 1] - start_pos; + if (i < sequence_length) { + // i > 0 => sequence_length > 0 + T scale = + norm_by_times ? (1.0f / static_cast(sequence_length)) : 1.0f; + for (size_t k = 0; k < sequence_width; ++k) { + padding_data[(i * num_sequences + j) * sequence_width + k] = + seq_data[(start_pos + i) * sequence_width + k] * scale; + } + } else { + memset(padding_data + (i * num_sequences + j) * sequence_width, 0, + sequence_width * sizeof(T)); + } + } + } + } +}; + +template +class UnpaddingLoDTensorFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + framework::LoDTensor& seq, const framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The LoD of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequnece_length, num_sequences, sequence_width]."); + + const size_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be " + "the maximum length of all sequences in LoDTensor seq."); + + const size_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be " + "the number of sequences in LoDTensor seq."); + + const size_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + const T* padding_data = padding.data(); + T* seq_data = seq.data(); + for (size_t i = 0; i < num_sequences; ++i) { + size_t start_pos = abs_offset_lod[level][i]; + size_t sequence_length = abs_offset_lod[level][i + 1] - start_pos; + for (size_t j = 0; j < sequence_length; ++j) { + // sequence_width > j > 0 + T scale = + norm_by_times ? (1.0f / static_cast(sequence_length)) : 1.0f; + for (size_t k = 0; k < sequence_width; ++k) { + seq_data[(start_pos + j) * sequence_width + k] = + padding_data[(j * num_sequences + i) * sequence_width + k] * + scale; + } + } + } + } +}; + +template class PaddingLoDTensorFunctor; +template class UnpaddingLoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_padding.cu b/paddle/operators/math/sequence_padding.cu new file mode 100644 index 0000000000000000000000000000000000000000..e4be178f81581dea2e84cf488b01d5f7f4cc0030 --- /dev/null +++ b/paddle/operators/math/sequence_padding.cu @@ -0,0 +1,209 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_padding.h" + +namespace paddle { +namespace operators { +namespace math { + +template +__global__ void SequencePaddingKernel(T* padding, T* sequence, + const size_t* sequence_start_positions, + const size_t sequence_width, + const size_t max_sequence_length, + const size_t num_sequences) { + size_t padding_idx = blockIdx.y; + size_t start_pos = sequence_start_positions[padding_idx]; + size_t sequence_length = + sequence_start_positions[padding_idx + 1] - start_pos; + + size_t sequence_idx = blockIdx.x * blockDim.y + threadIdx.y; + size_t padding_base_idx = + (sequence_idx * num_sequences + padding_idx) * sequence_width; + size_t sequence_base_idx = (start_pos + sequence_idx) * sequence_width; + + if (sequence_idx < sequence_length) { + T scale = NormByTimes ? (1.0f / static_cast(sequence_length)) : 1.0f; + if (Padding) { + /* sequence -> padding */ + for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) { + padding[padding_base_idx + i] = scale * sequence[sequence_base_idx + i]; + } + } else { + /* padding -> sequence */ + for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) { + sequence[sequence_base_idx + i] = scale * padding[padding_base_idx + i]; + } + } + } else if (sequence_idx < max_sequence_length) { + if (Padding) { + /* sequence -> padding */ + for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) { + padding[padding_base_idx + i] = 0; + } + } + } +} + +template +class PaddingLoDTensorFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const framework::LoDTensor& seq, framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The lod of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequence_length, num_sequences, sequence_width]."); + + size_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be the " + "maximum length of all sequences in LoDTensor seq."); + + const size_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be the " + "number of sequences in LoDTensor seq."); + + const size_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + if (!norm_by_times && num_sequences == 1UL) { + Copy(seq, context.GetPlace(), context, &padding); + padding.Resize(padding_dims); + return; + } + + const size_t kBlockSize = 512; + + /* At least use 32 threads to copy sequence_width elements, + * and at least 8 elements for each thread. + */ + size_t block_dim_x = + std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize); + size_t block_dim_y = kBlockSize / block_dim_x; + dim3 threads(block_dim_x, block_dim_y); + + size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y; + size_t grid_dim_y = num_sequences; + dim3 grid(grid_dim_x, grid_dim_y); + + const T* seq_data = seq.data(); + T* padding_data = padding.data(); + if (norm_by_times) { + SequencePaddingKernel<<>>( + padding_data, const_cast(seq_data), abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } else { + SequencePaddingKernel<<>>( + padding_data, const_cast(seq_data), abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } + } +}; + +template +class UnpaddingLoDTensorFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + framework::LoDTensor& seq, const framework::Tensor& padding, + bool norm_by_times) { + auto lod = seq.lod(); + PADDLE_ENFORCE_GT(lod.size(), 0UL, + "The lod of LoDTensor seq should not be null."); + + const size_t level = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + + auto seq_dims = seq.dims(); + PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(), + "The first dimension of LoDTensor seq should be " + "equal to the sum of all sequences's length."); + + auto padding_dims = padding.dims(); + PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL, + "The input padding should be a 3-D Tensor of shape " + "[max_sequnece_length, num_sequences, sequence_width]."); + + size_t max_sequence_length = MaximumSequenceLength(lod, level); + PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length, + "The first dimension of Tensor padding should be " + "the maximum length of all sequences in LoDTensor seq."); + + const size_t num_sequences = abs_offset_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences, + "The second dimension of Tensor padding should be " + "the number of sequences in LoDTensor seq."); + + const size_t sequence_width = seq.numel() / seq_dims[0]; + PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width, + "The third dimension of Tensor padding should be the " + "width of sequence in LoDTensor seq."); + + if (!norm_by_times && num_sequences == 1UL) { + Copy(padding, context.GetPlace(), context, &seq); + seq.Resize(seq_dims); + return; + } + + const size_t kBlockSize = 512; + + /* At least use 32 threads to copy sequence_width elements, + * and at least 8 elements for each thread. + */ + size_t block_dim_x = + std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize); + size_t block_dim_y = kBlockSize / block_dim_x; + dim3 threads(block_dim_x, block_dim_y); + + size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y; + size_t grid_dim_y = num_sequences; + dim3 grid(grid_dim_x, grid_dim_y); + + const T* padding_data = padding.data(); + T* seq_data = seq.data(); + if (norm_by_times) { + SequencePaddingKernel<<>>( + const_cast(padding_data), seq_data, abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } else { + SequencePaddingKernel<<>>( + const_cast(padding_data), seq_data, abs_offset_lod[level].data(), + sequence_width, max_sequence_length, num_sequences); + } + } +}; + +template class PaddingLoDTensorFunctor; +template class UnpaddingLoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_padding.h b/paddle/operators/math/sequence_padding.h new file mode 100644 index 0000000000000000000000000000000000000000..8f586c5eb469ea260dbdf9cc4e7f9b4b4a46a8cc --- /dev/null +++ b/paddle/operators/math/sequence_padding.h @@ -0,0 +1,79 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { +namespace math { + +inline static size_t MaximumSequenceLength(const framework::LoD& lod, + const size_t level) { + const size_t num_sequences = lod[level].size() - 1; + size_t max_sequence_length = 0; + framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); + for (size_t i = 0; i < num_sequences; ++i) { + max_sequence_length = + std::max(max_sequence_length, + abs_offset_lod[level][i + 1] - abs_offset_lod[level][i]); + } + return max_sequence_length; +} + +/* + * \brief Padding/Unpadding LoDTensor to/from normal Tensor of the shape + * [max_sequence_length, num_sequences, sequence_width]. + * + * Padding sequence: + * padding[i] = seq[lod[level][i]] + * Unpadding sequence: + * seq[lod[level][i]] = padding[i] + * + * All sequences will be padded to the same length and stored in a transposed + * shape. + * Example: + * seq (s0, s0, s0, s0; s1, s1; s2, s2, s2; s3) + * padding (s0, s1, s2, s3; s0, s1, s2, 0; s0, 0, s2, 0; s0, 0, 0, 0) + * + * \param context device context of this functor. + * \param seq LoDTensor which is stored in sequence format, the shape + * is [total_sequence_length, sequence_width] where + * total_sequence_length is the sum of all sequences' + * length. + * \param padding Tensor which is padded to the same length, the shape is + * [max_sequence_length, num_sequences, sequence_width]. + * \param norm_by_times whether dividing sequence's length. + * + * \note transposition is also done in this functor. + */ +template +class PaddingLoDTensorFunctor { + public: + void operator()(const DeviceContext& context, const framework::LoDTensor& seq, + framework::Tensor& padding, bool norm_by_times); +}; + +template +class UnpaddingLoDTensorFunctor { + public: + void operator()(const DeviceContext& context, framework::LoDTensor& seq, + const framework::Tensor& padding, bool norm_by_times); +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence_padding_test.cc b/paddle/operators/math/sequence_padding_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..9799bcd65dc65d5741813374c68a2640eaf4556c --- /dev/null +++ b/paddle/operators/math/sequence_padding_test.cc @@ -0,0 +1,104 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence_padding.h" +#include + +template +void TestSequencePadding(const paddle::framework::LoD& lod, + const size_t sequence_width) { + paddle::framework::LoDTensor cpu_seq; + paddle::framework::LoDTensor cpu_seq_back; + paddle::framework::LoDTensor seq; + paddle::framework::LoDTensor seq_back; + paddle::framework::Tensor padding; + + const size_t level = lod.size() - 1; + auto seq_dims = + paddle::framework::make_ddim({static_cast(lod[level].back()), + static_cast(sequence_width)}); + + cpu_seq.set_lod(lod); + cpu_seq.mutable_data(seq_dims, paddle::platform::CPUPlace()); + for (size_t i = 0; i < cpu_seq.numel(); ++i) { + cpu_seq.data()[i] = static_cast(i); + } + + auto* place = new Place(); + DeviceContext* context = new DeviceContext(*place); + if (paddle::platform::is_cpu_place(*place)) { + seq = cpu_seq; + } else { + Copy(cpu_seq, *place, *context, &seq); + seq.set_lod(lod); + } + + const size_t max_sequence_length = + paddle::operators::math::MaximumSequenceLength(lod, level); + const size_t num_sequences = lod[level].size() - 1; + auto padding_dims = + paddle::framework::make_ddim({static_cast(max_sequence_length), + static_cast(num_sequences), + static_cast(sequence_width)}); + padding.mutable_data(padding_dims, *place); + paddle::operators::math::PaddingLoDTensorFunctor()( + *context, seq, padding, false); + + seq_back.set_lod(lod); + seq_back.mutable_data(seq_dims, *place); + paddle::operators::math::UnpaddingLoDTensorFunctor()( + *context, seq_back, padding, false); + + if (paddle::platform::is_cpu_place(*place)) { + cpu_seq_back = seq_back; + } else { + Copy(seq_back, paddle::platform::CPUPlace(), *context, &cpu_seq_back); + cpu_seq_back.set_lod(lod); + } + + EXPECT_EQ(cpu_seq.numel(), cpu_seq_back.numel()); + EXPECT_EQ(cpu_seq.dims(), cpu_seq_back.dims()); + for (size_t i = 0; i < cpu_seq.numel(); ++i) { + EXPECT_EQ(cpu_seq.data()[i], cpu_seq_back.data()[i]); + } + + delete place; + delete context; +}; + +TEST(Seq2BatchPadding, CPU) { + paddle::framework::LoD lod1; + lod1.push_back(std::vector{0, 10}); + TestSequencePadding(lod1, 16); + + paddle::framework::LoD lod2; + lod2.push_back(std::vector{0, 2, 7, 10}); + TestSequencePadding(lod2, 128); +} + +#ifdef PADDLE_WITH_CUDA +TEST(SequencePadding, CUDA) { + paddle::framework::LoD lod1; + lod1.push_back(std::vector{0, 10}); + TestSequencePadding(lod1, 16); + + paddle::framework::LoD lod2; + lod2.push_back(std::vector{0, 2, 7, 10}); + TestSequencePadding(lod2, 128); +} +#endif diff --git a/paddle/operators/math/vol2col_test.cc b/paddle/operators/math/vol2col_test.cc index 3794f0e52d200a08253a979991da04ec564cae47..7a308ca81403fb4ac65a7463102a91c050ab4561 100644 --- a/paddle/operators/math/vol2col_test.cc +++ b/paddle/operators/math/vol2col_test.cc @@ -71,7 +71,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } output.mutable_data({1, filter_size, filter_size, filter_size, output_depth, output_height, output_width}, @@ -85,7 +85,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output.data(); } else { - CopyFrom(output, paddle::platform::CPUPlace(), *context, &output_tmp); + Copy(output, paddle::platform::CPUPlace(), *context, &output_tmp); out_cfo_ptr = output_tmp.data(); } @@ -99,7 +99,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - CopyFrom(input_tmp, *place, *context, &input); + Copy(input_tmp, *place, *context, &input); } paddle::operators::math::Col2VolFunctor col2vol; @@ -109,7 +109,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - CopyFrom(input, paddle::platform::CPUPlace(), *context, &input_tmp); + Copy(input, paddle::platform::CPUPlace(), *context, &input_tmp); in_ptr = input_tmp.data(); } diff --git a/paddle/operators/merge_lod_tensor_op.cc b/paddle/operators/merge_lod_tensor_op.cc index 2287f347910e83c25d2155b80670f9d991c1e5b2..87644d316d42c7d9453a99b759214b24088062df 100644 --- a/paddle/operators/merge_lod_tensor_op.cc +++ b/paddle/operators/merge_lod_tensor_op.cc @@ -30,8 +30,8 @@ class MergeLoDTensorOp : public framework::OperatorBase { void Run(const framework::Scope &scope, const platform::Place &dev_place) const override { // get device context from pool - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(dev_place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); auto &x = scope.FindVar(Input("X"))->Get(); auto &mask = scope.FindVar(Input("Mask"))->Get(); @@ -49,7 +49,7 @@ class MergeLoDTensorOp : public framework::OperatorBase { cpu_mask->ShareDataWith(mask); } else if (platform::is_gpu_place(mask.place())) { #ifdef PADDLE_WITH_CUDA - framework::CopyFrom(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); + framework::Copy(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); #else PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option"); #endif @@ -104,8 +104,8 @@ class MergeLoDTensorOp : public framework::OperatorBase { continue; } auto slice = out->Slice(out_offset, out_offset + len); - framework::CopyFrom(input->Slice(start_offset, end_offset), place, - dev_ctx, &slice); + framework::Copy(input->Slice(start_offset, end_offset), place, dev_ctx, + &slice); out_offset += len; (*in_idx) += 1; } diff --git a/paddle/operators/multiplex_op.cc b/paddle/operators/multiplex_op.cc index 11e047b5d57b6bc18e6d6f4a1d122e18dfc6e357..78263da2fbf843f6a5af2ba95aa0b219a7523b52 100644 --- a/paddle/operators/multiplex_op.cc +++ b/paddle/operators/multiplex_op.cc @@ -51,7 +51,7 @@ class MultiplexOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.MultiInput("X")[0]->type()), @@ -102,7 +102,7 @@ class MultiplexGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.MultiInput("X")[0]->type()), diff --git a/paddle/operators/multiplex_op.cu b/paddle/operators/multiplex_op.cu index f49ee71f104b72f5c8ea5fb1d49999528c21832e..4372dc2c65ec7c0f28e46cd070ea471701ce8304 100644 --- a/paddle/operators/multiplex_op.cu +++ b/paddle/operators/multiplex_op.cu @@ -33,7 +33,7 @@ class MultiplexGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - CopyFrom(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); + Copy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); auto* index = index_t_cpu.data(); auto stream = ctx.cuda_device_context().stream(); platform::CUDAPlace place = boost::get(ctx.GetPlace()); @@ -69,7 +69,7 @@ class MultiplexGradGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - CopyFrom(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); + Copy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); auto* index = index_t_cpu.data(); auto stream = ctx.cuda_device_context().stream(); diff --git a/paddle/operators/nccl_op_test.cu.cc b/paddle/operators/nccl_op_test.cu.cc index 34a6e1a58d4bb8b267f3b6b3a0ac689c17036c37..6546096069d4c3fbc4908a16c2dba2ac6d7e6421 100644 --- a/paddle/operators/nccl_op_test.cu.cc +++ b/paddle/operators/nccl_op_test.cu.cc @@ -305,7 +305,7 @@ int main(int argc, char **argv) { } VLOG(0) << " DeviceCount " << count; - paddle::platform::DeviceContextPool::Create(places); + paddle::platform::DeviceContextPool::Init(places); testing::InitGoogleTest(&argc, argv); diff --git a/paddle/operators/nce_op.cc b/paddle/operators/nce_op.cc index d39ca87d53518963f652f7b8c8cb289a6fef70fd..84ba3ead2b52547b989a4541f31ea31ffcce6c63 100644 --- a/paddle/operators/nce_op.cc +++ b/paddle/operators/nce_op.cc @@ -63,7 +63,7 @@ class NCEOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), @@ -166,7 +166,7 @@ class NCEOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index 78b5e2767842312722fac3509e843a05fe194559..03302f5cbf5674dca1d22a84137579090b4d5eac 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -56,11 +56,11 @@ void NetOp::CompleteAddOp(bool calc) { std::copy(output_set.begin(), output_set.end(), std::back_inserter(outputs)); } -std::string NetOp::DebugString() const { +std::string NetOp::DebugStringEx(const framework::Scope* scope) const { std::ostringstream os; - os << OperatorBase::DebugString() << std::endl; + os << OperatorBase::DebugStringEx(scope) << std::endl; for (auto& op : ops_) { - std::istringstream is(op->DebugString()); + std::istringstream is(op->DebugStringEx(scope)); for (std::string line; std::getline(is, line);) { os << " " << line << std::endl; } diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index 85d0153b32c0ba53bfe0912fc2682c8b635ba172..b24042f5ef5822eabcada8ed9d21c552579e8064 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -106,7 +106,8 @@ class NetOp : public framework::OperatorBase { void CompleteAddOp(bool calculate = true); - std::string DebugString() const override; + std::string DebugStringEx( + const framework::Scope* scope = nullptr) const override; bool IsNetOp() const override; std::vector OutputVars(bool has_intermediate) const override; diff --git a/paddle/operators/norm_op.cc b/paddle/operators/norm_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..0eeafcaae0a01ed7090800ecb06708773ede67aa --- /dev/null +++ b/paddle/operators/norm_op.cc @@ -0,0 +1,95 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/norm_op.h" +namespace paddle { +namespace operators { + +template +class NormOpMaker : public framework::OpProtoAndCheckerMaker { + public: + NormOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "X", + "(Tensor) The input tensor of norm operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of channels, H and W is the height and width of feature."); + AddInput("Scale", + "(Tensor) The input tensor of norm operator. " + "The format of input tensor is C * 1."); + AddAttr("epsilon", + "(float, default 1e-10) Constant " + "for numerical stability.") + .SetDefault(1.0e-10f); + AddOutput("Out", + "(Tensor) The output tensor of norm operator." + "N * M." + "M = C * H * W"); + AddComment(R"DOC( + "Input shape: $(N, C, H, W)$ + Scale shape: $(C, 1)$ + Output shape: $(N, C, H, W)$ + Where + forward + $$ + [\frac {x_{1}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{2}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{3}}{\sqrt{\sum{x_{i}^{2}}}} \cdot \cdot \cdot \frac {x_{n}}{\sqrt{\sum{x_{i}^{2}}}}] + $$ + backward + $$ + \frac{\frac{\mathrm{d}L }{\mathrm{d}y_{1}} - \frac {x_{1}\sum {\frac{\mathrm{d} L}{\mathrm{d} y_{j}}}x_{j}}{\sum x_{j}^{2}} }{\sqrt{\sum{x_{j}^{2}}}} + $$ + )DOC"); + } +}; + +class NormOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of NormOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Scale"), + "Input(Scale) of NormOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of NormOp should not be null."); + auto in_x_dims = ctx->GetInputDim("X"); + ctx->SetOutputDim("Out", in_x_dims); + } +}; + +class NormOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Input(X@GRAD) should not be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(norm, ops::NormOp, ops::NormOpMaker, norm_grad, + ops::NormOpGrad); +REGISTER_OP_CPU_KERNEL( + norm, ops::NormKernel, + ops::NormKernel); +REGISTER_OP_CPU_KERNEL( + norm_grad, ops::NormGradKernel, + ops::NormGradKernel); diff --git a/paddle/operators/norm_op.cu b/paddle/operators/norm_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..2941c89b93141388d3746cf128848960ed6f3625 --- /dev/null +++ b/paddle/operators/norm_op.cu @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#define EIGEN_USE_GPU + +#include "paddle/operators/norm_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + norm, ops::NormKernel, + ops::NormKernel); +REGISTER_OP_CUDA_KERNEL( + norm_grad, ops::NormGradKernel, + ops::NormGradKernel); diff --git a/paddle/operators/norm_op.h b/paddle/operators/norm_op.h new file mode 100644 index 0000000000000000000000000000000000000000..5759d6f1f07d50d4c65c93578ba7d7916a2d9b4e --- /dev/null +++ b/paddle/operators/norm_op.h @@ -0,0 +1,175 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +template +class NormKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + const framework::Tensor* scale = context.Input("Scale"); + auto* out = context.Output("Out"); + auto epsilon = static_cast(context.Attr("epsilon")); + out->mutable_data(context.GetPlace()); + int batch_size = in_x->dims()[0]; + int channels = in_x->dims()[1]; + int height = in_x->dims()[2]; + int width = in_x->dims()[3]; + int fea_len = height * width; + auto* place = + context.template device_context().eigen_device(); + auto x = + framework::EigenMatrix::From( + *in_x, framework::make_ddim({batch_size, fea_len * channels})); + // get square + framework::Tensor x_square; + x_square.mutable_data(in_x->dims(), context.GetPlace()); + auto x_square_eigen = + framework::EigenMatrix::From( + x_square, framework::make_ddim({batch_size, fea_len * channels})); + x_square_eigen.device(*place) = x.square(); + auto scale_eigen = + framework::EigenVector::Flatten( + *scale); + for (int n = 0; n < batch_size; ++n) { + framework::Tensor in_x_batch = in_x->Slice(n, n + 1); + auto in_x_batch_eigen = + framework::EigenMatrix::From( + in_x_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor x_square_batch = x_square.Slice(n, n + 1); + auto x_square_batch_eigen = + framework::EigenMatrix::From( + x_square_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor out_batch = out->Slice(n, n + 1); + auto out_batch_eigen = + framework::EigenMatrix::From( + out_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor tmp_tensor; + tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), + context.GetPlace()); + auto tmp = framework::EigenVector::Flatten(tmp_tensor); + // get colsum and sqrt , inverse + auto dim = Eigen::array({{0}}); + tmp.device(*place) = x_square_batch_eigen.sum(dim); + tmp.device(*place) = (tmp + epsilon).sqrt().inverse(); + Eigen::array broadcast_dim_col; + broadcast_dim_col[1] = 1; + broadcast_dim_col[0] = channels; + out_batch_eigen.device(*place) = + in_x_batch_eigen * (tmp.broadcast(broadcast_dim_col)); + Eigen::array broadcast_dim_row; + broadcast_dim_row[1] = fea_len; + broadcast_dim_row[0] = 1; + out_batch_eigen.device(*place) = + out_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); + } + } +}; +template +class NormGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + const framework::Tensor* scale = context.Input("Scale"); + const framework::Tensor* out_grad = + context.Input(framework::GradVarName("Out")); + auto epsilon = static_cast(context.Attr("epsilon")); + framework::Tensor* in_x_grad = + context.Output(framework::GradVarName("X")); + in_x_grad->mutable_data(context.GetPlace()); + int batch_size = in_x->dims()[0]; + int channels = in_x->dims()[1]; + int height = in_x->dims()[2]; + int width = in_x->dims()[3]; + int fea_len = height * width; + auto* place = + context.template device_context().eigen_device(); + + auto scale_eigen = + framework::EigenVector::Flatten( + *scale); + auto x = + framework::EigenMatrix::From( + *in_x, framework::make_ddim({batch_size, fea_len * channels})); + // get square + framework::Tensor x_square; + x_square.mutable_data(in_x->dims(), context.GetPlace()); + auto x_square_eigen = + framework::EigenMatrix::From( + x_square, framework::make_ddim({batch_size, fea_len * channels})); + x_square_eigen.device(*place) = x.square(); + + for (int n = 0; n < batch_size; ++n) { + framework::Tensor in_x_batch = in_x->Slice(n, n + 1); + auto in_x_batch_eigen = + framework::EigenMatrix::From( + in_x_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor in_g_batch = in_x_grad->Slice(n, n + 1); + auto in_g_batch_eigen = + framework::EigenMatrix::From( + in_g_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor x_square_batch = x_square.Slice(n, n + 1); + auto x_square_batch_eigen = + framework::EigenMatrix::From( + x_square_batch, framework::make_ddim({channels, fea_len})); + framework::Tensor outg_batch = out_grad->Slice(n, n + 1); + auto outg_batch_eigen = + framework::EigenMatrix::From( + outg_batch, framework::make_ddim({channels, fea_len})); + + framework::Tensor tmp_tensor; + tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), + context.GetPlace()); + auto tmp_eigen = + framework::EigenVector::Flatten(tmp_tensor); + auto dim = Eigen::array({{0}}); + tmp_eigen.device(*place) = (in_x_batch_eigen * outg_batch_eigen).sum(dim); + framework::Tensor norm_tmp_tensor; + norm_tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), + context.GetPlace()); + auto norm_tmp_eigen = + framework::EigenVector::Flatten(norm_tmp_tensor); + norm_tmp_eigen.device(*place) = + (x_square_batch_eigen.sum(dim) + epsilon).sqrt(); + Eigen::array broadcast_dim_col; + broadcast_dim_col[1] = 1; + broadcast_dim_col[0] = channels; + in_g_batch_eigen.device(*place) = + in_x_batch_eigen * tmp_eigen.broadcast(broadcast_dim_col); + in_g_batch_eigen.device(*place) = + in_g_batch_eigen / + (norm_tmp_eigen * norm_tmp_eigen).broadcast(broadcast_dim_col); + in_g_batch_eigen.device(*place) = outg_batch_eigen - in_g_batch_eigen; + // outg_batch_eigen + (in_g_batch_eigen * -1); + in_g_batch_eigen.device(*place) = + in_g_batch_eigen / norm_tmp_eigen.broadcast(broadcast_dim_col); + Eigen::array broadcast_dim_row; + broadcast_dim_row[1] = fea_len; + broadcast_dim_row[0] = 1; + in_g_batch_eigen.device(*place) = + in_g_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/parallel_do_op.cc b/paddle/operators/parallel_do_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..e1bec0421e76143bef669a4f6fa373cdf01226b2 --- /dev/null +++ b/paddle/operators/parallel_do_op.cc @@ -0,0 +1,313 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include + +#include "paddle/framework/executor.h" +#include "paddle/framework/op_registry.h" +#include "paddle/framework/threadpool.h" + +namespace paddle { +namespace operators { + +static constexpr char kInputs[] = "inputs"; +static constexpr char kParameters[] = "parameters"; +static constexpr char kPlaces[] = "places"; + +static constexpr char kOutputs[] = "outputs"; +static constexpr char kParallelScopes[] = "parallel_scopes"; + +static constexpr char kParallelBlock[] = "sub_block"; + +// using ParallelScopeVar = std::vector; +using LoDTensor = framework::LoDTensor; +using OperatorBase = framework::OperatorBase; + +void SplitTensorAndMoveTensorToScopes( + const framework::Scope &scope, + const std::vector &sub_scopes, + const std::vector &places, + const std::vector &names) { + PADDLE_ENFORCE_EQ(sub_scopes.size(), places.size()); + for (auto &argu : names) { + auto *var = scope.FindVar(argu); + const auto &tensor = var->Get(); + auto lod_tensors = tensor.SplitLoDTensor(places); + + for (auto &lod : lod_tensors) { + VLOG(3) << lod.dims(); + } + + for (size_t i = 0; i < sub_scopes.size(); ++i) { + *sub_scopes[i]->Var(argu)->GetMutable() = lod_tensors[i]; + } + } +} + +void WaitOnPlaces(const std::vector places) { + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + + for (auto &place : places) { + auto &dev_ctx = *pool.Get(place); + dev_ctx.Wait(); + } +} + +class ParallelDoOp : public framework::OperatorBase { + public: + ParallelDoOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + + auto *block = Attr(kParallelBlock); + auto *program = block->Program(); + + auto &places = scope.FindVar(Input(kPlaces))->Get(); + + auto &sub_scopes = *scope.FindVar(Output(kParallelScopes)) + ->GetMutable>(); + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + sub_scopes.push_back(&scope.NewScope()); + } + + // split input + SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places, + Inputs(kInputs)); + // copy parameter + for (auto ¶m : Inputs(kParameters)) { + PADDLE_ENFORCE(scope.FindVar(param)->IsType(), + "Only support parameter type as LoDTensor"); + auto &src = scope.FindVar(param)->Get(); + for (size_t i = 0; i < places.size(); ++i) { + auto &place = places[i]; + auto *sub_scope = sub_scopes[i]; + auto *dst = sub_scope->Var(param)->GetMutable(); + framework::Copy(src, place, dst); + } + } + WaitOnPlaces(places); + + std::vector> workers; + workers.reserve(places.size()); + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + VLOG(3) << "Run " << place_idx; + + auto &place = places[place_idx]; + auto *cur_scope = sub_scopes[place_idx]; + + workers.emplace_back(framework::Async([program, cur_scope, place, block] { + framework::Executor executor(place); + executor.Run(*program, cur_scope, block->ID(), + false /*create_local_scope*/); + })); + } + for (auto &worker : workers) { + worker.wait(); + } + WaitOnPlaces(places); + + // merge output + for (auto &o_name : Outputs(kOutputs)) { + std::vector lod_tensors; + lod_tensors.reserve(sub_scopes.size()); + for (auto *sub_scope : sub_scopes) { + lod_tensors.emplace_back(&sub_scope->FindVar(o_name)->Get()); + } + + auto *lod_tensor_to_be_merged = + scope.FindVar(o_name)->GetMutable(); + lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace()); + } + WaitOnPlaces(places); + } +}; + +class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + ParallelDoOpProtoMaker(OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput(kInputs, "").AsDuplicable(); + AddInput(kParameters, "").AsDuplicable(); + AddInput(kPlaces, ""); + AddOutput(kOutputs, "").AsDuplicable(); + AddOutput(kParallelScopes, ""); + AddAttr(kParallelBlock, ""); + AddComment(R"DOC( +ParallelDo Operator. +)DOC"); + } +}; + +class ParallelDoGradOp : public OperatorBase { + public: + ParallelDoGradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + // // get device context from pool + // platform::DeviceContextPool &pool = + // platform::DeviceContextPool::Instance(); + // auto &dev_ctx = *pool.Get(place); + + auto *block = Attr(kParallelBlock); + auto *program = block->Program(); + + auto &sub_scopes = scope.FindVar(Input(kParallelScopes)) + ->Get>(); + + auto &places = scope.FindVar(Input(kPlaces))->Get(); + + // feed output@grad + SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places, + Inputs(framework::GradVarName(kOutputs))); + WaitOnPlaces(places); + + // for debugging + for (auto &s : Inputs(framework::GradVarName(kOutputs))) { + VLOG(3) << s; + VLOG(3) << scope.FindVar(s)->Get(); + for (auto *sub_scope : sub_scopes) { + VLOG(3) << sub_scope->FindVar(s)->Get(); + } + } + + // exe run + std::vector> workers; + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + VLOG(3) << "Run " << place_idx; + + auto &place = places[place_idx]; + auto *cur_scope = sub_scopes[place_idx]; + + // execute + workers.emplace_back(framework::Async([program, cur_scope, place, block] { + framework::Executor executor(place); + executor.Run(*program, cur_scope, block->ID(), + false /*create_local_scope*/); + })); + } + for (auto &worker : workers) { + worker.wait(); + } + WaitOnPlaces(places); + + // merge grad + for (auto &s : Outputs(framework::GradVarName(kParameters))) { + VLOG(3) << "merge grad " << s; + + auto &t = sub_scopes[0]->FindVar(s)->Get(); + VLOG(3) << t; + + std::string s_buf = s + "@BUF"; + auto *t_buf = sub_scopes[0]->Var(s_buf)->GetMutable(); + + for (size_t place_idx = 1; place_idx < places.size(); ++place_idx) { + auto &tt = sub_scopes[place_idx]->FindVar(s)->Get(); + VLOG(3) << place_idx; + VLOG(3) << tt; + framework::Copy(tt, places[0], t_buf); + + auto sum_op = framework::OpRegistry::CreateOp( + "sum", {{"X", {s, s_buf}}}, {{"Out", {s}}}, + framework::AttributeMap{}); + sum_op->Run(*sub_scopes[0], places[0]); + WaitOnPlaces(places); + } + + VLOG(3) << t; + framework::Copy(t, place, scope.FindVar(s)->GetMutable()); + } + } +}; + +class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + virtual std::unique_ptr Apply() const { + auto *grad = new framework::OpDesc(); + grad->SetType("parallel_do_grad"); + for (auto &input_param : this->InputNames()) { + VLOG(3) << input_param; + grad->SetInput(input_param, this->Input(input_param)); + if (input_param != kPlaces) { + grad->SetOutput(framework::GradVarName(input_param), + this->InputGrad(input_param, false)); + } + } + + for (auto &output_param : this->OutputNames()) { + if (output_param == kParallelScopes) { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->Output(output_param)); + } else { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->OutputGrad(output_param)); + } + } + grad->SetAttrMap(this->Attrs()); + grad->SetBlockAttr(kParallelBlock, *grad_block_[0]); + + return std::unique_ptr(grad); + } +}; + +class ParallelDoGradOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *ctx) const override { + std::vector input{kParameters, kInputs}; + std::vector output{kOutputs}; + for (auto &s : input) { + PADDLE_ENFORCE(ctx->HasInputs(s)); + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)), + "Cannot find the gradient variable %s", + framework::GradVarName(s)); + } + for (auto &s : output) { + PADDLE_ENFORCE(ctx->HasInputs(s)); + } + for (auto &s : input) { + ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s)); + } + if (ctx->HasInputs(kParameters)) { + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters))); + ctx->SetOutputsDim(framework::GradVarName(kParameters), + ctx->GetInputsDim(kParameters)); + } + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OPERATOR(parallel_do, paddle::operators::ParallelDoOp, + paddle::operators::ParallelDoOpProtoMaker, + paddle::operators::ParallelDoGradOpDescMaker); +REGISTER_OPERATOR(parallel_do_grad, paddle::operators::ParallelDoGradOp, + paddle::operators::ParallelDoGradOpShapeInference); diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc index 50057eb6483e9c9e745bc07dee26a0bbbbb5a48c..d3cf5fa638c53dfdfacec153211f447a1e2fa3bf 100644 --- a/paddle/operators/pool_op.cc +++ b/paddle/operators/pool_op.cc @@ -58,6 +58,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i])); } ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + ctx->ShareLoD("X", "Out"); } void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const { diff --git a/paddle/operators/pool_with_index_op.cc b/paddle/operators/pool_with_index_op.cc index 76c5123527c3ff5b7e6c7eec39f4eb1d612759d3..1d31d813af4ec4eb829b906fa9add38cc71d54f3 100644 --- a/paddle/operators/pool_with_index_op.cc +++ b/paddle/operators/pool_with_index_op.cc @@ -69,7 +69,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -90,7 +90,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/positive_negative_pair_op.cc b/paddle/operators/positive_negative_pair_op.cc index a6b23c995b8b9104f2da9d3d29ceb3eb88e7da63..5aa5167dbb83c9caf2e754859938e51700d8ec3f 100644 --- a/paddle/operators/positive_negative_pair_op.cc +++ b/paddle/operators/positive_negative_pair_op.cc @@ -85,7 +85,7 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Score")->type()), diff --git a/paddle/operators/precision_recall_op.cc b/paddle/operators/precision_recall_op.cc index c5753147effd17c012683e1058e34af46288f366..f1598d53cae2a58acd0207a20938b4f744ba0efe 100644 --- a/paddle/operators/precision_recall_op.cc +++ b/paddle/operators/precision_recall_op.cc @@ -80,7 +80,7 @@ class PrecisionRecallOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("MaxProbs")->type()), diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index 71769e67c7032f2d808d1394883cbe93f826b2f6..a136c5b447d7a64f783c00c928bf9e248aff6649 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -272,8 +272,9 @@ class RecurrentOp : public RecurrentBase { false /*create_local_scope*/); // get device context from pool - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); // Copy inside::output -> outside::output // outside::output[seq_offset: seq_offset + 1] = inside::output @@ -289,7 +290,7 @@ class RecurrentOp : public RecurrentBase { auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1); // Explicit copy output since the local RNN scope can be destroyed // early. - framework::CopyFrom(src_tensor, place, dev_ctx, &dst_out); + framework::Copy(src_tensor, place, dev_ctx, &dst_out); }); scopes.Next(); @@ -326,8 +327,8 @@ class RecurrentGradOp : public RecurrentBase { auto *program = block->Program(); // get device context from pool - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); for (size_t step_id = 0; step_id < seq_len; ++step_id) { size_t seq_offset = reverse ? step_id : seq_len - step_id - 1; @@ -375,7 +376,7 @@ class RecurrentGradOp : public RecurrentBase { auto *cur_grad_var = cur_scope.Var(cur_grad); auto cur_grad_tensor = cur_grad_var->GetMutable(); - framework::CopyFrom(ex_tensor, place, dev_ctx, cur_grad_tensor); + framework::Copy(ex_tensor, place, dev_ctx, cur_grad_tensor); } } @@ -449,7 +450,7 @@ class RecurrentGradOp : public RecurrentBase { } auto dst = outside->Slice(seq_offset, seq_offset + 1); - framework::CopyFrom(inside, place, dev_ctx, &dst); + framework::Copy(inside, place, dev_ctx, &dst); }); VLOG(5) << "Link outside gradient finished "; @@ -462,7 +463,7 @@ class RecurrentGradOp : public RecurrentBase { framework::LoDTensor *outside) { outside->Resize(inside.dims()); outside->mutable_data(place, inside.type()); - framework::CopyFrom(inside, place, dev_ctx, outside); + framework::Copy(inside, place, dev_ctx, outside); }); VLOG(5) << "Link initialize state gradient finished "; } diff --git a/paddle/operators/recv_op.cc b/paddle/operators/recv_op.cc index 322f8571cfd4341f064e8f9df512a8d74b91ed9d..9331c7b563491902b2824898766cacb9bfdee2d9 100644 --- a/paddle/operators/recv_op.cc +++ b/paddle/operators/recv_op.cc @@ -19,7 +19,6 @@ limitations under the License. */ #include -#include "paddle/framework/data_type.h" #include "paddle/framework/executor.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" @@ -33,6 +32,20 @@ limitations under the License. */ namespace paddle { namespace operators { +static void CreateTensorFromMessageType(framework::Variable *var, + sendrecv::VarType var_type) { + if (var_type == sendrecv::VarType::LOD_TENSOR) { + var->GetMutable(); + } else if (var_type == sendrecv::VarType::SELECTED_ROWS) { + var->GetMutable(); + } else { + PADDLE_THROW( + "VraibleMessage type %d is not in " + "[LoDTensor, SelectedRows]", + var_type); + } +} + void RunServer(Server **rpc_server, std::shared_ptr service, const std::string &server_address) { @@ -60,7 +73,7 @@ class RecvOp : public framework::OperatorBase { } void Stop() override { - detail::TensorWithName term_msg; + detail::MessageWithName term_msg; term_msg.first = LISTEN_TERMINATE_MESSAGE; rpc_service_->Push(term_msg); rpc_server_->Shutdown(); @@ -94,7 +107,7 @@ class RecvOp : public framework::OperatorBase { // the gradient arrives, just add suffix 0~n then average the gradient. for (size_t i = 0; i < param_count * trainer_count; ++i) { // blocking get one var from client. - const detail::TensorWithName &v = rpc_service_->Get(); + const detail::MessageWithName &v = rpc_service_->Get(); auto grad_var_name = v.first; if (grad_var_name == LISTEN_TERMINATE_MESSAGE) { exit_flag = true; @@ -111,9 +124,11 @@ class RecvOp : public framework::OperatorBase { << " updating param: " << param_var_name; auto *merged_grad = recv_scope.FindVar(grad_var_name); if (merged_grad == nullptr) { - // create output of merged var. - auto merged_var = recv_scope.Var(grad_var_name); - merged_var->GetMutable(); + auto *ptr = recv_scope.Var(grad_var_name); + CreateTensorFromMessageType(ptr, v.second.type()); + VLOG(3) << "Create Variable " << grad_var_name + << " on recv scope, which pointer is " << ptr << " type is " + << v.second.type(); } if (trainer_count > 1) { @@ -121,11 +136,10 @@ class RecvOp : public framework::OperatorBase { } auto *var = recv_scope.Var(grad_var_name); - auto *tensor = var->GetMutable(); - // FIXME(typhoonzero): do not copy - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(dev_place); - framework::CopyFrom(v.second, dev_place, dev_ctx, tensor); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); + detail::DeserializeFromMessage(v.second, dev_ctx, var); } if (exit_flag) { break; diff --git a/paddle/operators/reduce_op.cc b/paddle/operators/reduce_op.cc index a3ff4a6ca0ef30be42e7801386a3561930638a8a..172d28bb3b647901d4de7bc03c9de21e3468a364 100644 --- a/paddle/operators/reduce_op.cc +++ b/paddle/operators/reduce_op.cc @@ -77,6 +77,7 @@ class ReduceGradOp : public framework::OperatorWithKernel { auto x_grad_name = framework::GradVarName("X"); if (ctx->HasOutput(x_grad_name)) { ctx->SetOutputDim(x_grad_name, x_dims); + ctx->ShareLoD("X", /*->*/ x_grad_name); } } }; diff --git a/paddle/operators/reorder_lod_tensor_by_rank_op.cc b/paddle/operators/reorder_lod_tensor_by_rank_op.cc index 1063388e2539d47ca6ab56cd5fb0b946b6fb9147..a055cdf7e8952995e57c28b3520c427caa75a4c1 100644 --- a/paddle/operators/reorder_lod_tensor_by_rank_op.cc +++ b/paddle/operators/reorder_lod_tensor_by_rank_op.cc @@ -88,20 +88,33 @@ class ReorderLoDTensorByRankTableBase : public framework::OperatorBase { std::vector GetAbsoluteOffsetAndLengthByLoDRankTable( const framework::LoDTensor &x) const { std::vector absolute_table; - size_t level = 0; - size_t size = x.lod()[level].size(); - for (size_t i = 0; i < size - 1; ++i) { - auto lod_offset = - framework::GetSubLoDAndAbsoluteOffset(x.lod(), i, i + 1, level); + if (x.lod().empty()) { + // For Tensor without lod, such as the output of sequence_pool_op + size_t size = x.dims()[0]; + absolute_table.reserve(size); + for (size_t i = 0; i < size; ++i) { + absolute_table.emplace_back(); + absolute_table.back().length = 1; + absolute_table.back().offset = i; + } + } else { + size_t level = 0; + size_t size = x.lod()[level].size(); + + for (size_t i = 0; i < size - 1; ++i) { + auto lod_offset = + framework::GetSubLoDAndAbsoluteOffset(x.lod(), i, i + 1, level); - auto &offset = lod_offset.second; + auto &offset = lod_offset.second; - absolute_table.emplace_back(); - absolute_table.back().length = offset.second - offset.first; - absolute_table.back().offset = offset.first; - absolute_table.back().lod = lod_offset.first; + absolute_table.emplace_back(); + absolute_table.back().length = offset.second - offset.first; + absolute_table.back().offset = offset.first; + absolute_table.back().lod = lod_offset.first; + } } + return absolute_table; } @@ -131,9 +144,9 @@ class ReorderLoDTensorByRankTableBase : public framework::OperatorBase { auto x_sliced = x.Slice(x_offset, x_offset + len); auto out_sliced = out->Slice(out_offset, out_offset + len); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); - framework::CopyFrom(x_sliced, out_sliced.place(), dev_ctx, &out_sliced); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::Copy(x_sliced, out_sliced.place(), dev_ctx, &out_sliced); out_offset += len; return out_offset; } diff --git a/paddle/operators/reshape_op.h b/paddle/operators/reshape_op.h index a4eb34a0ad1230b6257cd299c8ed563acb054367..d884b03cadbf32de2c44e1aaed52fee9304534eb 100644 --- a/paddle/operators/reshape_op.h +++ b/paddle/operators/reshape_op.h @@ -28,7 +28,7 @@ class ReshapeKernel : public framework::OpKernel { auto* in = ctx.Input("X"); auto out_dims = out->dims(); out->mutable_data(ctx.GetPlace()); - framework::CopyFrom(*in, ctx.GetPlace(), ctx.device_context(), out); + framework::Copy(*in, ctx.GetPlace(), ctx.device_context(), out); out->Resize(out_dims); } }; @@ -42,7 +42,7 @@ class ReshapeGradKernel : public framework::OpKernel { d_x->mutable_data(ctx.GetPlace()); auto in_dims = d_x->dims(); - framework::CopyFrom(*d_out, ctx.GetPlace(), ctx.device_context(), d_x); + framework::Copy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x); d_x->Resize(in_dims); } }; diff --git a/paddle/operators/roi_pool_op.cc b/paddle/operators/roi_pool_op.cc index ef1804d9762200686ac8537140af046c21443779..a7351f11c5da7b850681346942ad699aba85a8e0 100644 --- a/paddle/operators/roi_pool_op.cc +++ b/paddle/operators/roi_pool_op.cc @@ -68,7 +68,7 @@ class ROIPoolOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -89,7 +89,7 @@ class ROIPoolGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/save_op.cc b/paddle/operators/save_op.cc index d045a8b5b8d852278fd5140b9cf8707462b93c93..4b1cbe88836e340c94f797806243a6768410ed3d 100644 --- a/paddle/operators/save_op.cc +++ b/paddle/operators/save_op.cc @@ -91,8 +91,8 @@ class SaveOp : public framework::OperatorBase { auto &tensor = var->Get(); // get device context from pool - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); framework::SerializeToStream(fout, tensor, dev_ctx); } diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index 806dccc6ca78bf64da828fe13e08e043097bd939..b65334890633f54e70179bfa8fe5463901f7947e 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -49,7 +49,7 @@ class ScatterOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Ref")->type()), @@ -68,7 +68,7 @@ class ScatterGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Ref")->type()), diff --git a/paddle/operators/send_op.cc b/paddle/operators/send_op.cc index 6e829386832a875769669b02e6f41755618d348a..95c207221a7b34732eca4cfd07fed0a8f1671981 100644 --- a/paddle/operators/send_op.cc +++ b/paddle/operators/send_op.cc @@ -79,7 +79,7 @@ class SendOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Recv operator -This operator will recv tensor from send_op +This operator will send tensor to recv_op. )DOC"); AddAttr>("endpoints", "(string vector, default 127.0.0.1:6164)" diff --git a/paddle/operators/send_recv_op_test.cc b/paddle/operators/send_recv_op_test.cc index 108e2dec6b3eecadd431fd25f9a31ec17a874b6b..fa94424bf9e8e719ec0822268685b0806a109d21 100644 --- a/paddle/operators/send_recv_op_test.cc +++ b/paddle/operators/send_recv_op_test.cc @@ -20,22 +20,27 @@ limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" #include "paddle/framework/program_desc.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/selected_rows_functor.h" #include "paddle/string/printf.h" USE_NO_KERNEL_OP(send); USE_NO_KERNEL_OP(recv); USE_OP(sum); +namespace f = paddle::framework; +namespace p = paddle::platform; +namespace m = paddle::operators::math; + // global for simplicity. -std::unique_ptr recv_op; +std::unique_ptr recv_op; -void InitTensorsInScope(paddle::framework::Scope &scope, - paddle::platform::CPUPlace &place) { - paddle::platform::CPUDeviceContext ctx(place); +void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) { + p::CPUDeviceContext ctx(place); for (int i = 0; i < 2; ++i) { auto var_name = paddle::string::Sprintf("x%d", i); auto var = scope.Var(var_name); - auto tensor = var->GetMutable(); + auto tensor = var->GetMutable(); tensor->Resize({10, 10}); float *expect = tensor->mutable_data(place); for (int64_t i = 0; i < tensor->numel(); ++i) { @@ -44,21 +49,53 @@ void InitTensorsInScope(paddle::framework::Scope &scope, } auto out_var = scope.Var("Out"); - auto out_tensor = out_var->GetMutable(); + auto out_tensor = out_var->GetMutable(); out_tensor->Resize({10, 10}); out_tensor->mutable_data(place); // allocate } -void AddOp(const std::string &type, - const paddle::framework::VariableNameMap &inputs, - const paddle::framework::VariableNameMap &outputs, - paddle::framework::AttributeMap attrs, - paddle::framework::BlockDesc *block) { +void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) { + p::CPUDeviceContext ctx(place); + int64_t height = 10; + int64_t row_numel = 10; + m::SetConstant set_one; + // init x0 + std::vector rows0{0, 4, 7}; + auto x0_var = scope.Var("x0"); + auto x0 = x0_var->GetMutable(); + x0->set_rows(rows0); + x0->set_height(height); + auto x0_value = x0->mutable_value(); + x0_value->mutable_data( + f::make_ddim({static_cast(rows0.size()), row_numel}), place); + set_one(ctx, x0_value, 1.0); + + // init x1 + std::vector rows1{2, 9}; + auto x1_var = scope.Var("x1"); + auto x1 = x1_var->GetMutable(); + x1->set_rows(rows1); + x1->set_height(height); + auto x1_value = x1->mutable_value(); + x1_value->mutable_data( + f::make_ddim({static_cast(rows1.size()), row_numel}), place); + set_one(ctx, x1_value, 1.0); + + auto out_var = scope.Var("Out"); + auto out = out_var->GetMutable(); + auto out_value = out->mutable_value(); + out->set_height(height); + out_value->mutable_data(f::make_ddim({5, 10}), place); +} + +void AddOp(const std::string &type, const f::VariableNameMap &inputs, + const f::VariableNameMap &outputs, f::AttributeMap attrs, + f::BlockDesc *block) { // insert output for (auto kv : outputs) { for (auto v : kv.second) { auto var = block->Var(v); - var->SetDataType(paddle::framework::proto::DataType::FP32); + var->SetDataType(f::proto::DataType::FP32); } } @@ -74,58 +111,99 @@ void AddOp(const std::string &type, op->SetAttrMap(attrs); } -void StartServerNet() { - paddle::framework::Scope scope; - paddle::platform::CPUPlace place; - InitTensorsInScope(scope, place); +void StartServerNet(bool is_sparse) { + f::Scope scope; + p::CPUPlace place; + if (is_sparse) { + InitSelectedRowsInScope(scope, place); + } else { + InitTensorsInScope(scope, place); + } // sub program run in recv_op, for simple test we use sum - paddle::framework::ProgramDesc program; - paddle::framework::BlockDesc *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); // X for server side tensors, RX for received tensers, must be of same shape. - AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"x0"}}}, {}, block); + AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, block); - paddle::framework::AttributeMap attrs; + f::AttributeMap attrs; attrs.insert({"endpoint", std::string("127.0.0.1:6174")}); - attrs.insert({"ParamList", std::vector({"x0"})}); + attrs.insert({"ParamList", std::vector({"Out"})}); attrs.insert({"GradList", std::vector({"x1"})}); std::string program_proto; PADDLE_ENFORCE(program.Proto()->SerializeToString(&program_proto)); attrs.insert({"OptimizeProgram", program_proto}); - recv_op = paddle::framework::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}}, - {}, attrs); + recv_op = f::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}}, {}, attrs); recv_op->Run(scope, place); } -TEST(SendRecvOp, CPU) { - std::thread server_thread(StartServerNet); - sleep(5); // wait server to start +TEST(SendRecvOp, CPUDense) { + std::thread server_thread(StartServerNet, false); + sleep(3); // wait server to start // local net - paddle::framework::Scope scope; - paddle::platform::CPUPlace place; + f::Scope scope; + p::CPUPlace place; InitTensorsInScope(scope, place); - paddle::framework::AttributeMap attrs; + f::AttributeMap attrs; attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})}); attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})}); - auto send_op = paddle::framework::OpRegistry::CreateOp( - "send", {{"X", {"x1"}}}, {{"Out", {"x0"}}}, attrs); + auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}}, + {{"Out", {"Out"}}}, attrs); send_op->Run(scope, place); auto in_var = scope.Var("x1"); - auto tensor = in_var->GetMutable(); + auto tensor = in_var->GetMutable(); float *expected = tensor->data(); - auto out_var = scope.Var("x0"); - auto target = out_var->GetMutable(); + auto out_var = scope.Var("Out"); + auto target = out_var->GetMutable(); // x1 * 2 == x0 EXPECT_NE(target->memory_size(), size_t(0)); float *actual = target->data(); for (int64_t i = 0; i < target->numel(); ++i) { EXPECT_EQ(expected[i] * 2, actual[i]); } + recv_op->Stop(); + server_thread.join(); + recv_op.reset(nullptr); +} +TEST(SendRecvOp, CPUSparse) { + std::thread server_thread(StartServerNet, true); + sleep(3); // wait server to start + // local net + f::Scope scope; + p::CPUPlace place; + p::CPUDeviceContext ctx(place); + InitSelectedRowsInScope(scope, place); + f::AttributeMap attrs; + attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})}); + attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})}); + auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}}, + {{"Out", {"Out"}}}, attrs); + send_op->Run(scope, place); + + auto x0 = scope.Var("x0")->GetMutable(); + auto x1 = scope.Var("x1")->GetMutable(); + auto out = scope.Var("Out")->GetMutable(); + auto actual = out->mutable_value(); + + std::unique_ptr expect{new f::SelectedRows()}; + auto expect_value = expect->mutable_value(); + expect_value->mutable_data(f::make_ddim({5, 10}), place); + + m::SelectedRowsAdd add_functor; + add_functor(ctx, *x0, *x1, expect.get()); + + EXPECT_EQ(actual->numel(), expect_value->numel()); + EXPECT_EQ(out->rows().size(), x0->rows().size() + x1->rows().size()); + + for (int64_t i = 0; i < expect_value->numel(); ++i) { + EXPECT_EQ(expect_value->mutable_data(place)[i], + actual->mutable_data(place)[i]); + } recv_op->Stop(); server_thread.join(); - // recv_op.reset(); + recv_op.reset(); } diff --git a/paddle/operators/sequence_pool_op.cc b/paddle/operators/sequence_pool_op.cc index aea98744d8fc1fc59a07250d57f76f26fb9f3634..549d9620ef20e2be7d030f41f1e7567cb1922f3b 100644 --- a/paddle/operators/sequence_pool_op.cc +++ b/paddle/operators/sequence_pool_op.cc @@ -107,7 +107,7 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -115,12 +115,32 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { } }; +class SequencePoolGradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto* op_desc_ptr = new framework::OpDesc(); + op_desc_ptr->SetType("sequence_pool_grad"); + op_desc_ptr->SetInput("X", Input("X")); + if (boost::get(GetAttr("pooltype")) == "MAX") { + op_desc_ptr->SetInput("MaxIndex", Output("MaxIndex")); + } + op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); + op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X")); + op_desc_ptr->SetAttrMap(Attrs()); + return std::unique_ptr(op_desc_ptr); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker, - sequence_pool_grad, ops::SequencePoolGradOp); +REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker, + ops::SequencePoolGradOpMaker); +REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp); REGISTER_OP_CPU_KERNEL( sequence_pool, ops::SequencePoolKernel); diff --git a/paddle/operators/sequence_slice_op.cc b/paddle/operators/sequence_slice_op.cc index 98bd8854903e5abf6d27432a2af0aaae980c0b1d..f79106ff0f7a3d0918bc3a5c428179cb170ffc79 100644 --- a/paddle/operators/sequence_slice_op.cc +++ b/paddle/operators/sequence_slice_op.cc @@ -48,7 +48,7 @@ class SequenceSliceOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -69,7 +69,7 @@ class SequenceSliceGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/sequence_slice_op.h b/paddle/operators/sequence_slice_op.h index 14bcaebbb402cb47507f1bf60035bc2d37f9baf7..0e4e4cf65fc69121f31886bb9909a87fea56a0be 100644 --- a/paddle/operators/sequence_slice_op.h +++ b/paddle/operators/sequence_slice_op.h @@ -66,13 +66,13 @@ class SequenceSliceOpKernel : public framework::OpKernel { if (platform::is_gpu_place(ctx.GetPlace())) { offset_cpu.mutable_data(offset->dims(), platform::CPUPlace()); - framework::CopyFrom(*offset, platform::CPUPlace(), ctx.device_context(), - &offset_cpu); + framework::Copy(*offset, platform::CPUPlace(), ctx.device_context(), + &offset_cpu); offset_data = offset_cpu.data(); length_cpu.mutable_data(length->dims(), platform::CPUPlace()); - framework::CopyFrom(*length, platform::CPUPlace(), ctx.device_context(), - &length_cpu); + framework::Copy(*length, platform::CPUPlace(), ctx.device_context(), + &length_cpu); length_data = length_cpu.data(); } @@ -127,13 +127,13 @@ class SequenceSliceGradOpKernel : public framework::OpKernel { if (platform::is_gpu_place(ctx.GetPlace())) { offset_cpu.mutable_data(offset->dims(), platform::CPUPlace()); - framework::CopyFrom(*offset, platform::CPUPlace(), ctx.device_context(), - &offset_cpu); + framework::Copy(*offset, platform::CPUPlace(), ctx.device_context(), + &offset_cpu); offset_data = offset_cpu.data(); length_cpu.mutable_data(length->dims(), platform::CPUPlace()); - framework::CopyFrom(*length, platform::CPUPlace(), ctx.device_context(), - &length_cpu); + framework::Copy(*length, platform::CPUPlace(), ctx.device_context(), + &length_cpu); length_data = length_cpu.data(); } diff --git a/paddle/operators/shrink_rnn_memory_op.cc b/paddle/operators/shrink_rnn_memory_op.cc index e8a4773547861478b1771562ecd9e8b0bb3c3739..3f5b2a9b84350c7dee5cb461ba6207e20e95c11b 100644 --- a/paddle/operators/shrink_rnn_memory_op.cc +++ b/paddle/operators/shrink_rnn_memory_op.cc @@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/lod_rank_table.h" +#include "paddle/framework/lod_tensor.h" #include "paddle/operators/array_operator.h" #include "paddle/operators/math/math_function.h" @@ -46,8 +47,21 @@ class ShrinkRNNMemoryOp : public ArrayOp { auto *out_var = scope.FindVar(Output("Out")); PADDLE_ENFORCE(out_var != nullptr, "Output Out must be set"); auto &out_tensor = *out_var->GetMutable(); + + size_t height = dst_num_rows; + + // do shrink for the top level LoD + if (x_tensor.lod().size() > 0 && + x_tensor.lod()[0].size() > static_cast(dst_num_rows)) { + auto lod_offset = framework::GetSubLoDAndAbsoluteOffset(x_tensor.lod(), 0, + dst_num_rows, 0); + height = lod_offset.second.second; + auto out_lod = out_tensor.mutable_lod(); + framework::AppendLoD(out_lod, lod_offset.first); + } + if (dst_num_rows != 0) { - out_tensor.ShareDataWith(x_tensor.Slice(0, dst_num_rows)); + out_tensor.ShareDataWith(x_tensor.Slice(0, height)); } } }; @@ -64,11 +78,11 @@ class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker { AddOutput("Out", "(LoDTensor) The shrinked RNN step memory."); AddComment( R"DOC( - In dynamic RNN, we are able to handle sequences of different lengths. - Because of the multiple lengths, the size of each step input can be + In dynamic RNN, we are able to handle sequences of different lengths. + Because of the multiple lengths, the size of each step input can be different, which may lead to a mismatching between the input of - the current step and the memory generated by the previous one. This - operator shrinks memory according to the size of the next step input, + the current step and the memory generated by the previous one. This + operator shrinks memory according to the size of the next step input, to make sure that they can match each other. )DOC"); } @@ -106,8 +120,8 @@ class ShrinkRNNMemoryGradOp : public ArrayOp { dx_tensor.mutable_data(x_tensor.place(), x_tensor.type()); // get device context from pool - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); if (dout_var == nullptr) { // dx_tensor fill zero math::set_constant(dev_ctx, &dx_tensor, 0.0f); @@ -115,10 +129,10 @@ class ShrinkRNNMemoryGradOp : public ArrayOp { auto &dout_tensor = dout_var->Get(); auto height = dout_tensor.dims()[0]; auto slice = dx_tensor.Slice(0, static_cast(height)); - framework::CopyFrom(dout_tensor, dout_tensor.place(), dev_ctx, &slice); - if (dx_tensor.dims()[0] < height) { + framework::Copy(dout_tensor, dout_tensor.place(), dev_ctx, &slice); + if (dx_tensor.dims()[0] > height) { auto rest_tensor = dx_tensor.Slice( - static_cast(height), static_cast(dout_tensor.dims()[0])); + static_cast(height), static_cast(dx_tensor.dims()[0])); math::set_constant(dev_ctx, &rest_tensor, 0.0f); } } @@ -132,6 +146,7 @@ class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase { PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X"))); context->SetOutputDim(framework::GradVarName("X"), context->GetInputDim("X")); + context->ShareLoD("X", framework::GradVarName("X")); } }; diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index e7306bc5f13377813e0bd49846bc834d501602eb..cef1f1fc99d6a34db068257f94f935bf4435119d 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -31,6 +31,7 @@ class SoftmaxOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(x_dims.size() == 2UL, "The input of softmax op must be a matrix."); ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", /*->*/ "Out"); } }; diff --git a/paddle/operators/softmax_with_cross_entropy_op.cc b/paddle/operators/softmax_with_cross_entropy_op.cc index 41e65b701e62bd2e671f3590869a5d7fed90701c..7135780c92dca00503ab098dc6930afd8fac0be8 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/operators/softmax_with_cross_entropy_op.cc @@ -118,7 +118,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Logits")->type()), @@ -159,7 +159,7 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType( diff --git a/paddle/operators/split_lod_tensor_op.cc b/paddle/operators/split_lod_tensor_op.cc index 89826ca6ee98d579f8b7c8795b6dc33cfa158ee1..bd93c492015e074afe08ee167025aa6251b369d1 100644 --- a/paddle/operators/split_lod_tensor_op.cc +++ b/paddle/operators/split_lod_tensor_op.cc @@ -45,15 +45,15 @@ class SplitLoDTensorOp : public framework::OperatorBase { auto &x_lod = x.lod(); auto &mask_dim = mask.dims(); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(dev_place); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); std::unique_ptr cpu_mask{new framework::LoDTensor()}; if (platform::is_cpu_place(mask.place())) { cpu_mask->ShareDataWith(mask); } else if (platform::is_gpu_place(mask.place())) { #ifdef PADDLE_WITH_CUDA - framework::CopyFrom(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); + framework::Copy(mask, platform::CPUPlace(), dev_ctx, cpu_mask.get()); #else PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option"); #endif @@ -111,9 +111,9 @@ class SplitLoDTensorOp : public framework::OperatorBase { // out[offset: offset+len] = x[each_range.begin: each_range.end] auto slice = out->Slice(static_cast(offset), static_cast(offset + len)); - framework::CopyFrom(x.Slice(static_cast(each_range.begin), - static_cast(each_range.end)), - x.place(), dev_ctx, &slice); + framework::Copy(x.Slice(static_cast(each_range.begin), + static_cast(each_range.end)), + x.place(), dev_ctx, &slice); offset += len; } } diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index b86e8266425ca094a51d224fd39ce33700057f13..88ed67f7ba2527e1d91e6bb30762d5dcf818761d 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -53,7 +53,7 @@ class SumOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto x_vars = ctx.MultiInputVar("X"); if (x_vars[0]->IsType()) { @@ -122,17 +122,17 @@ class SumOpVarTypeInference : public framework::VarTypeInference { for (auto& name : op_desc.Input("X")) { VLOG(10) << name << " " - << block->FindRecursiveOrCreateVar(name)->GetType(); + << block->FindRecursiveOrCreateVar(name).GetType(); } bool any_input_is_lod_tensor = std::any_of( inputs.begin(), inputs.end(), [block](const std::string& name) { - return block->FindRecursiveOrCreateVar(name)->GetType() == + return block->FindRecursiveOrCreateVar(name).GetType() == framework::proto::VarDesc::LOD_TENSOR; }); auto is_tensor_array = [block](const std::string& name) { - return detail::Ref(block->FindRecursiveOrCreateVar(name)).GetType() == + return block->FindRecursiveOrCreateVar(name).GetType() == framework::proto::VarDesc::LOD_TENSOR_ARRAY; }; @@ -146,8 +146,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference { std::ostringstream os; for (auto& each : inputs) { os << " " << each << " type is " - << detail::Ref(block->FindRecursiveOrCreateVar(each)).GetType() - << "\n"; + << block->FindRecursiveOrCreateVar(each).GetType() << "\n"; } PADDLE_ENFORCE(all_inputs_are_tensor_array, "Not all inputs are tensor array:\n%s", os.str()); @@ -158,7 +157,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference { } auto out_var_name = op_desc.Output("Out").front(); - auto& out_var = detail::Ref(block->FindRecursiveOrCreateVar(out_var_name)); + auto& out_var = block->FindRecursiveOrCreateVar(out_var_name); out_var.SetType(var_type); auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front())); out_var.SetDataType(in_var.GetDataType()); diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index eaa36aa1aea53e0b37ef6c578d8bb1cda230ded0..48201b344de0d3bd2b121a12389876dad095f10d 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -37,11 +37,11 @@ class SumKernel : public framework::OpKernel { bool in_place = out_var == in_vars[0]; if (out_var->IsType()) { - auto *out = context.Output("Out"); - out->mutable_data(context.GetPlace()); - + auto *out = context.Output("Out"); + if (!in_place) { + out->mutable_data(context.GetPlace()); + } auto result = EigenVector::Flatten(*out); - if (!in_place) { math::SetConstant constant_functor; constant_functor(context.template device_context(), out, @@ -70,6 +70,7 @@ class SumKernel : public framework::OpKernel { } else if (out_var->IsType()) { PADDLE_ENFORCE(!in_place, "SelectedRows not support inplace sum now"); auto *out = context.Output("Out"); + out->mutable_rows()->clear(); auto *out_value = out->mutable_value(); // Runtime InferShape @@ -107,8 +108,8 @@ class SumKernel : public framework::OpKernel { out_array.resize(i + 1); } if (out_array[i].numel() == 0) { - framework::CopyFrom(in_array[i], in_array[i].place(), - context.device_context(), &out_array[i]); + framework::Copy(in_array[i], in_array[i].place(), + context.device_context(), &out_array[i]); out_array[i].set_lod(in_array[i].lod()); } else { PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod()); diff --git a/paddle/operators/tensor.save b/paddle/operators/tensor.save deleted file mode 100644 index c24308a7d0131b84c28c0a9857cce4949afb2091..0000000000000000000000000000000000000000 Binary files a/paddle/operators/tensor.save and /dev/null differ diff --git a/paddle/operators/tensor_array_read_write_op.cc b/paddle/operators/tensor_array_read_write_op.cc index 9529aab573a73f55f7a67d39cde99aca023f473e..a70be8b8752d12433bb19b9953d80e397858834c 100644 --- a/paddle/operators/tensor_array_read_write_op.cc +++ b/paddle/operators/tensor_array_read_write_op.cc @@ -40,10 +40,11 @@ class WriteToArrayOp : public ArrayOp { if (x_tensor.memory_size() > 0) { auto *out_tensor = &out->at(offset); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); - CopyFrom(x_tensor, place, dev_ctx, out_tensor); + Copy(x_tensor, place, dev_ctx, out_tensor); out_tensor->set_lod(x_tensor.lod()); } else { VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so " @@ -105,8 +106,7 @@ class WriteToArrayInferVarType : public framework::VarTypeInference { auto x_name = op_desc.Input("X")[0]; auto out_name = op_desc.Output("Out")[0]; VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY"; - auto &out = detail::Ref(block->FindRecursiveOrCreateVar(out_name), - "Cannot found %s", out_name); + auto &out = block->FindRecursiveOrCreateVar(out_name); out.SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY); auto *x = block->FindVarRecursive(x_name); if (x != nullptr) { @@ -129,12 +129,13 @@ class ReadFromArrayOp : public ArrayOp { auto &x_array = x->Get(); auto *out = scope.FindVar(Output("Out")); PADDLE_ENFORCE(out != nullptr, "Out must be set"); - auto *out_tensor = out->GetMutable(); size_t offset = GetOffset(scope, place); if (offset < x_array.size()) { - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); - auto &dev_ctx = *pool.Borrow(place); - framework::CopyFrom(x_array[offset], place, dev_ctx, out_tensor); + auto *out_tensor = out->GetMutable(); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + framework::Copy(x_array[offset], place, dev_ctx, out_tensor); out_tensor->set_lod(x_array[offset].lod()); } else { VLOG(10) << "offset " << offset << " >= " << x_array.size(); diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc index bb72210bb67f925af3e450961069f0737dbde35e..a8ddd729732eb41618ea2788a6eb70a16a5ac70f 100644 --- a/paddle/operators/top_k_op.cc +++ b/paddle/operators/top_k_op.cc @@ -41,6 +41,8 @@ class TopkOp : public framework::OperatorWithKernel { dims[dims.size() - 1] = k; ctx->SetOutputDim("Out", dims); ctx->SetOutputDim("Indices", dims); + ctx->ShareLoD("X", "Out"); + ctx->ShareLoD("X", "Indices"); } }; diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index 4d5dd86cb8103a76247913cc088db4cff6b6ff43..3a314bdb9b058f5dfc61b35795000298c40551e6 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -63,7 +63,7 @@ class UniformRandomOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( static_cast(ctx.Attr("dtype")), diff --git a/paddle/operators/unpool_op.cc b/paddle/operators/unpool_op.cc index aeed9679b2a3cce744189809c223a5b0d581ccdd..50cee11a7a2d6a2483c6851e888b61475cba1376 100644 --- a/paddle/operators/unpool_op.cc +++ b/paddle/operators/unpool_op.cc @@ -71,7 +71,7 @@ int OutputSize(int input_size, int ksize, int padding, int stride) { class UnpoolOp : public framework::OperatorWithKernel { protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -110,7 +110,7 @@ class UnpoolOp : public framework::OperatorWithKernel { class UnpoolOpGrad : public framework::OperatorWithKernel { protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/warpctc_op.cc b/paddle/operators/warpctc_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..bd0c5f9957663fb05670269aa6c39a976de7bc9c --- /dev/null +++ b/paddle/operators/warpctc_op.cc @@ -0,0 +1,141 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/warpctc_op.h" + +namespace paddle { +namespace operators { + +class WarpCTCOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Logits"), + "Input(Logits) of WarpCTCOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), + "Input(Label) of WarpCTCOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("WarpCTCGrad"), + "Output(WarpCTCGrad) of WarpCTCOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Loss"), + "Output(Loss) of WarpCTCOp should not be null."); + + auto logits_dims = ctx->GetInputDim("Logits"); + int sequence_width = + static_cast(framework::product(logits_dims) / logits_dims[0]); + int blank = ctx->Attrs().Get("blank"); + PADDLE_ENFORCE((blank >= 0) && (blank < sequence_width), + "The value of Attr(blank) should be in interval [0, %d).", + sequence_width); + // TODO(liuyiqun): it is tricky to set the wrong dimension here. + ctx->SetOutputDim("Loss", {logits_dims[0], 1}); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Logits")->type()), + ctx.device_context()); + } +}; + +class WarpCTCOpMaker : public framework::OpProtoAndCheckerMaker { + public: + WarpCTCOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Logits", + "(LodTensor, default: LoDTensor), the unscaled " + "probabilities of variable-length sequences, which is a 2-D " + "Tensor with LoD information. It's shape is " + "[Lp, num_classes + 1], where Lp is the sum of all input " + "sequences' length and num_classes is the true number of classes " + "(not including the blank label)."); + AddInput("Label", + "(LodTensor, default: LoDTensor), the ground truth " + "of variable-length sequence, which is a 2-D Tensor with LoD " + "information. It is of the shape [Lg, 1], where Lg is th sum of " + "all labels' length."); + AddOutput("WarpCTCGrad", + "(Tensor, default: Tensor), a temporary " + "output Tensor to store the gradients of warp-ctc, which is " + "computed with loss together in one call. It is a 3-D Tensor of " + "the shape [max_sequence_length, batch_size, num_classes + 1].") + .AsIntermediate(); + AddOutput("Loss", + "(Tensor, default: Tensor), the Connectionist " + "Temporal Classification (CTC) loss, which is a 2-D Tensor of " + "the shape [batch_size, 1]"); + AddAttr("blank", + "(int, default: 0), the blank label of Connectionist " + "Temporal Classification (CTC) loss, which is in the " + "half-opened interval [0, num_classes + 1).") + .SetDefault(0); + AddAttr("norm_by_times", + "(bool, default: false), whether to " + "normalize the gradients by the number of time-step, " + "which is also the sequence's length.") + .SetDefault(false); + AddComment(R"DOC( +An operator integrating the open-source +[warp-ctc](https://github.com/baidu-research/warp-ctc) library, which is used in +[Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin]( +https://arxiv.org/pdf/1512.02595v1.pdf), +to compute Connectionist Temporal Classification (CTC) loss. +It can be aliased as softmax with ctc, since a native softmax activation is +interated to the warp-ctc library, to to normlize values for each row of the +input tensor. + +More detail of CTC loss can be found by refering to +[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with +Recurrent Neural Networks]( +http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf). +)DOC"); + } +}; + +class WarpCTCGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("WarpCTCGrad"), + "Input(WarpCTCGrad) of WarpCTCGradOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")), + "Output(Logits@GRAD) of WarpCTCGradOp should not be null."); + ctx->SetOutputDim(framework::GradVarName("Logits"), + ctx->GetInputDim("Logits")); + ctx->ShareLoD("Logits", /*->*/ framework::GradVarName("Logits")); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("Logits")->type()), + ctx.device_context()); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(warpctc, ops::WarpCTCOp, ops::WarpCTCOpMaker, warpctc_grad, + ops::WarpCTCGradOp); +REGISTER_OP_CPU_KERNEL( + warpctc, ops::WarpCTCKernel); +REGISTER_OP_CPU_KERNEL( + warpctc_grad, + ops::WarpCTCGradKernel); diff --git a/paddle/operators/warpctc_op.cu.cc b/paddle/operators/warpctc_op.cu.cc new file mode 100644 index 0000000000000000000000000000000000000000..7d8527ac75fd4964f95198417a213ff6155aac2a --- /dev/null +++ b/paddle/operators/warpctc_op.cu.cc @@ -0,0 +1,22 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/warpctc_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + warpctc, ops::WarpCTCKernel); +REGISTER_OP_CUDA_KERNEL( + warpctc_grad, + ops::WarpCTCGradKernel); diff --git a/paddle/operators/warpctc_op.h b/paddle/operators/warpctc_op.h new file mode 100644 index 0000000000000000000000000000000000000000..41899c7fe0c3089c4fc7c160c8896dec0e3cd6dd --- /dev/null +++ b/paddle/operators/warpctc_op.h @@ -0,0 +1,218 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/sequence_padding.h" +#include "paddle/platform/dynload/warpctc.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; + +template +class WarpCTCFunctor { + public: + /* + * \brief Compute the connectionist temporal classification loss, + * and optionally compute the gradient with respect to the inputs. + * + * If gradient is nullptr, it only computes the ctc loss, + * or computes both ctc loss and gradient. + * + * \param ctx execution context of this functor + * \param input batch matrix of input probabilities, in + * max_sequence_length x num_sequences x + * sequence_width, (row-major) format + * \param gradient batch matrix of gradient, with the same shape as + * input. + * \param cpu_labels labels always in CPU memory. + * \param cpu_label_lengths length of all labels in CPU memory. + * \param cpu_input_lengths length of all sequences in CPU memory. + * \param sequence_width number of possible output symbols. + * \param num_sequences number of sequence. + * \param blank blank label used in ctc loss function. + * \param cpu_losss cost of each sequence in CPU memory. + */ + void operator()(const framework::ExecutionContext& ctx, const float* input, + float* gradient, const int* cpu_labels, + const int* cpu_label_lengths, const int* cpu_input_lengths, + const size_t sequence_width, const size_t num_sequences, + const size_t blank, float* cpu_loss) { + // Init warp-ctc options + init(ctx, blank); + + // Compute the required workspace size. + // There is no memory allocated operations within warp-ctc. + size_t workspace_bytes = 0; + ctcStatus_t status = platform::dynload::get_workspace_size( + cpu_label_lengths, cpu_input_lengths, static_cast(sequence_width), + static_cast(num_sequences), options_, &workspace_bytes); + PADDLE_ENFORCE_EQ(CTC_STATUS_SUCCESS, status, + "warp-ctc [version %d] Error in get_workspace_size: ", + warpctc_version_, + platform::dynload::ctcGetStatusString(status)); + PADDLE_ENFORCE_GT(workspace_bytes, 0UL, + "Bytes of workspace got by warp-ctc function, " + "get_workspace_size(), should be larger than 0."); + + Tensor workspace; + size_t workspace_elements = workspace_bytes / sizeof(float) + 1UL; + float* workspace_data = workspace.mutable_data( + framework::make_ddim({static_cast(workspace_elements)}), + ctx.GetPlace()); + math::SetConstant()( + ctx.template device_context(), &workspace, + static_cast(0)); + + // compute loss and gradient + status = platform::dynload::compute_ctc_loss( + input, gradient, cpu_labels, cpu_label_lengths, cpu_input_lengths, + static_cast(sequence_width), static_cast(num_sequences), + cpu_loss, workspace_data, options_); + PADDLE_ENFORCE_EQ(CTC_STATUS_SUCCESS, status, + "warp-ctc [version %d] Error in compute_ctc_loss: ", + warpctc_version_, + platform::dynload::ctcGetStatusString(status)); + } + + protected: + void init(const framework::ExecutionContext& ctx, const size_t blank) { + warpctc_version_ = platform::dynload::get_warpctc_version(); + + if (platform::is_gpu_place(ctx.GetPlace())) { +#ifdef PADDLE_WITH_CUDA + options_.loc = CTC_GPU; + options_.stream = reinterpret_cast( + ctx.device_context()) + .stream(); +#else + PADDLE_THROW("[warpctc init] GPU is not enabled."); +#endif + } else { + options_.loc = CTC_CPU; + options_.num_threads = 1; + } + + options_.blank_label = blank; + } + + private: + int warpctc_version_; + ctcOptions options_; +}; + +template +class WarpCTCKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* logits = ctx.Input("Logits"); + auto* label = ctx.Input("Label"); + auto* warpctc_grad = ctx.Output("WarpCTCGrad"); + auto* loss = ctx.Output("Loss"); + + const size_t level = 0; + + auto logits_lod = framework::ToAbsOffset(logits->lod()); + auto logits_dims = logits->dims(); + PADDLE_ENFORCE_EQ(logits_dims[0], + static_cast(logits_lod[level].back()), + "The first dimension of Input(Logits) should be equal to " + "the sum of all sequences' lengths."); + + auto label_lod = framework::ToAbsOffset(label->lod()); + auto label_dims = label->dims(); + PADDLE_ENFORCE_EQ( + label_dims[0], label->numel(), + "The width of each timestep in Input(Label) should be 1."); + + const size_t num_sequences = logits_lod[level].size() - 1; + PADDLE_ENFORCE_EQ(num_sequences, label_lod[level].size() - 1, + "The number of sequences of Input(Logits) should be " + "equal to that of Input(Label)."); + + const size_t sequence_width = logits->numel() / logits_dims[0]; + auto loss_dims = + framework::make_ddim({static_cast(num_sequences), 1}); + + // warpctc needs sequences data stored in transposed padding format + Tensor warpctc_logits; + const size_t max_sequence_length = + math::MaximumSequenceLength(logits_lod, level); + auto warpctc_logits_dims = + framework::make_ddim({static_cast(max_sequence_length), + static_cast(num_sequences), + static_cast(sequence_width)}); + warpctc_logits.mutable_data(warpctc_logits_dims, ctx.GetPlace()); + math::PaddingLoDTensorFunctor()( + ctx.template device_context(), *logits, warpctc_logits, + false); + const T* warpctc_logits_data = warpctc_logits.data(); + + std::vector warpctc_label_lengths(num_sequences); + std::vector warpctc_logits_lengths(num_sequences); + + for (size_t i = 0; i < num_sequences; ++i) { + warpctc_label_lengths[i] = label_lod[level][i + 1] - label_lod[level][i]; + warpctc_logits_lengths[i] = + logits_lod[level][i + 1] - logits_lod[level][i]; + } + + // warpctc computes loss and gradient in one call, gradient data also stored + // in batch format + T* warpctc_grad_data = + warpctc_grad->mutable_data(warpctc_logits.dims(), ctx.GetPlace()); + + // warpctc accesses labels in CPU memory + Tensor warpctc_label; + Copy(*label, platform::CPUPlace(), ctx.device_context(), &warpctc_label); + const int* warpctc_label_data = warpctc_label.data(); + + // warpctc stores loss in CPU memory + Tensor warpctc_loss; + T* warpctc_loss_data = + warpctc_loss.mutable_data(loss_dims, platform::CPUPlace()); + + const size_t blank = static_cast(ctx.Attr("blank")); + + WarpCTCFunctor()( + ctx, warpctc_logits_data, warpctc_grad_data, warpctc_label_data, + warpctc_label_lengths.data(), warpctc_logits_lengths.data(), + sequence_width, num_sequences, blank, warpctc_loss_data); + + // Copy the loss back + Copy(warpctc_loss, ctx.GetPlace(), ctx.device_context(), loss); + } +}; + +template +class WarpCTCGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* warpctc_grad = ctx.Input("WarpCTCGrad"); + auto* logits_grad = ctx.Output(framework::GradVarName("Logits")); + + bool norm_by_times = ctx.Attr("norm_by_times"); + math::UnpaddingLoDTensorFunctor()( + ctx.template device_context(), *logits_grad, + *warpctc_grad, norm_by_times); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/while_op.cc b/paddle/operators/while_op.cc index 728ef6079465d57f54dab383aac5e2bb750fe113..7a3400919efe6f3bed40e45a245b556beab6fce4 100644 --- a/paddle/operators/while_op.cc +++ b/paddle/operators/while_op.cc @@ -25,12 +25,12 @@ namespace operators { using StepScopeVar = std::vector; using LoDTensor = framework::LoDTensor; -constexpr char kStepBlock[] = "sub_block"; -constexpr char kCondition[] = "Condition"; -constexpr char kStepScopes[] = "StepScopes"; -constexpr char kParameters[] = "X"; -constexpr char kParamGrads[] = "X@GRAD"; -constexpr char kOutputs[] = "Out"; +static constexpr char kStepBlock[] = "sub_block"; +static constexpr char kCondition[] = "Condition"; +static constexpr char kStepScopes[] = "StepScopes"; +static constexpr char kX[] = "X"; +static constexpr char kXGRAD[] = "X@GRAD"; +static constexpr char kOutputs[] = "Out"; class WhileOp : public framework::OperatorBase { public: @@ -67,7 +67,7 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker { public: WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput(kParameters, + AddInput(kX, "A set of variables, which are required by operators inside the " "block of While Op.") .AsDuplicable(); @@ -158,8 +158,8 @@ class WhileGradOp : public framework::OperatorBase { executor.Run(*program, *cur_scope_iter, block->ID(), false); - auto &pg_names = Outputs(kParamGrads); - auto &p_names = Inputs(kParameters); + auto &pg_names = Outputs(kXGRAD); + auto &p_names = Inputs(kX); PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size()); for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) { if (pg_names[param_id] == framework::kEmptyVarName) { @@ -211,59 +211,54 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { protected: std::unique_ptr Apply() const override { - auto *grad = new framework::OpDesc(); - grad->SetType("while_grad"); - grad->SetInput(kParameters, Input(kParameters)); + auto *while_grad = new framework::OpDesc(); + while_grad->SetType("while_grad"); + while_grad->SetInput(kX, Input(kX)); + while_grad->SetInput(kOutputs, Output(kOutputs)); + while_grad->SetInput(kStepScopes, Output(kStepScopes)); + + auto *grad_block = this->grad_block_[0]; + auto *fwd_block = grad_block->ParentBlock(); // Not all of IGs will be generated by inner gradient operators of while op. // Ignore IGs that is not generated by the inside block. - auto igs = InputGrad(kParameters, /*do not drop empty gradient*/ false); - std::unordered_set all_outs; - for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) { - for (auto &oname : grad_block_[0]->Op(i)->OutputArgumentNames()) { - all_outs.insert(oname); + std::unordered_set inner_op_outputs; + for (const auto *op : grad_block->AllOps()) { + for (auto &oname : op->OutputArgumentNames()) { + inner_op_outputs.insert(oname); } } + auto igs = InputGrad(kX, /*do not drop empty gradient*/ false); for (auto &each_ig : igs) { - if (all_outs.find(each_ig) == all_outs.end()) { + if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) { VLOG(10) << "Ignore " << each_ig; each_ig = framework::kEmptyVarName; } } - - grad->SetOutput(framework::GradVarName(kParameters), igs); - - grad->SetInput(kOutputs, Output(kOutputs)); + while_grad->SetOutput(framework::GradVarName(kX), igs); // OG should be re-calculated by step blocks, since many outputs of while op // do not need to calculate gradients. std::unordered_set block_ins; - auto *fwd_block = this->grad_block_[0]->ParentBlock(); - { - for (auto &p : Input(kParameters)) { - block_ins.insert(p); - } - for (auto &o : Output(kOutputs)) { - block_ins.insert(o); - } + block_ins.reserve(Input(kX).size() + Output(kOutputs).size()); + for (auto &p : Input(kX)) { + block_ins.insert(p); + } + for (auto &o : Output(kOutputs)) { + block_ins.insert(o); } std::unordered_set extra_inputs; - for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) { - for (auto &input_name : grad_block_[0]->Op(i)->InputArgumentNames()) { - if (block_ins.find(input_name) != block_ins.end()) { + for (const auto *op : grad_block->AllOps()) { + for (auto &input_name : op->InputArgumentNames()) { + // If the input of Op has been recorded or is generated by the forward + // block, do not make it as input again. + if (block_ins.find(input_name) != block_ins.end() || + fwd_block->FindVar(input_name) != nullptr) { continue; } - - // If the input of Op is generated by the forward block, do not make it - // as input again. - if (fwd_block->FindVar(input_name) != nullptr) { - continue; - } - extra_inputs.insert(input_name); } - - for (auto &output_name : grad_block_[0]->Op(i)->OutputArgumentNames()) { + for (auto &output_name : op->OutputArgumentNames()) { block_ins.insert(output_name); } } @@ -272,15 +267,15 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { extra_inputs_list.resize(extra_inputs.size()); std::copy(extra_inputs.begin(), extra_inputs.end(), extra_inputs_list.begin()); - grad->SetInput(framework::GradVarName(kOutputs), extra_inputs_list); - grad->SetInput(kStepScopes, Output(kStepScopes)); - grad->SetAttrMap(this->Attrs()); - grad->SetBlockAttr(kStepBlock, *grad_block_[0]); + while_grad->SetInput(framework::GradVarName(kOutputs), extra_inputs_list); + + while_grad->SetAttrMap(this->Attrs()); + while_grad->SetBlockAttr(kStepBlock, *grad_block); // record the original output gradient names, since the gradient name of // while operator could be renamed. - grad->SetAttr("original_output_grad", extra_inputs_list); + while_grad->SetAttr("original_output_grad", extra_inputs_list); - return std::unique_ptr(grad); + return std::unique_ptr(while_grad); } }; @@ -288,8 +283,8 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference { public: void operator()(const framework::OpDesc &op_desc, framework::BlockDesc *block) const override { - auto p_names = op_desc.Input(kParameters); - auto pg_names = op_desc.Output(framework::GradVarName(kParameters)); + auto p_names = op_desc.Input(kX); + auto pg_names = op_desc.Output(framework::GradVarName(kX)); for (size_t i = 0; i < p_names.size(); ++i) { auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i])); @@ -307,21 +302,21 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference { class WhileGradOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { - ctx->HasInputs(kParameters); - ctx->HasOutputs(framework::GradVarName(kParameters)); + ctx->HasInputs(kX); + ctx->HasOutputs(framework::GradVarName(kX)); ctx->HasInputs(kOutputs); ctx->HasInputs(framework::GradVarName(kOutputs)); - auto p_names = ctx->Inputs(kParameters); - auto pg_names = ctx->Outputs(kParamGrads); - auto var_types = ctx->GetInputsVarType(kParameters); + auto p_names = ctx->Inputs(kX); + auto pg_names = ctx->Outputs(kXGRAD); + auto var_types = ctx->GetInputsVarType(kX); std::vector names_to_set; std::vector dims_to_set; for (size_t i = 0; i < p_names.size(); ++i) { if (pg_names[i] == framework::kEmptyVarName) { continue; } - auto dims = ctx->GetInputsElementDim(kParameters, i); + auto dims = ctx->GetInputsElementDim(kX, i); if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) { names_to_set.push_back(pg_names[i]); dims_to_set.push_back(dims); diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index f0a0ea70a0aa14e1db959e4e6ace2a44363d0c35..44f6d85cd1510f309595ca711de2e0f767219580 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -21,12 +21,21 @@ ELSE() set(GPU_CTX_DEPS) ENDIF() +IF(WITH_MKLDNN) + set(MKLDNN_CTX_DEPS mkldnn) +ELSE() + set(MKLDNN_CTX_DEPS) +ENDIF() + # memcpy deoends on device_context, here add deps individually for # avoiding cycle dependencies cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator - system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS}) + system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS}) nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info) nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context) nv_test(nccl_test SRCS nccl_test.cu DEPS dynload_cuda gpu_info device_context) + +cc_library(profiler SRCS profiler.cc DEPS device_context) +cc_test(profiler_test SRCS profiler_test.cc DEPS profiler) diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index e450ef32a432a9dede05835341a166454a551889..9d9348079a0179418ab1a1474cfd8b69136f26b2 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -17,7 +17,7 @@ namespace platform { DeviceContextPool* DeviceContextPool::pool = nullptr; -const platform::DeviceContext* DeviceContextPool::Borrow( +const platform::DeviceContext* DeviceContextPool::Get( const platform::Place& place) { auto it = device_contexts_.find(place); if (it == device_contexts_.end()) { @@ -28,24 +28,6 @@ const platform::DeviceContext* DeviceContextPool::Borrow( return it->second; } -std::vector DeviceContextPool::Borrow( - const std::vector& places) { - PADDLE_ENFORCE_GT(places.size(), 0); - PADDLE_ENFORCE_LE(places.size(), device_contexts_.size()); - std::vector borrowed_contexts; - for (auto& place : places) { - auto it = device_contexts_.find(place); - if (it != device_contexts_.end()) { - borrowed_contexts.emplace_back(it->second); - } else { - PADDLE_THROW( - "'Place' is not supported, Please re-compile with WITH_GPU " - "option"); - } - } - return borrowed_contexts; -} - DeviceContextPool::DeviceContextPool( const std::vector& places) { PADDLE_ENFORCE_GT(places.size(), 0); @@ -145,15 +127,21 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) { eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_)); - PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); - PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); + if (dynload::HasCUDNN()) { + PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); + PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); + } else { + cudnn_handle_ = nullptr; + } } CUDADeviceContext::~CUDADeviceContext() { SetDeviceId(place_.device); Wait(); PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_)); - PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); + if (cudnn_handle_ != nullptr) { + PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); + } eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); @@ -178,19 +166,69 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; } cudaStream_t CUDADeviceContext::stream() const { return stream_; } -CUDNNDeviceContext::CUDNNDeviceContext(CUDAPlace place) - : CUDADeviceContext(place) { - PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); - PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream())); +#endif + +#ifdef PADDLE_WITH_MKLDNN +MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place) + : CPUDeviceContext(place), ready_(false) { + stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager)); + engine_.reset(new mkldnn::engine(mkldnn::engine::cpu, 0)); } -CUDNNDeviceContext::~CUDNNDeviceContext() { - SetDeviceId(boost::get(GetPlace()).device); - Wait(); - PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); +template +void MKLDNNDeviceContext::AddElement(const std::string& op_key, + const T& value) { + if (GetElement(op_key)) { + return; + } + GetElementPool().emplace(op_key, std::move(value)); } -cudnnHandle_t CUDNNDeviceContext::cudnn_handle() const { return cudnn_handle_; } +template +const T& MKLDNNDeviceContext::GetElement(const std::string& op_key) const { + auto it = GetElementPool().find(op_key); + return it == GetElementPool().end() ? nullptr : it->second; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return memory_pool_; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return primitive_pool_; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return primitive_desc_pool_; +} + +void MKLDNNDeviceContext::Execute(bool block) { + if (pipeline_.empty()) { + return; + } + ResetStream(); + stream_->submit(pipeline_).wait(block); + ready_ = false; + pipeline_.clear(); +} + +void MKLDNNDeviceContext::ResetStream() { + if (ready_) { + return; + } + // TODO(TJ): change me when mkldnn have specific method to reset this state + stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager)); + ready_ = true; +} #endif diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index 8ba12e1657b6671b36fa9ad3f498820d61af585e..9826a642768a3346110a7872a726aba15eac1fb0 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -21,6 +21,10 @@ limitations under the License. */ #define EIGEN_USE_GPU #endif +#ifdef PADDLE_WITH_MKLDNN +#include "paddle/platform/mkldnn_helper.h" +#endif + #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" #include "unsupported/Eigen/CXX11/Tensor" @@ -52,6 +56,14 @@ class CPUDeviceContext : public DeviceContext { std::unique_ptr eigen_device_; }; +template +struct DefaultDeviceContextType; + +template <> +struct DefaultDeviceContextType { + using TYPE = CPUDeviceContext; +}; + #ifdef PADDLE_WITH_CUDA class EigenCudaStreamDevice; @@ -90,18 +102,59 @@ class CUDADeviceContext : public DeviceContext { cublasHandle_t cublas_handle_; }; -class CUDNNDeviceContext : public CUDADeviceContext { +template <> +struct DefaultDeviceContextType { + using TYPE = CUDADeviceContext; +}; + +#endif + +#ifdef PADDLE_WITH_MKLDNN +class MKLDNNDeviceContext : public CPUDeviceContext { public: - explicit CUDNNDeviceContext(CUDAPlace place); - virtual ~CUDNNDeviceContext(); + explicit MKLDNNDeviceContext(CPUPlace place); - /*! \brief Return cudnn handle in the device context. */ - cudnnHandle_t cudnn_handle() const; + /* \brief Add new element: memory, primitive or primitive desc */ + template + void AddElement(const std::string& op_key, const T& value); + + /* \brief Get existed element: memory, primitive or primitive desc */ + template + const T& GetElement(const std::string& op_key) const; + + /* \brief Get element pool: memory, primitive or primitive desc pool */ + template + const std::unordered_map>& + GetElementPool() const; + + /* \brief Get the active engine */ + const MKLDNNEngine& engine() const { return *engine_; } + + /* \brief Submit primitive to pipeline */ + void Submit(const MKLDNNPrimitivePtr& p) { pipeline_.push_back(*p); } + + /*! \brief Execute all submitted primitives in pipeline */ + void Execute(bool block = true); + + protected: + /*! \brief Reset the stream to prepare next exectue */ + void ResetStream(); private: - cudnnHandle_t cudnn_handle_; + std::unordered_map> + memory_pool_; + std::unordered_map> + primitive_pool_; + std::unordered_map> + primitive_desc_pool_; + std::vector pipeline_; + MKLDNNStreamPtr stream_; + MKLDNNEnginePtr engine_; + bool ready_; }; - #endif /*! \brief device context pool singleton */ @@ -109,13 +162,13 @@ class DeviceContextPool { public: explicit DeviceContextPool(const std::vector& places); - static DeviceContextPool& Get() { + static DeviceContextPool& Instance() { PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!"); return *pool; } /*! \brief Create should only called by Init function */ - static DeviceContextPool& Create(const std::vector& places) { + static DeviceContextPool& Init(const std::vector& places) { if (pool == nullptr) { pool = new DeviceContextPool(places); } @@ -123,13 +176,16 @@ class DeviceContextPool { } /*! \brief Return handle of single device context. */ - const platform::DeviceContext* Borrow(const platform::Place& place); + const platform::DeviceContext* Get(const platform::Place& place); - /*! \brief Return handle of multi-device context. */ - std::vector Borrow( - const std::vector& places); + template + const typename DefaultDeviceContextType::TYPE* GetByPlace( + const Place& place) { + return reinterpret_cast< + const typename DefaultDeviceContextType::TYPE*>(Get(place)); + } - ~DeviceContextPool() {} + size_t size() const { return device_contexts_.size(); } private: static DeviceContextPool* pool; @@ -137,7 +193,7 @@ class DeviceContextPool { struct Hash { std::hash hash_; size_t operator()(const platform::Place& place) const { - int pre_hash = place.which() + (1 << LEFT_SHIFT); + int pre_hash = place.which() << LEFT_SHIFT; if (platform::is_gpu_place(place)) { pre_hash += boost::get(place).GetDeviceId(); } diff --git a/paddle/platform/device_context_test.cu b/paddle/platform/device_context_test.cu index 91011bf71ccf4295075aa2ed73dffa92cb22d773..767fe9b24a5d51630397a864c98928de52d21f31 100644 --- a/paddle/platform/device_context_test.cu +++ b/paddle/platform/device_context_test.cu @@ -49,21 +49,6 @@ TEST(Device, CUDADeviceContext) { } } -TEST(Device, CUDNNDeviceContext) { - using paddle::platform::CUDNNDeviceContext; - using paddle::platform::CUDAPlace; - if (paddle::platform::dynload::HasCUDNN()) { - int count = paddle::platform::GetCUDADeviceCount(); - for (int i = 0; i < count; ++i) { - CUDNNDeviceContext* device_context = new CUDNNDeviceContext(CUDAPlace(i)); - cudnnHandle_t cudnn_handle = device_context->cudnn_handle(); - ASSERT_NE(nullptr, cudnn_handle); - ASSERT_NE(nullptr, device_context->stream()); - delete device_context; - } - } -} - TEST(Device, DeviceContextPool) { using paddle::platform::DeviceContextPool; using paddle::platform::CUDADeviceContext; @@ -71,35 +56,20 @@ TEST(Device, DeviceContextPool) { using paddle::platform::CPUPlace; using paddle::platform::CUDAPlace; - DeviceContextPool& pool = DeviceContextPool::Get(); - auto cpu_dev_ctx1 = pool.Borrow(CPUPlace()); - auto cpu_dev_ctx2 = pool.Borrow(CPUPlace()); - EXPECT_TRUE(cpu_dev_ctx2 == cpu_dev_ctx1); + DeviceContextPool& pool = DeviceContextPool::Instance(); + auto cpu_dev_ctx1 = pool.Get(CPUPlace()); + auto cpu_dev_ctx2 = pool.Get(CPUPlace()); + ASSERT_EQ(cpu_dev_ctx2, cpu_dev_ctx1); std::vector gpu_places; int count = paddle::platform::GetCUDADeviceCount(); for (int i = 0; i < count; ++i) { - gpu_places.emplace_back(CUDAPlace(i)); - } - auto dev_ctxs = pool.Borrow(gpu_places); - for (size_t i = 0; i < dev_ctxs.size(); ++i) { - auto* dev_ctx = static_cast(dev_ctxs[i]); - - // check same as CUDAPlace(i) - CUDAPlace place = boost::get(dev_ctx->GetPlace()); - EXPECT_EQ(place.GetDeviceId(), static_cast(i)); + auto dev_ctx = pool.Get(CUDAPlace(i)); + ASSERT_NE(dev_ctx, nullptr); } } int main(int argc, char** argv) { - int dev_count = paddle::platform::GetCUDADeviceCount(); - if (dev_count <= 1) { - LOG(WARNING) << "Cannot test multi-gpu DeviceContextPool, because the CUDA " - "device count is " - << dev_count; - return 0; - } - std::vector places; places.emplace_back(paddle::platform::CPUPlace()); @@ -109,7 +79,7 @@ int main(int argc, char** argv) { } VLOG(0) << " DeviceCount " << count; - paddle::platform::DeviceContextPool::Create(places); + paddle::platform::DeviceContextPool::Init(places); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); diff --git a/paddle/platform/dynload/CMakeLists.txt b/paddle/platform/dynload/CMakeLists.txt index f4fda65907dc26e9edb91ee46f3b8bd2de7b3f3a..cf2081b434961c17c1b65509909699788d2b9ad9 100644 --- a/paddle/platform/dynload/CMakeLists.txt +++ b/paddle/platform/dynload/CMakeLists.txt @@ -1,3 +1,4 @@ cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags enforce) nv_library(dynload_cuda SRCS cublas.cc cudnn.cc curand.cc nccl.cc DEPS dynamic_loader nccl) +cc_library(dynload_warpctc SRCS warpctc.cc DEPS dynamic_loader warpctc) diff --git a/paddle/platform/dynload/cublas.cc b/paddle/platform/dynload/cublas.cc index 9cd2a1f565526f8dc45932ba6168f4e25c6ad238..6aca716657c5f629ce40e88c04dc25fbbc9b4f36 100644 --- a/paddle/platform/dynload/cublas.cc +++ b/paddle/platform/dynload/cublas.cc @@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include +#include "paddle/platform/dynload/cublas.h" namespace paddle { namespace platform { diff --git a/paddle/platform/dynload/warpctc.cc b/paddle/platform/dynload/warpctc.cc new file mode 100644 index 0000000000000000000000000000000000000000..9b7d01a6e8f6cccc0082f65f9511085d2a3111b7 --- /dev/null +++ b/paddle/platform/dynload/warpctc.cc @@ -0,0 +1,30 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/platform/dynload/warpctc.h" + +namespace paddle { +namespace platform { +namespace dynload { + +std::once_flag warpctc_dso_flag; +void* warpctc_dso_handle = nullptr; + +#define DEFINE_WRAP(__name) DynLoad__##__name __name + +WARPCTC_ROUTINE_EACH(DEFINE_WRAP); + +} // namespace dynload +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/dynload/warpctc.h b/paddle/platform/dynload/warpctc.h new file mode 100644 index 0000000000000000000000000000000000000000..acafcaff2ccc33c315f216e31b866bf4c8ae1fec --- /dev/null +++ b/paddle/platform/dynload/warpctc.h @@ -0,0 +1,63 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include "ctc.h" +#include "paddle/platform/dynload/dynamic_loader.h" + +namespace paddle { +namespace platform { +namespace dynload { + +extern std::once_flag warpctc_dso_flag; +extern void* warpctc_dso_handle; + +/** + * The following macro definition can generate structs + * (for each function) to dynamic load warpctc routine + * via operator overloading. + */ +#define DYNAMIC_LOAD_WARPCTC_WRAP(__name) \ + struct DynLoad__##__name { \ + template \ + auto operator()(Args... args) -> decltype(__name(args...)) { \ + using warpctcFunc = decltype(__name(args...)) (*)(Args...); \ + std::call_once(warpctc_dso_flag, \ + paddle::platform::dynload::GetWarpCTCDsoHandle, \ + &warpctc_dso_handle); \ + void* p_##_name = dlsym(warpctc_dso_handle, #__name); \ + return reinterpret_cast(p_##_name)(args...); \ + } \ + }; \ + extern DynLoad__##__name __name + +#define DECLARE_DYNAMIC_LOAD_WARPCTC_WRAP(__name) \ + DYNAMIC_LOAD_WARPCTC_WRAP(__name) + +#define WARPCTC_ROUTINE_EACH(__macro) \ + __macro(get_warpctc_version); \ + __macro(ctcGetStatusString); \ + __macro(compute_ctc_loss); \ + __macro(get_workspace_size) + +WARPCTC_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_WARPCTC_WRAP); + +#undef DYNAMIC_LOAD_WARPCTC_WRAP + +} // namespace dynload +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/for_range.h b/paddle/platform/for_range.h index 5427aa28238d6b46eb72d1fb49303dce3d871d7d..694a66d9ac4eb6ad02daf1931806fa1287de7cab 100644 --- a/paddle/platform/for_range.h +++ b/paddle/platform/for_range.h @@ -62,7 +62,7 @@ struct ForRange { template inline void operator()(Function func) const { - constexpr size_t num_threads = 1024; + constexpr int num_threads = 1024; int block_size = limit_ <= num_threads ? limit_ : num_threads; int grid_size = (limit_ + num_threads - 1) / num_threads; diff --git a/paddle/platform/mkldnn_helper.h b/paddle/platform/mkldnn_helper.h new file mode 100644 index 0000000000000000000000000000000000000000..cd52a8b4c434071a030a8e7a8a70fc3adba8460c --- /dev/null +++ b/paddle/platform/mkldnn_helper.h @@ -0,0 +1,35 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include + +namespace paddle { +namespace platform { + +using MKLDNNStream = mkldnn::stream; +using MKLDNNEngine = mkldnn::engine; +using MKLDNNMemory = mkldnn::memory; +using MKLDNNPrimitive = mkldnn::primitive; +using MKLDNNPrimitiveDesc = mkldnn::handle; + +typedef std::unique_ptr MKLDNNStreamPtr; +typedef std::unique_ptr MKLDNNEnginePtr; +typedef std::unique_ptr MKLDNNMemoryPtr; +typedef std::unique_ptr MKLDNNPrimitivePtr; +typedef std::unique_ptr MKLDNNPrimitiveDescPtr; + +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/nccl_test.cu b/paddle/platform/nccl_test.cu index 8f815863a72b118a0a258a2aa4276a33b95b0e46..ef6d845874745af1150e4425f8d6be416cc44ece 100644 --- a/paddle/platform/nccl_test.cu +++ b/paddle/platform/nccl_test.cu @@ -144,7 +144,7 @@ int main(int argc, char** argv) { } VLOG(0) << " DeviceCount " << count; - paddle::platform::DeviceContextPool::Create(places); + paddle::platform::DeviceContextPool::Init(places); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); diff --git a/paddle/platform/place.cc b/paddle/platform/place.cc index 249527e3e136992970033c44ad490a1744bfed35..f05260ccac4c2b11e5568d484141720fa4792d13 100644 --- a/paddle/platform/place.cc +++ b/paddle/platform/place.cc @@ -51,6 +51,18 @@ bool places_are_same_class(const Place &p1, const Place &p2) { return p1.which() == p2.which(); } +bool is_same_place(const Place &p1, const Place &p2) { + if (places_are_same_class(p1, p2)) { + if (is_cpu_place(p1)) { + return true; + } else { + return boost::get(p1) == boost::get(p2); + } + } else { + return false; + } +} + std::ostream &operator<<(std::ostream &os, const Place &p) { detail::PlacePrinter printer(os); boost::apply_visitor(printer, p); diff --git a/paddle/platform/place.h b/paddle/platform/place.h index d25eaa689f4a4baa951db5c61bbf99288e365ee1..fbb43fa043a44c302e6b1cc67d83c18d791f07c5 100644 --- a/paddle/platform/place.h +++ b/paddle/platform/place.h @@ -15,7 +15,7 @@ limitations under the License. */ #pragma once #include - +#include "paddle/platform/enforce.h" #include "paddle/platform/variant.h" namespace paddle { @@ -52,6 +52,8 @@ struct IsCUDAPlace : public boost::static_visitor { typedef boost::variant Place; +using PlaceList = std::vector; + void set_place(const Place &); const Place &get_place(); @@ -61,8 +63,35 @@ const CPUPlace default_cpu(); bool is_gpu_place(const Place &); bool is_cpu_place(const Place &); bool places_are_same_class(const Place &, const Place &); +bool is_same_place(const Place &, const Place &); std::ostream &operator<<(std::ostream &, const Place &); +template +struct PlaceVisitorWrapper + : public boost::static_visitor { + const Visitor &visitor_; + explicit PlaceVisitorWrapper(const Visitor &visitor) : visitor_(visitor) {} + + typename Visitor::result_type operator()(const CPUPlace &cpu) const { + return visitor_(cpu); + } + + typename Visitor::result_type operator()(const CUDAPlace &cuda) const { +#ifdef PADDLE_WITH_CUDA + return visitor_(cuda); +#else + PADDLE_THROW("Paddle is not compiled with CUDA. Cannot visit cuda device"); + return typename Visitor::result_type(); +#endif + } +}; + +template +typename Visitor::result_type VisitPlace(const Place &place, + const Visitor &visitor) { + return boost::apply_visitor(PlaceVisitorWrapper(visitor), place); +} + } // namespace platform } // namespace paddle diff --git a/paddle/platform/profiler.cc b/paddle/platform/profiler.cc new file mode 100644 index 0000000000000000000000000000000000000000..7e2e2d968ef877f6aa8b87ab8f044e89574dffa9 --- /dev/null +++ b/paddle/platform/profiler.cc @@ -0,0 +1,329 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/platform/profiler.h" +#include +#include +#include "glog/logging.h" + +namespace paddle { +namespace platform { + +// The profiler state, the initial value is ProfilerState::kDisabled +static ProfilerState g_state = ProfilerState::kDisabled; +// To record which timer the profiler used, CUDA or CPU. +static std::string g_profiler_place = ""; +// The thread local event list only can be accessed by the specific thread +// The thread index of each thread +static thread_local int32_t g_thread_id; +// The g_next_thread_id is a global counter for threads, by the g_thread_id and +// g_next_thread_id, we can know how many threads have created EventList. +static uint32_t g_next_thread_id = 0; +// The global mutex +static std::mutex g_all_event_lists_mutex; +// The total event lists of all threads +static std::list> g_all_event_lists; +// The thread local event list only can be accessed by the specific thread +static thread_local std::shared_ptr g_event_list; + +inline uint64_t GetTimeInNsec() { + using clock = std::conditional::type; + return std::chrono::duration_cast( + clock::now().time_since_epoch()) + .count(); +} + +Event::Event(EventKind kind, std::string name, uint32_t thread_id, + DeviceContext* dev_ctx) + : kind_(kind), name_(name), thread_id_(thread_id), has_cuda_(false) { +#ifdef PADDLE_WITH_CUDA + auto* cuda_dev_ctx = static_cast(dev_ctx); + if (cuda_dev_ctx) { + PADDLE_ENFORCE(cudaGetDevice(&device_)); + PADDLE_ENFORCE(cudaEventCreate(&event_)); + auto stream = cuda_dev_ctx->stream(); + PADDLE_ENFORCE(cudaEventRecord(event_, stream)); + has_cuda_ = true; + } +#endif + cpu_ns_ = GetTimeInNsec(); +} + +std::string Event::kind() const { + switch (kind_) { + case EventKind::kMark: + return "mark"; + case EventKind::kPushRange: + return "push"; + case EventKind::kPopRange: + return "pop"; + } + PADDLE_THROW("Unknown EventKind."); +} + +double Event::CpuElapsedMs(const Event& e) const { + return (e.cpu_ns_ - cpu_ns_) / (1000000.0); +} + +double Event::CudaElapsedMs(const Event& e) const { +#ifdef PADDLE_WITH_CUDA + PADDLE_ENFORCE(e.has_cuda() && has_cuda()); + PADDLE_ENFORCE(e.device() == device()); + PADDLE_ENFORCE(cudaEventSynchronize(event_)); + PADDLE_ENFORCE(cudaEventSynchronize(e.event())); + float ms; + PADDLE_ENFORCE(cudaEventElapsedTime(&ms, event_, e.event())); + return ms; +#else + PADDLE_THROW("CUDA is not enabled"); +#endif +} + +#ifdef PADDLE_WITH_CUDA +static void ForEachDevice(std::function func) { + auto original_device = GetCurrentDeviceId(); + int count = GetCUDADeviceCount(); + for (int i = 0; i < count; i++) { + SetDeviceId(i); + func(i); + } + SetDeviceId(original_device); +} +#endif + +inline EventList& GetEventList() { + if (!g_event_list) { + std::lock_guard guard(g_all_event_lists_mutex); + g_event_list = std::make_shared(); + g_thread_id = g_next_thread_id++; + g_all_event_lists.emplace_front(g_event_list); + } + return *g_event_list; +} + +void Mark(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kMark, name, g_thread_id, dev_ctx); +} + +void PushEvent(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kPushRange, name, g_thread_id, dev_ctx); +} + +void PopEvent(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kPopRange, name, g_thread_id, dev_ctx); +} + +RecordEvent::RecordEvent(const std::string& name, DeviceContext* dev_ctx) { + if (g_state == ProfilerState::kDisabled) return; + dev_ctx_ = dev_ctx; + name_ = name; + PushEvent(name_, dev_ctx_); +} + +RecordEvent::~RecordEvent() { + if (g_state == ProfilerState::kDisabled) return; + PopEvent(name_, dev_ctx_); +} + +void EnableProfiler(ProfilerState state) { + PADDLE_ENFORCE(state != ProfilerState::kDisabled, + "Can't enbale profling, since the input state is ", + "ProfilerState::kDisabled"); + PADDLE_ENFORCE(g_state == ProfilerState::kDisabled, + "The profiling state should be disabled when calling ", + "EnableProfiler."); + g_state = state; + g_profiler_place = (g_state == ProfilerState::kCUDA) ? "CUDA" : "CPU"; +#ifdef PADDLE_WITH_CUDA + if (g_state == ProfilerState::kCUDA) { + // Generate some dummy evenets first to reduce the startup overhead. + for (int i = 0; i < 5; i++) { + ForEachDevice([](int d) { + DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(d)); + Mark("_cuda_startup_", dev_ctx); + dev_ctx->Wait(); + }); + } + } +#endif + // Mark the profiling start. + Mark("_start_profiler_", nullptr); +} + +std::vector> DisableProfiler() { + PADDLE_ENFORCE(g_state != ProfilerState::kDisabled, + "Can't disable profiling, since it's not starting."); + // Mark the profiling stop. + Mark("_stop_profiler_", nullptr); + g_state = ProfilerState::kDisabled; + std::vector> result; + std::lock_guard guard(g_all_event_lists_mutex); + for (auto it = g_all_event_lists.begin(); it != g_all_event_lists.end(); + ++it) { + result.emplace_back((*it)->Reduce()); + } + return result; +} + +void ParseEvents(std::vector>& events, + EventSortingKey sorted_by) { + if (g_profiler_place == "") return; + + std::string sorted_domain; + std::function sorted_func; + switch (sorted_by) { + case EventSortingKey::kCalls: + sorted_domain = "number of calls"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.calls > b.calls; + }; + break; + case EventSortingKey::kTotal: + sorted_domain = "total time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.total_time > b.total_time; + }; + break; + case EventSortingKey::kMin: + sorted_domain = "minimum time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.min_time > b.min_time; + }; + break; + case EventSortingKey::kMax: + sorted_domain = "maximum time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.max_time > b.max_time; + }; + break; + case EventSortingKey::kAve: + sorted_domain = "average time"; + sorted_func = [](const EventItem& a, const EventItem& b) { + return a.ave_time > b.ave_time; + }; + break; + default: + sorted_domain = "event end time"; + } + + std::vector> events_table; + size_t max_name_width = 0; + for (size_t i = 0; i < events.size(); i++) { + std::list pushed_events; + std::vector event_items; + std::unordered_map event_idx; + + for (size_t j = 0; j < events[i].size(); j++) { + if (events[i][j].kind() == "push") { + pushed_events.push_back(events[i][j]); + } else if (events[i][j].kind() == "pop") { + std::list::reverse_iterator rit = pushed_events.rbegin(); + while (rit != pushed_events.rend() && + rit->name() != events[i][j].name()) { + ++rit; + } + + if (rit != pushed_events.rend()) { + double event_time = (g_profiler_place == "CUDA") + ? rit->CudaElapsedMs(events[i][j]) + : rit->CpuElapsedMs(events[i][j]); + std::string event_name = + "thread" + std::to_string(rit->thread_id()) + "::" + rit->name(); + max_name_width = std::max(max_name_width, event_name.size()); + + if (event_idx.find(event_name) == event_idx.end()) { + event_idx[event_name] = event_items.size(); + EventItem event_item = {event_name, 1, event_time, + event_time, event_time, event_time}; + event_items.push_back(event_item); + } else { + int index = event_idx[event_name]; + event_items[index].calls += 1; + // total time + event_items[index].total_time += event_time; + // min time + event_items[index].min_time = + std::min(event_time, event_items[index].min_time); + // max time + event_items[index].max_time = + std::max(event_time, event_items[index].max_time); + } + + // remove the push marker from the list + pushed_events.erase((++rit).base()); + } else { + LOG(WARNING) << "Cannot find the push marker of event \'" + << events[i][j].name() + << "\', which will be ignored in profiling report."; + } + } + } + // average time + for (auto& item : event_items) { + item.ave_time = item.total_time / item.calls; + } + // sort + if (sorted_by != EventSortingKey::kDefault) { + std::sort(event_items.begin(), event_items.end(), sorted_func); + } + + events_table.push_back(event_items); + // log warning if there are events with `push` but without `pop` + std::list::reverse_iterator rit = pushed_events.rbegin(); + while (rit != pushed_events.rend()) { + LOG(WARNING) << "Cannot find the pop marker of event \'" << rit->name() + << "\', which will be ignored in profiling report."; + ++rit; + } + } + + // Print report + PrintProfilingReport(events_table, sorted_domain, max_name_width + 4, 12); +} + +void PrintProfilingReport(std::vector>& events_table, + std::string& sorted_domain, const size_t name_width, + const size_t data_width) { + // Output header information + std::cout << "\n------------------------->" + << " Profiling Report " + << "<-------------------------\n\n"; + std::cout << "Place: " << g_profiler_place << std::endl; + std::cout << "Time unit: ms" << std::endl; + std::cout << "Sorted by " << sorted_domain + << " in descending order in the same thread\n\n"; + // Output events table + std::cout.setf(std::ios::left); + std::cout << std::setw(name_width) << "Event" << std::setw(data_width) + << "Calls" << std::setw(data_width) << "Total" + << std::setw(data_width) << "Min." << std::setw(data_width) + << "Max." << std::setw(data_width) << "Ave." << std::endl; + for (size_t i = 0; i < events_table.size(); ++i) { + for (size_t j = 0; j < events_table[i].size(); ++j) { + EventItem& event_item = events_table[i][j]; + std::cout << std::setw(name_width) << event_item.name + << std::setw(data_width) << event_item.calls + << std::setw(data_width) << event_item.total_time + << std::setw(data_width) << event_item.min_time + << std::setw(data_width) << event_item.max_time + << std::setw(data_width) << event_item.ave_time << std::endl; + } + } + std::cout << std::endl; +} + +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/profiler.h b/paddle/platform/profiler.h new file mode 100644 index 0000000000000000000000000000000000000000..6df48ef8806e865f473b4317ac0283863c3c6f64 --- /dev/null +++ b/paddle/platform/profiler.h @@ -0,0 +1,142 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include +#include +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace platform { + +enum EventKind { kMark, kPushRange, kPopRange }; + +class Event { + public: + // The DeviceContext is used to get the cuda stream. + // If CPU profiling mode, can pass nullptr. + Event(EventKind kind, std::string name, uint32_t thread_id, + DeviceContext* dev_ctx); + + std::string kind() const; + std::string name() const { return name_; } + uint32_t thread_id() const { return thread_id_; } + bool has_cuda() const { return has_cuda_; } + +#ifdef PADDLE_WITH_CUDA + cudaEvent_t event() const { return event_; } + int device() const { return device_; } +#endif + + double CpuElapsedMs(const Event& e) const; + double CudaElapsedMs(const Event& e) const; + + private: + EventKind kind_; + std::string name_; + uint32_t thread_id_; + int64_t cpu_ns_; + bool has_cuda_; +#ifdef PADDLE_WITH_CUDA + cudaEvent_t event_ = nullptr; + int device_ = -1; +#endif +}; + +struct EventList { + constexpr static size_t kMB = 1024 * 1024; + constexpr static size_t kEventBlockSize = 16 * kMB; + constexpr static size_t kEventSize = sizeof(Event); + constexpr static size_t kEventAlign = alignof(Event); + constexpr static size_t kNumBlock = + kEventBlockSize / + ((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign); + + template + void Record(Args&&... args) { + if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) { + event_blocks.emplace_front(); + event_blocks.front().reserve(kNumBlock); + } + event_blocks.front().emplace_back(std::forward(args)...); + } + + std::vector Reduce() { + std::vector result; + for (auto& block : event_blocks) { + result.insert(result.begin(), std::make_move_iterator(block.begin()), + std::make_move_iterator(block.end())); + } + event_blocks.clear(); + return result; + } + + std::forward_list> event_blocks; +}; + +enum ProfilerState { + kDisabled, // disabled state + kCPU, // CPU profiling state + kCUDA, // GPU profiling state +}; + +void Mark(const std::string& name, DeviceContext* dev_ctx); + +void PushEvent(const std::string& name, DeviceContext* dev_ctx); + +void PopEvent(const std::string& name, DeviceContext* dev_ctx); + +struct RecordEvent { + explicit RecordEvent(const std::string& name, DeviceContext* dev_ctx); + + ~RecordEvent(); + + // The device context is used by Event to get the current cuda stream. + DeviceContext* dev_ctx_; + // Event name + std::string name_; +}; + +// Enable the profiling function. +void EnableProfiler(ProfilerState state); + +// Return the event list of all threads. Asummed the returned value calls +// event_lists, event_lists[i][j] represents the j-th Event of i-th thread. +std::vector> DisableProfiler(); + +// The information of each event given in the profiling report +struct EventItem { + std::string name; + int calls; + double total_time; + double min_time; + double max_time; + double ave_time; +}; + +// Candidate keys to sort the profiling report +enum EventSortingKey { kDefault, kCalls, kTotal, kMin, kMax, kAve }; + +// Parse the event list and output the profiling report +void ParseEvents(std::vector>&, + EventSortingKey sorted_by = EventSortingKey::kDefault); + +// Print results +void PrintProfilingReport(std::vector>& events_table, + std::string& sorted_domain, const size_t name_width, + const size_t data_width); +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/profiler_test.cc b/paddle/platform/profiler_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..13dea713c71e147ed5dd8d090e92d86c96256c09 --- /dev/null +++ b/paddle/platform/profiler_test.cc @@ -0,0 +1,131 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/platform/profiler.h" +#include "gtest/gtest.h" + +TEST(Event, CpuElapsedTime) { + using paddle::platform::Event; + using paddle::platform::EventKind; + + Event start_event(EventKind::kPushRange, "test", 0, nullptr); + EXPECT_TRUE(start_event.has_cuda() == false); + int counter = 0; + while (counter != 1000) { + counter++; + } + Event stop_event(EventKind::kPopRange, "test", 0, nullptr); + EXPECT_GT(start_event.CpuElapsedMs(stop_event), 0); +} + +#ifdef PADDLE_WITH_CUDA +TEST(Event, CudaElapsedTime) { + using paddle::platform::DeviceContext; + using paddle::platform::CUDADeviceContext; + using paddle::platform::CUDAPlace; + using paddle::platform::Event; + using paddle::platform::EventKind; + + DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(0)); + Event start_event(EventKind::kPushRange, "test", 0, dev_ctx); + EXPECT_TRUE(start_event.has_cuda() == true); + int counter = 0; + while (counter != 1000) { + counter++; + } + Event stop_event(EventKind::kPopRange, "test", 0, dev_ctx); + EXPECT_GT(start_event.CudaElapsedMs(stop_event), 0); +} +#endif + +TEST(RecordEvent, RecordEvent) { + using paddle::platform::DeviceContext; + using paddle::platform::Event; + using paddle::platform::EventKind; + using paddle::platform::RecordEvent; + using paddle::platform::ProfilerState; + using paddle::platform::EventSortingKey; + + ProfilerState state = ProfilerState::kCPU; + DeviceContext* dev_ctx = nullptr; +#ifdef PADDLE_WITH_CUDA + using paddle::platform::CUDADeviceContext; + using paddle::platform::CUDAPlace; + state = ProfilerState::kCUDA; + dev_ctx = + new paddle::platform::CUDADeviceContext(paddle::platform::CUDAPlace(0)); +#endif + EnableProfiler(state); + + /* Usage 1: + * PushEvent(evt_name, dev_ctx); + * ... + * code to be analyzed + * ... + * PopEvent(evt_name, dev_ctx); + */ + for (int loop = 0; loop < 3; ++loop) { + for (int i = 1; i < 5; ++i) { + std::string name = "op_" + std::to_string(i); + PushEvent(name, dev_ctx); + int counter = 1; + while (counter != i * 1000) counter++; + PopEvent(name, dev_ctx); + } + } + + /* Usage 2: + * { + * RecordEvent record_event(name, dev_ctx); + * ... + * code to be analyzed + * ... + * } + */ + for (int i = 1; i < 5; ++i) { + std::string name = "evs_op_" + std::to_string(i); + RecordEvent record_event(name, dev_ctx); + int counter = 1; + while (counter != i * 1000) counter++; + } + + // Bad Usage: + PushEvent("event_without_pop", dev_ctx); + PopEvent("event_without_push", dev_ctx); + std::vector> events = paddle::platform::DisableProfiler(); + // Will remove parsing-related code from test later + ParseEvents(events, EventSortingKey::kTotal); + + int cuda_startup_count = 0; + int start_profiler_count = 0; + int stop_profiler_count = 0; + for (size_t i = 0; i < events.size(); ++i) { + for (size_t j = 0; j < events[i].size(); ++j) { + if (events[i][j].name() == "_cuda_startup_") ++cuda_startup_count; + if (events[i][j].name() == "_start_profiler_") ++start_profiler_count; + if (events[i][j].name() == "_stop_profiler_") ++stop_profiler_count; + if (events[i][j].name() == "push") { + EXPECT_EQ(events[i][j + 1].name(), "pop"); +#ifdef PADDLE_WITH_CUDA + EXPECT_GT(events[i][j].CudaElapsedMs(events[i][j + 1]), 0); +#else + EXPECT_GT(events[i][j].CpuElapsedMs(events[i][j + 1]), 0); +#endif + } + } + } + EXPECT_EQ(cuda_startup_count % 5, 0); + EXPECT_EQ(start_profiler_count, 1); + EXPECT_EQ(stop_profiler_count, 1); +} diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index 6afed7eec7001b646d55cef0bc3f59782b80b15f..7b374307071d2da91a677361b404448f1a3816b0 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -3,6 +3,9 @@ if(WITH_PYTHON) SRCS pybind.cc exception.cc protobuf.cc const_value.cc DEPS pybind python backward proto_desc paddle_memory executor prune init ${GLOB_OP_LIB}) + if(NOT APPLE AND NOT ANDROID) + target_link_libraries(paddle_pybind rt) + endif(NOT APPLE AND NOT ANDROID) endif(WITH_PYTHON) if(WITH_DOC) diff --git a/paddle/pybind/const_value.cc b/paddle/pybind/const_value.cc index 761635aa5e5eac445c2ec8331b0dc37ffd11248c..b13ad42ea29453354798d88bff8ef47339d1a614 100644 --- a/paddle/pybind/const_value.cc +++ b/paddle/pybind/const_value.cc @@ -23,11 +23,6 @@ void BindConstValue(pybind11::module& m) { m.def("kTempVarName", [] { return framework::kTempVarName; }); m.def("kGradVarSuffix", [] { return framework::kGradVarSuffix; }); m.def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; }); - - // for kernel_hint key - m.def("kUseCPU", [] { return framework::kUseCPU; }); - m.def("kUseCUDNN", [] { return framework::kUseCUDNN; }); - m.def("kUseMKLDNN", [] { return framework::kUseMKLDNN; }); } } // namespace pybind diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc index 07292d47e9c165c67fe4a30ee7d851c350beb2e0..4f959481537d29c089be24f9ae306f860c196c0f 100644 --- a/paddle/pybind/protobuf.cc +++ b/paddle/pybind/protobuf.cc @@ -216,7 +216,7 @@ void BindVarDsec(py::module &m) { .def("set_dtype", &VarDesc::SetDataType) .def("shape", &VarDesc::Shape, py::return_value_policy::reference) .def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference) - .def("lod_level", &VarDesc::GetLodLevel) + .def("lod_level", &VarDesc::GetLoDLevel) .def("set_lod_level", &VarDesc::SetLoDLevel) .def("type", &VarDesc::GetType) .def("set_type", &VarDesc::SetType) @@ -231,7 +231,8 @@ void BindVarDsec(py::module &m) { .value("FETCH_LIST", proto::VarDesc::FETCH_LIST) .value("STEP_SCOPES", proto::VarDesc::STEP_SCOPES) .value("LOD_RANK_TABLE", proto::VarDesc::LOD_RANK_TABLE) - .value("LOD_TENSOR_ARRAY", proto::VarDesc::LOD_TENSOR_ARRAY); + .value("LOD_TENSOR_ARRAY", proto::VarDesc::LOD_TENSOR_ARRAY) + .value("PLACE_LIST", proto::VarDesc::PLACE_LIST); } void BindOpDesc(py::module &m) { diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index 04485ce7c1ab87f8655b0e6cbaecc36b3382f647..5d170c66e97f56440968ba568167e6845631e1cc 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -427,8 +427,15 @@ All parameter, weight, gradient are variables in Paddle. m.def("unique_integer", UniqueIntegerGenerator); m.def("init_gflags", framework::InitGflags); + m.def("init_glog", framework::InitGLOG); m.def("init_devices", &framework::InitDevices); + m.def("use_cpu", framework::UseCPU); + m.def("use_mkldnn", framework::UseMKLDNN); + m.def("use_cuda", framework::UseCUDA); + m.def("use_cudnn", framework::UseCUDNN); + m.def("use_all", framework::UseALL); + m.def("is_compile_gpu", IsCompileGPU); m.def("set_feed_variable", framework::SetFeedVariable); m.def("get_fetch_variable", framework::GetFetchVariable); diff --git a/paddle/pybind/tensor_py.h b/paddle/pybind/tensor_py.h index 67244d82602906231ac1fc870adccc7e82869407..6b4290972bade585d1a0c2ae919a2e712bdf308c 100644 --- a/paddle/pybind/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -63,9 +63,10 @@ struct CastToPyBufferImpl { auto *dst_ptr = static_cast(dst_tensor.mutable_data( tensor.dims(), platform::CPUPlace())); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); + platform::DeviceContextPool &pool = + platform::DeviceContextPool::Instance(); auto dev_ctx = static_cast( - pool.Borrow(tensor.place())); + pool.Get(tensor.place())); paddle::platform::GpuMemcpyAsync( dst_ptr, src_ptr, sizeof(CUR_TYPE) * tensor.numel(), @@ -76,10 +77,10 @@ struct CastToPyBufferImpl { } else if (paddle::platform::is_cpu_place(tensor.place())) { dst_tensor = tensor; } - return py::buffer_info( - dst_tensor.mutable_data(dst_tensor.place()), - sizeof(CUR_TYPE), py::format_descriptor::format(), - (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides); + return py::buffer_info(dst_tensor.data(), sizeof(CUR_TYPE), + py::format_descriptor::format(), + (size_t)framework::arity(dst_tensor.dims()), + dims_outside, strides); } else { constexpr bool less = I + 1 < std::tuple_size>::value; return CastToPyBufferImpl()(tensor); @@ -137,9 +138,9 @@ void PyCUDATensorSetFromArray( self.Resize(framework::make_ddim(dims)); auto *dst = self.mutable_data(place); - platform::DeviceContextPool &pool = platform::DeviceContextPool::Get(); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto dev_ctx = - static_cast(pool.Borrow(place)); + static_cast(pool.Get(place)); paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice, dev_ctx->stream()); } diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index e43b9c218a3ecb9e7f20fb7e8b14a85a29947eef..e70d04d9017e9e36bbd55d6a28889d9ba7fb2a13 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -178,7 +178,7 @@ EOF # run paddle version to install python packages first RUN apt-get update &&\ ${NCCL_DEPS}\ - apt-get install -y wget python-pip dmidecode && pip install -U pip && \ + apt-get install -y wget python-pip dmidecode python-tk && pip install -U pip && \ pip install /*.whl; apt-get install -f -y && \ apt-get clean -y && \ rm -f /*.whl && \ @@ -193,6 +193,16 @@ EOF EOF } +function gen_capi_package() { + if [[ ${WITH_C_API} == "ON" ]]; then + install_prefix="/paddle/build/capi_output" + rm -rf $install_prefix + make DESTDIR="$install_prefix" install + cd $install_prefix/usr/local + ls | egrep -v "^Found.*item$" | xargs tar -cf /paddle/build/paddle.tgz + fi +} + set -xe cmake_gen ${PYTHON_ABI:-""} @@ -200,6 +210,11 @@ run_build run_test gen_docs gen_dockerfile - -printf "If you need to install PaddlePaddle in develop docker image," -printf "please make install or pip install build/python/dist/*.whl.\n" +gen_capi_package + +if [[ ${WITH_C_API:-OFF} == "ON" ]]; then + printf "PaddlePaddle C-API libraries was generated on build/paddle.tgz\n" +else + printf "If you need to install PaddlePaddle in develop docker image," + printf "please make install or pip install build/python/dist/*.whl.\n" +fi diff --git a/paddle/scripts/submit_local.sh.in b/paddle/scripts/submit_local.sh.in index a94bc01b358c508132eb85920a2d4c0aa934dd51..8a352b0078d701f797f7202c85bd0e08201ac9b8 100755 --- a/paddle/scripts/submit_local.sh.in +++ b/paddle/scripts/submit_local.sh.in @@ -71,9 +71,7 @@ function threads_config() { # auto set OMP_NUM_THREADS and MKL_NUM_THREADS # according to trainer_count and total processors # only when MKL enabled - if [ "@WITH_MKL@" == "OFF" ]; then - return 0 - fi + # auto set OPENBLAS_NUM_THREADS when do not use MKL processors=`grep "processor" /proc/cpuinfo|sort -u|wc -l` trainers=`grep -Eo 'trainer_count.[0-9]+' <<< "$@" |grep -Eo '[0-9]+'|xargs` if [ -z $trainers ]; then @@ -83,12 +81,19 @@ function threads_config() { if [ $threads -eq 0 ]; then threads=1 fi - if [ -z "$OMP_NUM_THREADS" ]; then - export OMP_NUM_THREADS=$threads - fi - if [ -z "$MKL_NUM_THREADS" ]; then - export MKL_NUM_THREADS=$threads + if [ "@WITH_MKL@" == "ON" ]; then + if [ -z "$OMP_NUM_THREADS" ]; then + export OMP_NUM_THREADS=$threads + fi + if [ -z "$MKL_NUM_THREADS" ]; then + export MKL_NUM_THREADS=$threads + fi + else + if [ -z "$OPENBLAS_NUM_THREADS" ]; then + export OPENBLAS_NUM_THREADS=$threads + fi fi + } PADDLE_CONF_HOME="$HOME/.config/paddle" @@ -150,7 +155,7 @@ fi case "$1" in "train") threads_config $@ - # echo $OMP_NUM_THREADS $MKL_NUM_THREADS + # echo $OMP_NUM_THREADS $MKL_NUM_THREADS $OPENBLAS_NUM_THREADS ${DEBUGGER} $PADDLE_BIN_PATH/paddle_trainer ${@:2} ;; "merge_model") diff --git a/paddle/testing/paddle_gtest_main.cc b/paddle/testing/paddle_gtest_main.cc index 108ff335bf6b920c648d4bfebbd6a40ffb6fd939..a7fb50ee4149a3c36077f83383f45f3106e7e0f1 100644 --- a/paddle/testing/paddle_gtest_main.cc +++ b/paddle/testing/paddle_gtest_main.cc @@ -34,11 +34,11 @@ int main(int argc, char** argv) { google::ParseCommandLineFlags(&new_argc, &new_argv_address, false); testing::InitGoogleTest(&argc, argv); paddle::memory::Used(paddle::platform::CPUPlace()); - std::vector devs = {"CPU"}; + #ifdef PADDLE_WITH_CUDA paddle::memory::Used(paddle::platform::CUDAPlace(0)); - devs.push_back("GPU:0"); #endif - paddle::framework::InitDevices(devs); + + paddle::framework::InitDevices(); return RUN_ALL_TESTS(); } diff --git a/paddle/trainer/TrainerConfigHelper.cpp b/paddle/trainer/TrainerConfigHelper.cpp index a0a365aa0bb0ac26939a02c1cd626d0c17c6a9fe..2b68d89e48a3efd5de205ce33643b7e6320a4303 100644 --- a/paddle/trainer/TrainerConfigHelper.cpp +++ b/paddle/trainer/TrainerConfigHelper.cpp @@ -29,6 +29,7 @@ DECLARE_bool(with_gpu); DECLARE_bool(parallel_nn); DECLARE_string(config_args); DECLARE_bool(use_mkldnn); +DECLARE_bool(use_mkl_packed); const char *kConfigParserModuleName = "paddle.trainer.config_parser"; const char *kConfigParserFuncName = "parse_config_and_serialize"; @@ -46,6 +47,7 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath) << ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu << ",parallel_nn=" << FLAGS_parallel_nn << ",use_mkldnn=" << FLAGS_use_mkldnn + << ",use_mkl_packed=" << FLAGS_use_mkl_packed << ",cudnn_version=" << hl_get_cudnn_lib_version(); if (!FLAGS_config_args.empty()) { configArgs << "," << FLAGS_config_args; diff --git a/paddle/utils/Flags.cpp b/paddle/utils/Flags.cpp index 9a7dc0e35622383a190f8b3a80736e6b42c9c959..ea47cf23eb6e56082eeb92f3c6dff8d03be0d679 100644 --- a/paddle/utils/Flags.cpp +++ b/paddle/utils/Flags.cpp @@ -27,6 +27,13 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training"); DEFINE_bool(use_mkldnn, false, "Only support CPU training"); #endif +#ifdef PADDLE_WITH_MKLML +// TODO(TJ): change to true when fully confirmed +DEFINE_bool(use_mkl_packed, false, "Whether to use MKL Packed Optimization"); +#else +DEFINE_bool(use_mkl_packed, false, "Not to use MKL Packed Optimization"); +#endif + DEFINE_bool(parallel_nn, false, "Whether to use multi-threads to calculate one neural network." diff --git a/paddle/utils/Flags.h b/paddle/utils/Flags.h index 1832bb515ec85df3d7733e01b063a01ad6a3b282..b64295bca09a199f24605a158d1d9db7e7d91660 100644 --- a/paddle/utils/Flags.h +++ b/paddle/utils/Flags.h @@ -41,3 +41,4 @@ DECLARE_string(predict_file); DECLARE_bool(prev_batch_state); DECLARE_string(init_model_path); DECLARE_bool(use_mkldnn); +DECLARE_bool(use_mkl_packed); diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 6f589e916979584897863db72924c885c258d4b2..36919ab00bf6fc1f9aee350074e5532bfdc7d45e 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -29,8 +29,8 @@ if(WITH_MKLML) endif() if(WITH_MKLDNN) - list(APPEND MKL_SHARED_LIBS "${MKLDNN_LIB}" "${MKLDNN_LIB}.0") - list(APPEND MKL_DEPENDS mkldnn) + list(APPEND MKL_SHARED_LIBS "${MKLDNN_SHARED_LIB}") + list(APPEND MKL_DEPENDS mkldnn mkldnn_shared_lib) endif() if(WITH_GPU) diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 239fe4204b20a37a0869ba1e0e99adf4293dac7e..4fdf4090212e31adcccf6b119c937e70d5cbf995 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -3622,8 +3622,13 @@ class ConcatenateLayer2(LayerBase): @config_layer('recurrent') class RecurrentLayer(LayerBase): + layer_type = 'recurrent' + def __init__(self, name, inputs, reversed=False, bias=True, **xargs): - super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, + use_mkl_packed = bool( + int(g_command_config_args.get("use_mkl_packed", 0))) + self.layer_type = 'mkl_packed_recurrent' if use_mkl_packed else 'recurrent' + super(RecurrentLayer, self).__init__(name, self.layer_type, 0, inputs, **xargs) config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input') input_layer = self.get_input_layer(0) diff --git a/python/paddle/trainer_config_helpers/attrs.py b/python/paddle/trainer_config_helpers/attrs.py index ecba87191045cff6c05014010e60575741238f8d..e6f87ce61b1d16d4f98f111626776aa52c2ec35b 100644 --- a/python/paddle/trainer_config_helpers/attrs.py +++ b/python/paddle/trainer_config_helpers/attrs.py @@ -58,12 +58,12 @@ def is_compatible_with(x, Type): class HookAttribute(object): """ - Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs + Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs during training process of a layer with parameters, such as img_conv layer, fc layer. - :param type: Hook type, currently supported types: + :param type: Hook type, currently supported types: 'pruning' : user specify a sparsity_ratio before training started, and the - network will prune the parameters based on the sparsity_ratio. + network will prune the parameters based on the sparsity_ratio. eg: The definition of Hook object can be hk = HookAttribute('pruning', 0.6) The specific usage can be paddle.layer.img_conv(input=img, filter_size=3, num_channels=3, num_filters=64, @@ -71,10 +71,10 @@ class HookAttribute(object): The pruning details can be found https://arxiv.org/pdf/1506.02626.pdf :type type: string - :param sparsity_ratio: Must be specified if hook type is 'pruning', + :param sparsity_ratio: Must be specified if hook type is 'pruning', it represents the ratio of the zero elements to be set by the Parameter. :type sparsity_ratio: float or None - + """ def __init__(self, type, sparsity_ratio=None): @@ -130,10 +130,12 @@ class ParameterAttribute(object): :param sparse_update: Enable sparse update for this parameter. It will enable both local and remote sparse update. :type sparse_update: bool + :param update_hooks: A HookAttribute object. + :type update_hooks: HookAttribute :param initializer: If not None, it should be a callable object which accepts a parameter name and returns numpy array for the initial value of the parameter - :param initializer: callable object + :type initializer: callable object """ def __init__(self, diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 19e2ab1b7da7b1ceacd6842f2d74ac551497c77b..eac2cb316835fda0a52ac9895eaa80914d0f1e5b 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -2542,15 +2542,21 @@ def img_conv_layer(input, what-are-deconvolutional-layers/>`_ . The num_channel means input image's channel number. It may be 1 or 3 when input is raw pixels of image(mono or RGB), or it may be the previous layer's - num_filters * num_group. + num_filters. There are several groups of filters in PaddlePaddle implementation. - Each group will process some channels of the input. For example, if - num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create - 32*4 = 128 filters to process the input. The channels will be split into 4 - pieces. First 256/4 = 64 channels will be processed by first 32 filters. The - rest channels will be processed by the rest groups of filters. - + If the groups attribute is greater than 1, for example groups=2, + the input will be splitted into 2 parts along the channel axis, and + the filters will also be splitted into 2 parts. The first half of the filters + is only connected to the first half of the input channels, while the second + half of the filters is only connected to the second half of the input. After + the computation of convolution for each part of input, + the output will be obtained by concatenating the two results. + + The details of grouped convolution, please refer to: + `ImageNet Classification with Deep Convolutional Neural Networks + `_ + The example usage is: .. code-block:: python @@ -2575,7 +2581,8 @@ def img_conv_layer(input, :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter is not set, it will be set automatically according to filter_size. :type filter_size_y: int - :param num_filters: Each filter group's number of filter + :param num_filters: The number of filters. It is as same as the output image channel. + :type num_filters: int :param act: Activation type. ReluActivation is the default activation. :type act: BaseActivation :param groups: The group number. 1 is the default group number. @@ -7177,7 +7184,7 @@ def img_conv3d_layer(input, :param filter_size: The dimensions of the filter kernel along three axises. If the parameter is set to one integer, the three dimensions will be same. :type filter_size: int | tuple | list - :param num_filters: The number of filters in each group. + :param num_filters: The number of filters. It is as same as the output image channel. :type num_filters: int :param act: Activation type. ReluActivation is the default activation. :type act: BaseActivation diff --git a/python/paddle/v2/__init__.py b/python/paddle/v2/__init__.py index 70f61e84997efdbe3d6f268d249be8bac15b9ecd..0de417df2cb942ce46ff8ac3acc61ae4999ed634 100644 --- a/python/paddle/v2/__init__.py +++ b/python/paddle/v2/__init__.py @@ -135,6 +135,8 @@ def init(**kwargs): cp.g_command_config_args['use_gpu'] = kwargs['use_gpu'] if 'use_mkldnn' in kwargs: cp.g_command_config_args['use_mkldnn'] = kwargs['use_mkldnn'] + if 'use_mkl_packed' in kwargs: + cp.g_command_config_args['use_mkl_packed'] = kwargs['use_mkl_packed'] assert 'parallel_nn' not in kwargs, ("currently 'parallel_nn' is not " "supported in v2 APIs.") diff --git a/python/paddle/v2/dataset/flowers.py b/python/paddle/v2/dataset/flowers.py index 634388094c804827657dc83d5c205e680625b156..7bdddeaabec733ef26b3f766c6437f5c53d65044 100644 --- a/python/paddle/v2/dataset/flowers.py +++ b/python/paddle/v2/dataset/flowers.py @@ -44,7 +44,7 @@ __all__ = ['train', 'test', 'valid'] DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz' LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat' SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat' -DATA_MD5 = '52808999861908f626f3c1f4e79d11fa' +DATA_MD5 = '33bfc11892f1e405ca193ae9a9f2a118' LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d' SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c' # In official 'readme', tstid is the flag of test data diff --git a/python/paddle/v2/fluid/__init__.py b/python/paddle/v2/fluid/__init__.py index c72b5730695dbc4f772015f1fb8dec6814cd1837..ccd5998e3592a1f5dc795ee24875c1aed230587e 100644 --- a/python/paddle/v2/fluid/__init__.py +++ b/python/paddle/v2/fluid/__init__.py @@ -1,3 +1,4 @@ +from __future__ import print_function # import all class inside framework into fluid module import framework from framework import * @@ -18,16 +19,17 @@ from data_feeder import DataFeeder from core import LoDTensor, CPUPlace, CUDAPlace from distribute_transpiler import DistributeTranspiler import clip +from memory_optimization_transpiler import memory_optimize Tensor = LoDTensor __all__ = framework.__all__ + executor.__all__ + [ 'io', 'initializer', 'layers', 'nets', 'optimizer', 'backward', 'regularizer', 'LoDTensor', 'CPUPlace', 'CUDAPlace', 'Tensor', 'ParamAttr' - 'DataFeeder', 'clip', 'DistributeTranspiler' + 'DataFeeder', 'clip', 'DistributeTranspiler', 'memory_optimize' ] -def __read_gflags_from_env__(): +def __bootstrap__(): """ Enable reading gflags from environment variables. @@ -36,16 +38,31 @@ def __read_gflags_from_env__(): """ import sys import core - read_env_flags = ['use_pinned_memory'] + import os + + try: + num_threads = int(os.getenv('OMP_NUM_THREADS', '1')) + except ValueError: + num_threads = 1 + + if num_threads > 1: + print( + 'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation ' + 'speed will not be optimized if you use data parallel. It will ' + 'fail if this PaddlePaddle binary is compiled with OpenBlas since' + ' OpenBlas does not support multi-threads.'.format(num_threads), + file=sys.stderr) + print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr) + + os.environ['OMP_NUM_THREADS'] = str(num_threads) + + read_env_flags = ['use_pinned_memory', 'check_nan_inf'] if core.is_compile_gpu(): read_env_flags.append('fraction_of_gpu_memory_to_use') core.init_gflags([sys.argv[0]] + ["--tryfromenv=" + ",".join(read_env_flags)]) - - if core.is_compile_gpu(): - core.init_devices(["CPU", "GPU:0"]) - else: - core.init_devices(["CPU"]) + core.init_glog(sys.argv[0]) + core.init_devices() -__read_gflags_from_env__() +__bootstrap__() diff --git a/python/paddle/v2/fluid/backward.py b/python/paddle/v2/fluid/backward.py index 6966cc75804b6b5a49ceb45a26994c23d2936bdb..cea2d1e09068da20f4d2fdbfbd9a3e3a511ba267 100644 --- a/python/paddle/v2/fluid/backward.py +++ b/python/paddle/v2/fluid/backward.py @@ -1,18 +1,22 @@ from paddle.v2.fluid import framework as framework from . import core import collections +import copy -__all__ = ['append_backward'] +__all__ = ['append_backward', 'calc_gradient'] -def _rename_arg_(op_desc_list, old_name, new_name, begin_idx=None, - end_idx=None): +def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None): + """ + Traverse all ops in op_descs[begin_idx : end_idx], + if any op has inputs/outputs named "old_name", rename it as 'new_name' + """ if begin_idx is None: begin_idx = 0 if end_idx is None: - end_idx = len(op_desc_list) + end_idx = len(op_descs) for i in range(begin_idx, end_idx): - op_desc = op_desc_list[i] + op_desc = op_descs[i] if isinstance(op_desc, tuple): op_desc = op_desc[0] op_desc.rename_input(old_name, new_name) @@ -20,6 +24,9 @@ def _rename_arg_(op_desc_list, old_name, new_name, begin_idx=None, def _create_op_desc_(op_type, inputs, outputs, attrs): + """ + Create a C++ OpDesc object with specified inputs, outputs and attributes. + """ op_desc = core.OpDesc() op_desc.set_type(op_type) for para, args in inputs.iteritems(): @@ -34,9 +41,12 @@ def _create_op_desc_(op_type, inputs, outputs, attrs): return op_desc -def _infer_var_data_type_(var_name, block): - grad_var = block.desc.find_var(var_name.encode("ascii")) - fwd_name = _strip_grad_suffix_(var_name.encode("ascii")) +def _infer_var_data_type_(grad_var_name, block): + """ + Infer the data type of given grad variable + """ + grad_var = block.desc.find_var(grad_var_name.encode("ascii")) + fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii")) if block.desc.has_var_recursive(fwd_name): fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii")) grad_var.set_dtype(fwd_var.dtype()) @@ -45,25 +55,53 @@ def _infer_var_data_type_(var_name, block): def _all_in_set_(cands, s): + """ + Test if all elements of 'cands' are in set 's' + """ + if len(cands) == 0: + return False for c in cands: if not c in s: return False return True +def _some_in_set_(cands, s): + """ + Test if some elements of 'cands' are in set 's' + """ + if len(cands) == 0: + return False + for c in cands: + if c in s: + return True + return False + + def _strip_grad_suffix_(name): + """ + Strip the grad suffix from the given varibale name + e.g. x@GRAD ==> x + y@GRAD@RENAME@1 ==> y + """ pos = name.find(core.grad_var_suffix()) return name[:pos] if pos != -1 else name def _append_grad_suffix_(name): + """ + Append grad suffix to the given variable name + e.g. x ==> x@GRAD + """ return name + core.grad_var_suffix() def _addup_repetitive_outputs_(op_descs): - # In backward part, an variable my be the output of more than one ops. - # In this case, the variable should be the accumulation of all the outputs. - # We adopt adding `sum_op`s to implement the accumulate. + """ + In backward part, an variable may be the output of more than one ops. + In this case, the variable should be the accumulation of all the outputs. + `sum_op`s are added to implement the accumulate. + """ pending_sum_ops = [] var_rename_count = collections.defaultdict(int) renamed_vars = collections.defaultdict(list) @@ -109,10 +147,27 @@ def _addup_repetitive_outputs_(op_descs): def _remove_no_grad_branch_(op_descs, no_grad_set): + """ + Remove unnecessary grad ops + A grad op can be removed in two cases: + 1. all outputs of the grad op are in 'no_grad_set' + 2. all grad inputs of the grad op are in 'no_grad_set' + """ + + def _op_can_be_removed_(op_desc, no_grad_set): + out_arg_names = op_desc.output_arg_names() + if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set): + return True + if _all_in_set_( + filter(lambda name: name.find(core.grad_var_suffix()) != -1, + op_desc.input_arg_names()), no_grad_set): + no_grad_set.union(out_arg_names) + return True + return False + # Remove ops whose outputs are all in no_grad_dict op_descs = filter( - lambda op_desc: not _all_in_set_(op_desc.output_arg_names(), no_grad_set), - op_descs) + lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs) # Insert fill_zeros_like_op to_insert = [] for idx, op_desc in enumerate(op_descs): @@ -120,33 +175,60 @@ def _remove_no_grad_branch_(op_descs, no_grad_set): if core.grad_var_suffix() in arg and arg in no_grad_set: to_insert.append((_create_op_desc_("fill_zeros_like", { "X": [_strip_grad_suffix_(arg)] - }, {"Y": [arg]}, {}), idx)) + }, {"Out": [arg]}, {}), idx)) map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert)) return op_descs -def _append_backward_ops_(target, - block, +def _append_backward_ops_(block, + ops, target_block, no_grad_dict, grad_to_var, callback=None): + """ + Create all grad ops, and insert them into given block + + Args: + block(Block): the block where forward ops are + ops(Op): the forward operators whose backward ops need to be added + target_block(Block): the block which is going to hold new generated grad ops + no_grad_dict(dict): + key(int) block index + val(set) a set of varibale names. These varibales have no gradient + grad_to_var(dict)(output argument): + key(str): grad variable name + val(str): corresponding forward variable name + callback(callable object): a callable object used to decorate new generated grad ops + """ + if callback is None: + + def empty_callback(block, context): + pass + + callback = empty_callback + elif not hasattr(callback, '__call__'): + raise ValueError("'callback' must be a callable object.") + + # grad_op_descs holds created grad_op, and will be appended to target_block grad_op_descs = [] program = block.program - for op in reversed(block.ops): + for op in reversed(ops): grad_sub_block_list = [] # If the op has its own sub-block, deal with the sub-block first if op.has_attr("sub_block"): sub_block = program.block(op.block_attr("sub_block")) grad_sub_block = program.create_block(parent_idx=sub_block.idx) - _append_backward_ops_(target, sub_block, grad_sub_block, - no_grad_dict, grad_to_var, callback) + _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block, + no_grad_dict, grad_to_var) grad_sub_block_list.append(grad_sub_block.desc) + # Getting op's corresponding grad_op grad_op_desc, op_grad_to_var = core.get_grad_op_desc( op.desc, no_grad_dict[block.idx], grad_sub_block_list) + grad_op_descs.extend(grad_op_desc) grad_to_var.update(op_grad_to_var) @@ -155,21 +237,28 @@ def _append_backward_ops_(target, grad_op_descs = _remove_no_grad_branch_(grad_op_descs, no_grad_dict[block.idx]) - if target_block.idx == 0: - grad_op_descs.insert( - 0, - _create_op_desc_("fill_constant", {}, { - "Out": [_append_grad_suffix_(target.name)] - }, {"shape": [1], - "value": 1.0, - "dtype": target.dtype})) # append op_desc in grad_op_descs to target_block for op_desc in grad_op_descs: new_op_desc = target_block.desc.append_op() new_op_desc.copy_from(op_desc) + callback(block=target_block, context=grad_to_var) def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map): + """ + Create new variables required by backward pass. + + Args: + block(Block): the block where new variables will be created + start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created + grad_to_var(dict): + key(str): grad variable name + val(str): corresponding forward variable name + In most cases, this dict is generated by _append_backward_ops_() + grad_info_map(dict)(output argument): + key(str): forward variable name + val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable + """ for op_idx in range(start_op_idx, block.desc.op_size()): op_desc = block.desc.op(op_idx) if op_desc.has_attr("sub_block"): @@ -195,39 +284,63 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map): _infer_var_data_type_(arg, block) -def append_backward(loss, parameter_list=None, no_grad_set=None): +def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map): + var_map = copy.copy(target_grad_map) + for op_idx in range(start_op_idx, block.desc.op_size()): + op_desc = block.desc.op(op_idx) + for name in op_desc.input_arg_names(): + if name in var_map: + op_desc.rename_input(name, var_map[name]) + + for name in op_desc.output_arg_names(): + if block.desc.find_var(name.encode("ascii")): + new_name = "%s_%s" % (name, core.unique_integer(name)) + op_desc.rename_output(name, new_name) + var_map[name] = new_name + + for g, ng in var_map.iteritems(): + if g in grad_to_var: + grad_to_var[ng] = grad_to_var[g] + grad_to_var.pop(g) + + +def _get_stop_gradients_(program): + no_grad_dict = dict() + assert isinstance(program, framework.Program) + for block in program.blocks: + assert isinstance(block, framework.Block) + block_no_grad_set = set() + for var in block.vars.itervalues(): + assert isinstance(var, framework.Variable) + if var.stop_gradient: + block_no_grad_set.add(_append_grad_suffix_(var.name)) + no_grad_dict[block.idx] = block_no_grad_set + return no_grad_dict + + +def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None): """ - Create and add gradient Operators in BlockDesc to compute - gradients of `loss` for parameters in parameter_list - - :param loss: an variable generated by cost function. - :type loss: Variable - :param no_grad_dict: variable that should not create gradient - :type no_grad_dict: set - :param parameter_list: parameters that need to compute gradient and - update to optimize the lost. - :type: list - :return: list of (parameters, gradients) pair. - :rtype: list[Variable] + Append backward part to main_program + + Args: + loss(Variable): The variable generated by cost function. + parameter_list(list[string]): Parameters that need to be updated by + optimizer. If None, it means all parameters need to be updated. + no_grad_set(set): Variables that have no gradients in Block 0. + All variables with `step_gradient=True` from all blocks will be + automatically added. + + Return: + (list[(Variable,Variable)]): list of (parameter, gradient) pair. """ assert isinstance(loss, framework.Variable) program = loss.block.program - no_grad_dict = dict() if no_grad_set is None: - assert isinstance(program, framework.Program) - for block in program.blocks: - assert isinstance(block, framework.Block) - block_no_grad_set = set() - for var in block.vars.itervalues(): - assert isinstance(var, framework.Variable) - if var.stop_gradient: - block_no_grad_set.add(_append_grad_suffix_(var.name)) - no_grad_dict[block.idx] = block_no_grad_set - elif isinstance(no_grad_set, set): - no_grad_dict = {0: no_grad_set} - else: - raise ValueError("'no_grad_set' should be a set or None.") + no_grad_set = set() + no_grad_set = copy.copy(no_grad_set) + no_grad_dict = _get_stop_gradients_(program) + no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) grad_info_map = dict() root_block = program.block(0) @@ -236,8 +349,25 @@ def append_backward(loss, parameter_list=None, no_grad_set=None): current_block_idx = program.current_block_idx grad_to_var = dict() - _append_backward_ops_(loss, root_block, root_block, no_grad_dict, - grad_to_var) + op_desc = _create_op_desc_("fill_constant", {}, { + "Out": [_append_grad_suffix_(loss.name)] + }, {"shape": [1], + "value": 1.0, + "dtype": loss.dtype}) + root_block.desc.append_op().copy_from(op_desc) + + block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) + op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set) + no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) + + _append_backward_ops_(root_block, op_path, root_block, no_grad_dict, + grad_to_var, callback) + + # Because calc_gradient may be called multiple times, + # we need rename the internal gradient variables so that they have + # different names. + _rename_grad_(root_block, fwd_op_num, grad_to_var, {}) + _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map) program.current_block_idx = current_block_idx @@ -248,6 +378,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None): else: params = program.global_block().all_parameters() parameters = [param.name for param in params] + params_and_grads = [] for param in parameters: if param not in grad_info_map: @@ -265,3 +396,147 @@ def append_backward(loss, parameter_list=None, no_grad_set=None): else: params_and_grads.append((param_var, None)) return params_and_grads + + +def _as_list(x): + if x is None: + return [] + return list(x) if isinstance(x, collections.Sequence) else [x] + + +def _find_op_path_(block, outputs, inputs, no_grad_set): + """ + no_grad_set will also be changed + """ + input_names = set([inp.name for inp in inputs]) + output_names = set([out.name for out in outputs]) + + relevant_op_flags = [True] * len(block.ops) + + # All the inputs of the block are used if inputs is empty, + if inputs: + for i, op in enumerate(block.ops): + if _some_in_set_(op.desc.input_arg_names(), input_names): + for name in op.desc.output_arg_names(): + if name not in no_grad_set: + input_names.add(name) + else: + relevant_op_flags[i] = False + + for i, op in reversed(list(enumerate(block.ops))): + if _some_in_set_(op.desc.output_arg_names(), output_names): + for name in op.desc.input_arg_names(): + if name not in no_grad_set: + output_names.add(name) + else: + relevant_op_flags[i] = False + + op_path = [ + block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i] + ] + + if inputs: + for op in op_path: + for name in op.desc.input_arg_names(): + if name not in input_names: + no_grad_set.add(name) + + return op_path + + +def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): + """ + Backpropagate the graidents of targets to inputs. + + Args: + targets(Variable|list[Variable]): The target variables + inputs(Variable|list[Variable]): The input variables + no_grad_set(set[string]): The names of variables that have no gradients + in Block 0. All variables with `stop_gradient=True` from all blocks + will be automatically added. + + Return: + (list[Variable]): list of gradients for inputs + If an input does not affect targets, the corresponding gradient variable + will be None + """ + targets = _as_list(targets) + inputs = _as_list(inputs) + target_gradients = _as_list(target_gradients) + + block = targets[0].block + prog = block.program + block_idx = block.idx + + if not target_gradients: + target_gradients = [None] * len(targets) + + if len(targets) != len(target_gradients): + raise ValueError( + "Should have the same number of target_gradients as targets") + + if no_grad_set is None: + no_grad_set = set() + no_grad_set = copy.copy(no_grad_set) + no_grad_dict = _get_stop_gradients_(prog) + no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) + + fwd_op_num = block.desc.op_size() + + target_grad_map = {} + for i, grad in enumerate(target_gradients): + target = targets[i] + if grad is None: + grad_name = _append_grad_suffix_(target.name) + op_desc = _create_op_desc_("fill_constant_batch_size_like", + {"Input": [target.name]}, + {"Out": [grad_name]}, { + "shape": target.shape, + "value": 1.0, + "dtype": target.dtype, + 'input_dim_idx': 0, + 'output_dim_idx': 0 + }) + block.desc.append_op().copy_from(op_desc) + else: + if target.block.idx != block_idx or target.block.program != prog: + raise ValueError("all targets must be in the same block") + if target.shape != grad.shape: + raise ValueError( + "The shapes of target and grad are different: %s %s" % ( + target.name, grad.name)) + target_grad_map[_append_grad_suffix_(target.name)] = grad.name + + for input in inputs: + if input.block.program != prog: + raise "input must be in the same program as targets" + + block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) + op_path = _find_op_path_(block, targets, inputs, block_no_grad_set) + no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) + grad_to_var = dict() + grad_info_map = dict() + _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var) + + # Because calc_gradient may be called multiple times, + # we need rename the internal gradient variables so that they have + # different names. + _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map) + + _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map) + prog.sync_with_cpp() + + grad_vars = [] + for input_var in inputs: + if input_var.name not in grad_info_map: + grad_vars.append(None) + else: + grad_info = grad_info_map[input_var.name] + grad_block = grad_info[1] + grad_var = grad_block.var(grad_info[0]) + grad_vars.append(grad_var) + + if len(grad_vars) == 1: + return grad_vars[0] + else: + return grad_vars diff --git a/python/paddle/v2/fluid/clip.py b/python/paddle/v2/fluid/clip.py index d7ec2fbe13fe6d9158345099b8668afc5c7d4571..b1fd1c2b65f10010fa959dbb47b3fbab114db2f2 100644 --- a/python/paddle/v2/fluid/clip.py +++ b/python/paddle/v2/fluid/clip.py @@ -1,7 +1,46 @@ import functools import layers +from . import core -__all__ = ['GradientClipByValue', 'append_gradient_clip_ops'] +__all__ = [ + 'GradientClipByValue', 'append_gradient_clip_ops', 'error_clip_callback' +] + + +class BaseErrorClipAttr(object): + def append_clip_op(self, block, grad_name): + raise NotImplementedError() + + +class ErrorClipByValue(BaseErrorClipAttr): + def __init__(self, max, min=None): + max = float(max) + if min is None: + min = -max + else: + min = float(min) + self.max = max + self.min = min + + def append_clip_op(self, block, grad_name): + block.append_op( + type="clip", + inputs={"X": grad_name}, + outputs={"Out": grad_name}, + attrs={"min": self.min, + "max": self.max}) + + +def error_clip_callback(block, context): + # the context is a grad_to_var map + grad_to_var = context + op_desc = block.desc.op(block.desc.op_size() - 1) + for grad_n in filter(lambda n: grad_to_var.has_key(n), + op_desc.output_arg_names()): + fwd_var = block.var_recursive(grad_to_var[grad_n]) + error_clip = getattr(fwd_var, "error_clip", None) + if error_clip is not None: + error_clip.append_clip_op(block, grad_n) class BaseGradientClipAttr(object): diff --git a/python/paddle/v2/fluid/data_feeder.py b/python/paddle/v2/fluid/data_feeder.py index 30a542af212926c93381aade426e25f2117e4662..24036c3e75b9594ba58cccb02825ab8020d1e107 100644 --- a/python/paddle/v2/fluid/data_feeder.py +++ b/python/paddle/v2/fluid/data_feeder.py @@ -3,7 +3,7 @@ import core import numpy import six.moves as six -from framework import Variable +from framework import Variable, default_main_program __all__ = ['DataFeeder'] @@ -53,12 +53,16 @@ class DataToLoDTensorConverter(object): class DataFeeder(object): - def __init__(self, feed_list, place): + def __init__(self, feed_list, place, program=None): self.feed_dtypes = [] self.feed_names = [] self.feed_shapes = [] self.feed_lod_level = [] + if program is None: + program = default_main_program() for each_var in feed_list: + if isinstance(each_var, basestring): + each_var = program.block(0).var(each_var) if not isinstance(each_var, Variable): raise TypeError("Feed list should contain a list of variable") self.feed_dtypes.append(each_var.dtype) diff --git a/python/paddle/v2/fluid/executor.py b/python/paddle/v2/fluid/executor.py index 2c91afb363bf72f2791e60c6df0d9130ccd698c5..1b2075dcd5ece5706e62431b360d4dc86ea57a89 100644 --- a/python/paddle/v2/fluid/executor.py +++ b/python/paddle/v2/fluid/executor.py @@ -1,12 +1,31 @@ import numpy as np +import contextlib +from framework import Program, default_main_program from . import core -from framework import Program, default_main_program, Parameter, Variable -__all__ = ['Executor', 'g_scope'] +__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope'] g_scope = core.Scope() +def global_scope(): + return g_scope + + +def switch_scope(scope): + global g_scope + ex = g_scope + g_scope = scope + return ex + + +@contextlib.contextmanager +def scope_guard(scope): + ex = switch_scope(scope) + yield + switch_scope(ex) + + def as_numpy(tensor): if isinstance(tensor, list): return [as_numpy(t) for t in tensor] @@ -46,13 +65,6 @@ class Executor(object): p.set_place(each) act_places.append(p) - # TODO(dzhwinter) : consider that our fluid tests all written in - # CUDAPlace(gpu_id), this will be changed in the future - if core.is_compile_gpu(): - core.init_devices(["CPU", "GPU:0"]) - else: - core.init_devices(["CPU"]) - # TODO(dzhwinter) : only use the first place self.executor = core.Executor(act_places[0]) self.places = places @@ -117,7 +129,7 @@ class Executor(object): raise TypeError() if scope is None: - scope = g_scope + scope = global_scope() program = program.clone() global_block = program.global_block() diff --git a/python/paddle/v2/fluid/framework.py b/python/paddle/v2/fluid/framework.py index b66a8bce5f4f15539007876c113afd3f878b00bc..2fb388acfc0a9f19b26c92de95de6a0dc0d9c018 100644 --- a/python/paddle/v2/fluid/framework.py +++ b/python/paddle/v2/fluid/framework.py @@ -17,10 +17,6 @@ TEMP_VAR_NAME = core.kTempVarName() GRAD_VAR_SUFFIX = core.kGradVarSuffix() ZERO_VAR_SUFFIX = core.kZeroVarSuffix() -USE_CPU = core.kUseCPU() -USE_CUDNN = core.kUseMKLDNN() -USE_MKLDNN = core.kUseMKLDNN() - def grad_var_name(var_name): """ @@ -147,9 +143,11 @@ class Variable(object): dtype=None, lod_level=None, persistable=None, + error_clip=None, stop_gradient=False, **kwargs): self.block = block + self.error_clip = error_clip if name is None: name = Variable._unique_var_name_() @@ -452,7 +450,7 @@ class Operator(object): no_kernel_op_set = { 'feed', 'fetch', 'save', 'load', 'recurrent', 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', - 'recv' + 'recv', 'parallel_do' } if type not in no_kernel_op_set: self.desc.infer_var_type(self.block.desc) @@ -626,6 +624,17 @@ class Block(object): raise ValueError("var %s not in this block" % name) return v + def var_recursive(self, name): + if self.has_var(name): + return self.var(name) + else: + if self.idx == 0: + raise ValueError("var %s is not in block(%d) nor its parents." % + name, self.idx) + else: + parent_block = self.program.block(self.parent_idx) + return parent_block.var_recursive(name) + def all_parameters(self): return list(self.iter_parameters()) @@ -744,6 +753,7 @@ class Block(object): optimize_attr=p.optimize_attr, regularizer=p.regularizer, clip_attr=p.clip_attr, + error_clip=p.error_clip, name=v.name) self.vars[new_p.name] = new_p @@ -763,6 +773,9 @@ class Program(object): proto = framework_pb2.ProgramDesc.FromString(str(protostr)) return _debug_string_(proto, throw_on_error) + def get_desc(self): + return self.desc + def clone(self): p = Program() p.desc = core.ProgramDesc(self.desc) diff --git a/python/paddle/v2/fluid/io.py b/python/paddle/v2/fluid/io.py index 69a732fc45a1946f260cdd9a9c2da150b87c3ddd..c63567601accd8c072368351f2838857bb61c818 100644 --- a/python/paddle/v2/fluid/io.py +++ b/python/paddle/v2/fluid/io.py @@ -36,7 +36,7 @@ def save_vars(executor, dirname, main_program=None, vars=None, predicate=None): :param executor: executor that save variable :param dirname: directory path :param main_program: program. If vars is None, then filter all variables in this - program which fit `predicate`. Default g_program. + program which fit `predicate`. Default default_main_program. :param predicate: The Predicate describes a callable that returns a variable as a bool. If it returns true, the variables will be saved. :param vars: variables need to be saved. If specify vars, program & predicate @@ -188,7 +188,7 @@ def save_inference_model(dirname, raise ValueError("'feed_var_names' should be a list of str.") if isinstance(target_vars, Variable): - feeded_var_names = [feeded_var_names] + target_vars = [target_vars] else: if not (bool(target_vars) and all( isinstance(var, Variable) for var in target_vars)): @@ -212,6 +212,11 @@ def save_inference_model(dirname, "fetch_var_names": fetch_var_names }, f, -1) + # Save only programDesc of inference_program in binary format + # in another file: __model__.dat + with open(model_file_name + ".dat", "wb") as fp: + fp.write(inference_program.desc.serialize_to_string()) + save_params(executor, dirname, main_program) diff --git a/python/paddle/v2/fluid/layer_helper.py b/python/paddle/v2/fluid/layer_helper.py index 4469f7285efe1c31d0955c6dd4ba3ecac08070af..325735e67936ed40ae83a11ce2e45e2f618d3ac6 100644 --- a/python/paddle/v2/fluid/layer_helper.py +++ b/python/paddle/v2/fluid/layer_helper.py @@ -120,11 +120,12 @@ class LayerHelper(object): raise ValueError("no Parameter name %s found" % name) return param - def create_tmp_variable(self, dtype): + def create_tmp_variable(self, dtype, stop_gradient=False): return self.main_program.current_block().create_var( name=unique_name(".".join([self.name, 'tmp'])), dtype=dtype, - persistable=False) + persistable=False, + stop_gradient=stop_gradient) def create_variable(self, *args, **kwargs): return self.main_program.current_block().create_var(*args, **kwargs) diff --git a/python/paddle/v2/fluid/layers/__init__.py b/python/paddle/v2/fluid/layers/__init__.py index 249f570e13b7a1b50397fb971d1c6f77e0359a5e..50ac0aba01a4079e7caf49d552c9361977aaa65d 100644 --- a/python/paddle/v2/fluid/layers/__init__.py +++ b/python/paddle/v2/fluid/layers/__init__.py @@ -8,6 +8,8 @@ import tensor from tensor import * import control_flow from control_flow import * +import device +from device import * __all__ = [] __all__ += nn.__all__ @@ -15,3 +17,4 @@ __all__ += io.__all__ __all__ += tensor.__all__ __all__ += control_flow.__all__ __all__ += ops.__all__ +__all__ += device.__all__ diff --git a/python/paddle/v2/fluid/layers/control_flow.py b/python/paddle/v2/fluid/layers/control_flow.py index 22a37c22c3fc777cadcdee6632bbf1fb558fef70..9ad021fa992e5e8dbfebe96cf40ae602b0ed99b5 100644 --- a/python/paddle/v2/fluid/layers/control_flow.py +++ b/python/paddle/v2/fluid/layers/control_flow.py @@ -6,16 +6,47 @@ import contextlib from ..registry import autodoc __all__ = [ - 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'StaticRNNGuard', - 'StaticRNNMemoryLink', 'WhileGuard', 'While', 'lod_rank_table', - 'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor', - 'increment', 'array_write', 'create_array', 'less_than', 'array_read', - 'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock', - 'StaticRNN', 'reorder_lod_tensor_by_rank' + 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', + 'BlockGuardWithCompletion', 'StaticRNNMemoryLink', 'WhileGuard', 'While', + 'lod_rank_table', 'max_sequence_len', 'topk', 'lod_tensor_to_array', + 'array_to_lod_tensor', 'increment', 'array_write', 'create_array', + 'less_than', 'array_read', 'shrink_memory', 'array_length', 'IfElse', + 'DynamicRNN', 'ConditionalBlock', 'StaticRNN', 'reorder_lod_tensor_by_rank', + 'ParallelDo' ] def split_lod_tensor(input, mask, level=0): + """ + **split_lod_tensor** + + This function takes in an input that contains the complete lod information, + and takes in a mask which is used to mask certain parts of the input. + The output is the true branch and the false branch with the mask applied to + the input at a certain level in the tensor. + + Args: + input(tuple|list|None): The input tensor that contains complete + lod information needed to construct the output. + mask(list): A bool column vector which masks the input. + level(int): The specific lod level to rank. + + Returns: + Variable: The true branch of tensor as per the mask applied to input. + Variable: The false branch of tensor as per the mask applied to input. + + Examples: + .. code-block:: python + + x = layers.data(name='x', shape=[1]) + x.persistable = True + + y = layers.data(name='y', shape=[1]) + y.persistable = True + + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + """ helper = LayerHelper('split_lod_tensor', **locals()) out_true = helper.create_tmp_variable(dtype=input.dtype) out_false = helper.create_tmp_variable(dtype=input.dtype) @@ -32,6 +63,40 @@ def split_lod_tensor(input, mask, level=0): def merge_lod_tensor(in_true, in_false, x, mask, level=0): + """ + **merge_lod_tensor** + + This function takes in an input :math:`x`, the True branch, the False + branch and a binary :math:`mask`. Using this information, this function + merges the True and False branches of the tensor into a single Output + at a certain lod level indiacted by :math:`level`. + + Args: + in_true(tuple|list|None): The True branch to be merged. + in_false(tuple|list|None): The False branch to be merged. + x(tuple|list|None): The input tensor that contains complete + lod information needed to construct the output. + mask(list): A bool column vector which masks the input. + level(int): The specific lod level to rank. + + Returns: + Variable: The merged output tensor. + + Examples: + .. code-block:: python + + x = layers.data( + name='x', shape=[1], dtype='float32', stop_gradient=False) + y = layers.data( + name='y', shape=[1], dtype='bool', stop_gradient=False) + + level = 0 + + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + out = layers.merge_lod_tensor( + in_true=out_true, in_false=out_false, mask=y, x=x, level=level) + """ helper = LayerHelper('merge_lod_tensor', **locals()) out = helper.create_tmp_variable(dtype=in_true.dtype) helper.append_op( @@ -68,29 +133,129 @@ class BlockGuard(object): return True -class StaticRNNGuard(BlockGuard): +class ParallelDo(object): + """ + ParallelDo class. + + ParallelDo class is used to create a ParallelDo. + """ + + def __init__(self, places, name=None): + self.helper = LayerHelper("parallel_do", name=name) + self.inputs = [] + self.places = places + self.outputs = [] + self.status = StaticRNN.BEFORE_RNN_BLOCK + + def do(self): + return BlockGuardWithCompletion(self) + + def parent_block(self): + prog = self.helper.main_program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + return parent_block + + def __call__(self, *args, **kwargs): + if self.status != StaticRNN.AFTER_RNN_BLOCK: + raise ValueError("RNN output can only be retrieved after rnn block") + if len(self.outputs) == 0: + raise ValueError("RNN has no output") + elif len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def read_input(self, var): + self.inputs.append(var) + return var + + def write_output(self, var): + self.outputs.append(var) + + def get_parameters(self): + main_program = self.helper.main_program + current_block = main_program.current_block() + parent_block = self.parent_block() + + local_inputs = set() + + for op in current_block.ops: + for oname in op.output_names: + for out_var_name in op.output(oname): + local_inputs.add(out_var_name) + + for var in self.inputs: + local_inputs.add(var.name) + + params = list() + for op in current_block.ops: + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in local_inputs: + params.append(in_var_name) + + return [parent_block.var(name) for name in params] + + def complete_op(self): + main_program = self.helper.main_program + current_block = main_program.current_block() + parent_block = self.parent_block() + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + self.outputs = [ + parent_block.create_var( + name=o.name, + shape=o.shape, + dtype=o.dtype, + lod_level=o.lod_level, + persistable=o.persistable, + stop_gradient=o.stop_gradient) for o in self.outputs + ] + + inputs = [parent_block.var(i.name) for i in self.inputs] + outputs = [parent_block.var(o.name) for o in self.outputs] + + parent_block.append_op( + type='parallel_do', + inputs={ + 'inputs': inputs, + 'parameters': self.get_parameters(), + 'places': self.places + }, + outputs={'outputs': outputs, + 'parallel_scopes': [step_scope]}, + attrs={'sub_block': current_block}) + + +class BlockGuardWithCompletion(BlockGuard): """ - StaticRNNGuard class. + BlockGuardWithCompletion class. - StaticRNNGuard class is used to create a StaticRNN block in a program. + BlockGuardWithCompletion class is used to create an op with a block in a program. """ def __init__(self, rnn): - if not isinstance(rnn, StaticRNN): - raise TypeError("StaticRNNGuard takes a StaticRNN") - super(StaticRNNGuard, self).__init__(rnn.helper.main_program) + if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)): + raise TypeError( + "BlockGuardWithCompletion takes a StaticRNN or ParallelDo") + super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program) self.rnn = rnn def __enter__(self): self.rnn.status = StaticRNN.IN_RNN_BLOCK - return super(StaticRNNGuard, self).__enter__() + return super(BlockGuardWithCompletion, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.rnn.status = StaticRNN.AFTER_RNN_BLOCK - self.rnn.complete_rnn_op() - return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) + self.rnn.complete_op() + return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val, + exc_tb) class StaticRNNMemoryLink(object): @@ -136,7 +301,7 @@ class StaticRNN(object): self.seq_len = None def step(self): - return StaticRNNGuard(self) + return BlockGuardWithCompletion(self) def _assert_in_rnn_block_(self, method): if self.status != StaticRNN.IN_RNN_BLOCK: @@ -252,7 +417,7 @@ class StaticRNN(object): else: return self.outputs - def complete_rnn_op(self): + def complete_op(self): main_program = self.helper.main_program rnn_block = main_program.current_block() parent_block = self.parent_block() @@ -397,9 +562,50 @@ class While(object): def lod_rank_table(x, level=0): - """ - This function creates an operator for creating a LOD_RANK_TABLE - using the input x. + """LoD Rank Table Operator. Given an input variable **x** and a level number + of LoD, this layer creates a LodRankTable object. A LoDRankTable object + contains a list of bi-element tuples. Each tuple consists of an index and + a length, both of which are int type. Refering to specified level of LoD, + the index is the sequence index number and the length representes the + sequence length. Please note that the list is ranked in descending order by + the length. The following is an example: + + .. code-block:: text + + x is a LoDTensor: + x.lod = [[0, 2, 3], + [0, 5, 6, 7]] + x.data = [a, b, c, d, e, f, g] + + 1. set level to 0: + Create lod rank table: + lod_rank_table_obj = lod_rank_table(x, level=0) + + Get: + lod_rank_table_obj.items() = [(0, 2), (1, 1)] + + 2. set level to 1: + Create lod rank table: + lod_rank_table_obj = lod_rank_table(x, level=1) + + Get: + lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] + + Args: + x (Variable): Input variable, a LoDTensor based which to create the lod + rank table. + level (int): Specify the LoD level, on which to create the lod rank + table. + + Returns: + Variable: The created LoDRankTable object. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10], + dtype='float32', lod_level=1) + out = layers.lod_rank_table(x=x, level=0) """ helper = LayerHelper("lod_rank_table", **locals()) table = helper.create_variable( @@ -414,9 +620,25 @@ def lod_rank_table(x, level=0): def max_sequence_len(rank_table): - """ - This function creates an operator to calculate the length of - max seqence through input rank_table(should be a lod_rank_table) + """Max Sequence Len Operator. Given a LoDRankTable object, this layer + returns the max length of a batch of sequences. In fact, a LoDRankTable + object contains a list of tuples() and + the list is already sorted by sequence length in descending order, so the + operator just returns the sequence length of the first tuple element. + + Args: + rank_table (Variable): Input variable which is a LoDRankTable object. + + Returns: + Variable: The max length of sequence. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10], + dtype='float32', lod_level=1) + rank_table = layers.lod_rank_table(x=x, level=0) + max_seq_len = layers.max_sequence_len(rank_table) """ helper = LayerHelper("max_seqence_len", **locals()) res = helper.create_tmp_variable(dtype="int64") @@ -428,6 +650,30 @@ def max_sequence_len(rank_table): def topk(input, k): + """ + **topk** + + This function performs the operation that selects the k entries in the input + vector and outputs their values and indices as vectors. Thus topk_out[j] is + the j-th largest entry in input, and its index is topk_indices[j] + + Args: + input (Variable|list): The input tensor that has all the data. + k (int): The number of top elements that the function will pick. + + Returns: + Variable: The variable of type array that contains the k largest entries + from input. + Variable: The variable of type array that contains the indices of k + largest entries from input. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10]) + k = 5 + array = fluid.layers.topk(x, k) + """ helper = LayerHelper('topk', **locals()) topk_out = helper.create_tmp_variable(dtype=input.data_type) topk_indices = helper.create_tmp_variable(dtype='int64') @@ -752,7 +998,7 @@ class ConditionalBlock(object): out_list = [ parent_block.var(var_name) for var_name in parent_block.vars - if var_name not in intermediate + if var_name in intermediate ] step_scope = parent_block.create_var( diff --git a/python/paddle/v2/fluid/layers/device.py b/python/paddle/v2/fluid/layers/device.py new file mode 100644 index 0000000000000000000000000000000000000000..775d40e5b5ef0cbb0b62bdc0678f2368b7b1a59a --- /dev/null +++ b/python/paddle/v2/fluid/layers/device.py @@ -0,0 +1,25 @@ +""" +All util layers. +""" + +from ..layer_helper import LayerHelper +from ..framework import unique_name +from ..registry import autodoc + +__all__ = ['get_places'] + + +@autodoc +def get_places(device_count=None, device_type=None): + helper = LayerHelper('get_places', **locals()) + out_places = helper.create_variable(name=unique_name(helper.name + ".out")) + attrs = dict() + if device_count is not None: + attrs['device_count'] = int(device_count) + if device_type is not None: + attrs['device_type'] = str(device_type) + + helper.append_op( + type='get_places', outputs={"Out": [out_places]}, attrs=attrs) + + return out_places diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index 2a462ee6cb47496b17a8f584e56ac2c8934b319a..b1534c5a886db3c9694637e4a4195427c3538bb7 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -64,14 +64,14 @@ def fc(input, is flattened: the first `num_flatten_dims` dimensions will be flatten to form the first dimension of the final matrix (height of the - matrix), and the rest `rank(X) - num_col_dims` + matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to form the second dimension of the final matrix (width of the matrix). For example, suppose `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and - `x_num_col_dims` = 3. Then, the flattened matrix + `num_flatten_dims` = 3. Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. - By default, `x_num_col_dims` is set to 1. + By default, `num_flatten_dims` is set to 1. param_attr(ParamAttr|list): The parameter attribute for learnable parameters/weights of the fully connected layer. @@ -151,7 +151,7 @@ def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'): Args: input(Variable): Input to the function - size(tuple|list|None): Shape of the look up table parameter + size(tuple|list|None): Shape of the look up table parameter is_sparse(bool): Boolean flag that specifying whether the input is sparse param_attr(ParamAttr): Parameters for this layer dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc @@ -236,21 +236,50 @@ def gru_unit(input, activation='tanh', gate_activation='sigmoid'): """ - GRUUnit Operator implements partial calculations of the GRU unit as following: + GRU unit layer. The equation of a gru step is: - $$ - update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\ - reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r) \\ - output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\ - output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t) - $$ + .. math:: + u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u) + + r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r) + + m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m) + + h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1}) + + The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms + of the equation above, the :math:`z_t` is split into 3 parts - + :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to + implement a full GRU unit operator for an input, a fully + connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`. + + The terms :math:`u_t` and :math:`r_t` represent the update and reset gates + of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is + an intermediate candidate hidden output, which is denoted by :math:`m_t`. + This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})` + and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`. - which is same as one time step of GRU Operator. + Args: + input (Variable): The fc transformed input value of current step. + hidden (Variable): The hidden value of lstm unit from previous step. + size (integer): The input dimension value. + weight (ParamAttr): The weight parameters for gru unit. Default: None + bias (ParamAttr): The bias parameters for gru unit. Default: None + activation (string): The activation type for cell (actNode). Default: 'tanh' + gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid' + + Returns: + tuple: The hidden value, reset-hidden value and gate values. - @note To implement the complete GRU unit, fully-connected operator must be - used before to feed xu, xr and xc as the Input of GRUUnit operator. + Examples: + + .. code-block:: python + + # assuming we have x_t_data and prev_hidden of size=10 + x_t = fluid.layers.fc(input=x_t_data, size=30) + hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t, + hidden = prev_hidden) - TODO(ChunweiYan) add more document here """ activation_dict = dict( identity=0, @@ -270,6 +299,7 @@ def gru_unit(input, attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) # create bias + if bias is None: bias_size = [1, 3 * size] bias = helper.create_parameter( @@ -358,7 +388,59 @@ def cos_sim(X, Y, **kwargs): def cross_entropy(input, label, **kwargs): """ - This function computes cross_entropy using the input and label. + **Cross Entropy Layer** + + This layer computes the cross entropy between `input` and `label`. It supports + both standard cross-entropy and soft-label cross-entropy loss computation. + + 1) One-hot cross-entropy: + `soft_label = False`, `Label[i, 0]` indicates the class index for sample i: + + .. math:: + + Y[i] = -\log(X[i, Label[i]]) + + 2) Soft-label cross-entropy: + `soft_label = True`, `Label[i, j]` indicates the soft label of class j + for sample i: + + .. math:: + + Y[i] = \sum_j{-Label[i, j] * log(X[i, j])} + + Please make sure that in this case the summation of each row of `label` + equals one. + + 3) One-hot cross-entropy with vecterized `label`: + As a special case of 2), when each row of 'label' has only one + non-zero element which is equal to 1, soft-label cross-entropy degenerates + to a one-hot cross-entropy with one-hot label representation. + + Args: + input (Variable|list): a 2-D tensor with shape [N x D], where N is the + batch size and D is the number of classes. This input is a probability + computed by the previous operator, which is almost always the result + of a softmax operator. + label (Variable|list): the ground truth which is a 2-D tensor. When + `soft_label` is set to `False`, `label` is a tensor with shape + [N x 1]. When `soft_label` is set to `True`, `label` is a + tensor with shape [N x D]. + soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate + the given labels as soft labels, default `False`. + + Returns: + A 2-D tensor with shape [N x 1], the cross entropy loss. + + Raises: + `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \ + `soft_label == True`, and the 2nd dimension of `input` and `label` are not \ + equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1. + + Examples: + .. code-block:: python + + predict = fluid.layers.fc(input=net, size=classdim, act='softmax') + cost = fluid.layers.cross_entropy(input=predict, label=label) """ helper = LayerHelper('cross_entropy', **kwargs) out = helper.create_tmp_variable(dtype=input.dtype) @@ -373,8 +455,36 @@ def cross_entropy(input, label, **kwargs): def square_error_cost(input, label, **kwargs): """ - This functions returns the squared error cost using the input and label. - The output is appending the op to do the above. + **Square error cost layer** + + This layer accepts input predictions and target label and returns the squared error cost. + For predictions, :math:`X`, and target labels, :math:`Y`, the equation is: + + .. math:: + + Out = (X - Y)^2 + + In the above equation: + + * :math:`X`: Input predictions, a tensor. + * :math:`Y`: Input labels, a tensor. + * :math:`Out`: Output value, same shape with :math:`X`. + + Args: + input(Variable): Input tensor, has predictions. + label(Variable): Label tensor, has target labels. + + Returns: + Variable: The tensor variable storing the element-wise squared error difference \ + of input and label. + + Examples: + .. code-block:: python + + y = layers.data(name='y', shape=[1], dtype='float32') + y_predict = layers.data(name='y_predict', shape=[1], dtype='float32') + cost = layers.square_error_cost(input=y_predict, label=y) + """ helper = LayerHelper('square_error_cost', **kwargs) minus_out = helper.create_tmp_variable(dtype=input.dtype) @@ -514,14 +624,83 @@ def conv2d(input, groups=None, param_attr=None, bias_attr=None, - act=None, - name=None): + act=None): """ - This function creates the op for a 2-dimensional Convolution. - This is performed using the parameters of filters(size, dimensionality etc) - , stride and other configurations for a Convolution operation. - This funciton can also append an activation on top of the - conv-2d output, if mentioned in the input parameters. + **Convlution2D Layer** + + The convolution2D layer calculates the output based on the input, filter + and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output) + are in NCHW format. Where N is batch size, C is the number of channels, H is the height + of the feature, and W is the width of the feature. + The details of convolution layer, please refer UFLDL's `convolution, + `_ . + If bias attribution and activation type are provided, bias is added to the output of the convolution, + and the corresponding activation function is applied to the final result. + For each input :math:`X`, the equation is: + + + .. math:: + + Out = \sigma (W \\ast X + b) + + In the above equation: + + * :math:`X`: Input value, a tensor with NCHW format. + * :math:`W`: Filter value, a tensor with MCHW format. + * :math:`\\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. + * :math:`\\sigma`: Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. + + Example: + + Input: + Input shape: $(N, C_{in}, H_{in}, W_{in})$ + + Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ + + Output: + Output shape: $(N, C_{out}, H_{out}, W_{out})$ + Where + .. math:: + + H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ + W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 + + Args: + input(Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of filter. It is as same as the output + image channel. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. Default: stride = 1. + padding(int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. Default: padding = 0. + groups(int): The groups number of the Conv2d Layer. According to grouped + convolution in Alex Krizhevsky's Deep CNN paper: when group=2, + the first half of the filters is only connected to the first half + of the input channels, while the second half of the filters is only + connected to the second half of the input channels. Default: groups=1 + param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None + bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None + act(str): Activation type. Default: None + + Returns: + Variable: The tensor variable storing the convolution and \ + non-linearity activation result. + + Raises: + ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') + conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu") """ if stride is None: @@ -577,9 +756,9 @@ def conv2d(input, def sequence_pool(input, pool_type, **kwargs): """ - This function add the operator for sequence pooling. - It pools features of all time-steps of each instance, and is applied - on top of the input using pool_type mentioned in the parameters. + This function add the operator for sequence pooling. + It pools features of all time-steps of each instance, and is applied + on top of the input using pool_type mentioned in the parameters. It supports four pool_type: @@ -608,7 +787,7 @@ def sequence_pool(input, pool_type, **kwargs): Args: input(variable): The input variable which is a LoDTensor. - pool_type (string): The pooling type of sequence_pool. + pool_type (string): The pooling type of sequence_pool. It supports average, sum, sqrt and max. Returns: @@ -618,7 +797,7 @@ def sequence_pool(input, pool_type, **kwargs): .. code-block:: python - x = fluid.layers.data(name='x', shape=[7, 1], + x = fluid.layers.data(name='x', shape=[7, 1], dtype='float32', lod_level=1) avg_x = fluid.layers.sequence_pool(input=x, pool_type='average') sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum') @@ -637,6 +816,11 @@ def sequence_pool(input, pool_type, **kwargs): "MaxIndex": max_index}, attrs={"pooltype": pool_type.upper()}) + # when pool_type is max, variable max_index is initialized, + # so we stop the gradient explicitly here + if pool_type == 'max': + max_index.stop_gradient = True + return pool_out @@ -666,7 +850,7 @@ def sequence_first_step(input, **kwargs): .. code-block:: python - x = fluid.layers.data(name='x', shape=[7, 1], + x = fluid.layers.data(name='x', shape=[7, 1], dtype='float32', lod_level=1) x_first_step = fluid.layers.sequence_first_step(input=x) """ @@ -699,7 +883,7 @@ def sequence_last_step(input, **kwargs): .. code-block:: python - x = fluid.layers.data(name='x', shape=[7, 1], + x = fluid.layers.data(name='x', shape=[7, 1], dtype='float32', lod_level=1) x_last_step = fluid.layers.sequence_last_step(input=x) """ @@ -787,11 +971,17 @@ def batch_norm(input, attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True) mean = helper.create_global_variable( - dtype=input.dtype, shape=param_shape, persistable=True) + dtype=input.dtype, + shape=param_shape, + persistable=True, + stop_gradient=True) helper.set_variable_initializer(var=mean, initializer=Constant(0.0)) variance = helper.create_global_variable( - dtype=input.dtype, shape=param_shape, persistable=True) + dtype=input.dtype, + shape=param_shape, + persistable=True, + stop_gradient=True) helper.set_variable_initializer(var=variance, initializer=Constant(1.0)) # create output @@ -799,8 +989,8 @@ def batch_norm(input, mean_out = mean # variance and variance out share the same memory variance_out = variance - saved_mean = helper.create_tmp_variable(dtype) - saved_variance = helper.create_tmp_variable(dtype) + saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) + saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) batch_norm_out = helper.create_tmp_variable(dtype) @@ -1018,25 +1208,26 @@ def lstm_unit(x_t, .. math:: - i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i) + i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i) - f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f) + f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f) - c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c) + c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c) - o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o) + o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o) h_t & = o_t tanh(c_t) - The inputs of lstm unit includes :math:`x_t`, :math:`h_{t-1}` and - :math:`c_{t-1}`. The implementation separates the linear transformation - and non-linear transformation apart. Here, we take :math:`i_t` as an - example. The linear transformation is applied by calling a `fc` layer and - the equation is: + The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and + :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}` + should be same. The implementation separates the linear transformation and + non-linear transformation apart. Here, we take :math:`i_t` as an example. + The linear transformation is applied by calling a `fc` layer and the + equation is: .. math:: - L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i + L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i The non-linear transformation is applied by calling `lstm_unit_op` and the equation is: @@ -1048,9 +1239,12 @@ def lstm_unit(x_t, This layer has two outputs including :math:`h_t` and :math:`o_t`. Args: - x_t (Variable): The input value of current step. - hidden_t_prev (Variable): The hidden value of lstm unit. - cell_t_prev (Variable): The cell value of lstm unit. + x_t (Variable): The input value of current step, a 2-D tensor with shape + M x N, M for batch size and N for input size. + hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor + with shape M x S, M for batch size and S for size of lstm unit. + cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with + shape M x S, M for batch size and S for size of lstm unit. forget_bias (float): The forget bias of lstm unit. param_attr (ParamAttr): The attributes of parameter weights, used to set initializer, name etc. @@ -1063,14 +1257,15 @@ def lstm_unit(x_t, Raises: ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\ not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \ - and **cell_t_prev** not be the same. + and **cell_t_prev** not be the same or the 2nd dimensions of \ + **hidden_t_prev** and **cell_t_prev** not be the same. Examples: .. code-block:: python x_t = fluid.layers.fc(input=x_t_data, size=10) - prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=20) + prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30) prev_cell = fluid.layers.fc(input=prev_cell_data, size=30) hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t, hidden_t_prev=prev_hidden, @@ -1089,7 +1284,11 @@ def lstm_unit(x_t, if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[ 0] != cell_t_prev.shape[0]: - raise ValueError("The 1s dimension of x_t, hidden_t_prev and " + raise ValueError("The 1st dimensions of x_t, hidden_t_prev and " + "cell_t_prev must be the same.") + + if hidden_t_prev.shape[1] != cell_t_prev.shape[1]: + raise ValueError("The 2nd dimensions of hidden_t_prev and " "cell_t_prev must be the same.") if bias_attr is None: @@ -1118,17 +1317,17 @@ def lstm_unit(x_t, def reduce_sum(input, dim=None, keep_dim=False): """ - Computes the sum of tensor elements over the given dimension. + Computes the sum of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor or LoDTensor. - dim (int|None): The dimension along which the sum is performed. If - :attr:`None`, sum all elements of :attr:`input` and return a - Tensor variable with a single element, otherwise must be in the - range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, + dim (int|None): The dimension along which the sum is performed. If + :attr:`None`, sum all elements of :attr:`input` and return a + Tensor variable with a single element, otherwise must be in the + range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. - keep_dim (bool): Whether to reserve the reduced dimension in the - output Tensor. The result tensor will have one fewer dimension + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. Returns: @@ -1162,17 +1361,17 @@ def reduce_sum(input, dim=None, keep_dim=False): def reduce_mean(input, dim=None, keep_dim=False): """ - Computes the mean of tensor elements over the given dimension. + Computes the mean of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor or LoDTensor. - dim (int|None): The dimension along which the mean is computed. If - :attr:`None`, compute the mean over all elements of :attr:`input` - and return a Tensor variable with a single element, otherwise - must be in the range :math:`[-rank(input), rank(input))`. If + dim (int|None): The dimension along which the mean is computed. If + :attr:`None`, compute the mean over all elements of :attr:`input` + and return a Tensor variable with a single element, otherwise + must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. - keep_dim (bool): Whether to reserve the reduced dimension in the - output Tensor. The result tensor will have one fewer dimension + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. Returns: @@ -1206,22 +1405,22 @@ def reduce_mean(input, dim=None, keep_dim=False): def reduce_max(input, dim=None, keep_dim=False): """ - Computes the maximum of tensor elements over the given dimension. + Computes the maximum of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor or LoDTensor. - dim (int|None): The dimension along which the maximum is computed. - If :attr:`None`, compute the maximum over all elements of - :attr:`input` and return a Tensor variable with a single element, - otherwise must be in the range :math:`[-rank(input), rank(input))`. + dim (int|None): The dimension along which the maximum is computed. + If :attr:`None`, compute the maximum over all elements of + :attr:`input` and return a Tensor variable with a single element, + otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. - keep_dim (bool): Whether to reserve the reduced dimension in the - output Tensor. The result tensor will have one fewer dimension + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. Returns: Variable: The reduced Tensor variable. - + Examples: .. code-block:: python @@ -1250,22 +1449,22 @@ def reduce_max(input, dim=None, keep_dim=False): def reduce_min(input, dim=None, keep_dim=False): """ - Computes the minimum of tensor elements over the given dimension. + Computes the minimum of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor or LoDTensor. - dim (int|None): The dimension along which the minimum is computed. - If :attr:`None`, compute the minimum over all elements of - :attr:`input` and return a Tensor variable with a single element, - otherwise must be in the range :math:`[-rank(input), rank(input))`. + dim (int|None): The dimension along which the minimum is computed. + If :attr:`None`, compute the minimum over all elements of + :attr:`input` and return a Tensor variable with a single element, + otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. - keep_dim (bool): Whether to reserve the reduced dimension in the - output Tensor. The result tensor will have one fewer dimension + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. Returns: Variable: The reduced Tensor variable. - + Examples: .. code-block:: python diff --git a/python/paddle/v2/fluid/layers/ops.py b/python/paddle/v2/fluid/layers/ops.py index d2ff6841a317aaf6903edadc9213f69ef6c41216..544623c4bce0cb75ea727906c4879e986c8d1ce8 100644 --- a/python/paddle/v2/fluid/layers/ops.py +++ b/python/paddle/v2/fluid/layers/ops.py @@ -1,9 +1,34 @@ from ..registry import register_layer -__all__ = [ - 'mean', 'mul', 'dropout', 'reshape', 'sigmoid', 'scale', 'transpose', - 'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div', - 'elementwise_sub', 'elementwise_mul', 'clip', 'abs', 'sequence_softmax' + +__activations__ = [ + 'abs', + 'ceil', + 'exp', + 'floor', + 'log', + 'relu', + 'round', + 'sigmoid', + 'sqrt', + 'square', + 'tanh', ] +__all__ = [ + 'mean', + 'mul', + 'dropout', + 'reshape', + 'scale', + 'transpose', + 'sigmoid_cross_entropy_with_logits', + 'elementwise_add', + 'elementwise_div', + 'elementwise_sub', + 'elementwise_mul', + 'clip', + 'sequence_softmax', +] + __activations__ + for _OP in set(__all__): globals()[_OP] = register_layer(_OP) diff --git a/python/paddle/v2/fluid/layers/tensor.py b/python/paddle/v2/fluid/layers/tensor.py index e5820d24cd2b34ef53cbb91e2be66efc1b74d315..5f12ecfc14f7521948acdf27f1d6249e8052abc5 100644 --- a/python/paddle/v2/fluid/layers/tensor.py +++ b/python/paddle/v2/fluid/layers/tensor.py @@ -1,7 +1,8 @@ from ..layer_helper import LayerHelper +from ..param_attr import ParamAttr __all__ = [ - 'create_tensor', 'cast', 'concat', 'sums', 'assign', + 'create_tensor', 'create_parameter', 'cast', 'concat', 'sums', 'assign', 'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros' ] @@ -11,6 +12,33 @@ def create_tensor(dtype, name=None): return helper.create_variable(name=helper.name, dtype=dtype) +def create_parameter(shape, + dtype, + attr=None, + is_bias=False, + default_initializer=None): + """ + Create a parameter + Args: + shape(list[int]): shape of the parameter + dtype(string): element type of the parameter + attr(ParamAttr): attributes of the parameter + is_bias(bool): This can affect which default initializer is chosen + when default_initializer is None. If is_bias, + initializer.Constant(0.0) will be used. Otherwise, + Xavier() will be used. + default_initializer(Initializer): initializer for the parameter + + Returns: + Parameter: the created parameter + """ + helper = LayerHelper("create_parameter") + if attr is None: + attr = ParamAttr() + return helper.create_parameter(attr, shape, dtype, is_bias, + default_initializer) + + def cast(x, dtype): """ This function takes in the input with input_dtype @@ -180,7 +208,8 @@ def fill_constant_batch_size_like(input, Examples: .. code-block:: python - data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64') + data = fluid.layers.fill_constant_batch_size_like( + input=like, shape=[1], value=0, dtype='int64') """ helper = LayerHelper("fill_constant_batch_size_like", **locals()) out = helper.create_tmp_variable(dtype=dtype) @@ -201,15 +230,47 @@ def fill_constant_batch_size_like(input, def ones(shape, dtype): """ - This function performs the same function as fill_constant() declared above - with the constant value being 1.0. + **ones** + + This function creates a tensor of specified *shape* and + *dtype*, and initializes this with 1. + + It also sets *stop_gradient* to True. + + Args: + shape(tuple|list|None): Shape of output tensor + dtype(np.dtype|core.DataType|str): Data type of output tensor + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + data = fluid.layers.ones(shape=[1], dtype='int64') """ return fill_constant(value=1.0, **locals()) def zeros(shape, dtype): """ - This function performs the same function as fill_constant() declared above - with the constant value being 0.0. + **zeros** + + This function creates a tensor of specified *shape* and + *dtype*, and initializes this with 0. + + It also sets *stop_gradient* to True. + + Args: + shape(tuple|list|None): Shape of output tensor + dtype(np.dtype|core.DataType|str): Data type of output tensor + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + data = fluid.layers.zeros(shape=[1], dtype='int64') """ return fill_constant(value=0.0, **locals()) diff --git a/python/paddle/v2/fluid/memory_optimization_transpiler.py b/python/paddle/v2/fluid/memory_optimization_transpiler.py new file mode 100644 index 0000000000000000000000000000000000000000..571fce7fac616356ae0368b407e90537caa42977 --- /dev/null +++ b/python/paddle/v2/fluid/memory_optimization_transpiler.py @@ -0,0 +1,115 @@ +from collections import defaultdict +import framework +from framework import Program, default_main_program, Parameter, Variable +import backward +from backward import _rename_arg_ + + +class ControlFlowGraph(object): + def __init__(self, Program): + self._program = Program + self._succesors = defaultdict(set) + self._presucessors = defaultdict(set) + self._uses = defaultdict(set) + self._defs = defaultdict(set) + self._live_in = defaultdict(set) + self._live_out = defaultdict(set) + + def _add_connections(self, connections): + for node1, node2 in connections: + self._add(node1, node2) + + def _add(self, node1, node2): + self._succesors[node1].add(node2) + self._presucessors[node2].add(node1) + + def _build_graph(self): + program_desc = self._program.get_desc() + block_size = program_desc.num_blocks() + + # TODO(qijun) handle Program with if/while operators + self.global_block = program_desc.block(0) + self.op_size = self.global_block.op_size() + + op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)] + self._add_connections(op_node_connections) + + self.ops = [self.global_block.op(i) for i in range(self.op_size)] + + for i in range(self.op_size): + self._uses[i].update(self.ops[i].input_arg_names()) + self._defs[i].update(self.ops[i].output_arg_names()) + + def _reach_fixed_point(self, live_in, live_out): + if len(live_in) != len(self._live_in): + return False + if len(live_out) != len(self._live_out): + return False + for i in range(self.op_size): + if live_in[i] != self._live_in[i]: + return False + for i in range(self.op_size): + if live_out[i] != self._live_out[i]: + return False + return True + + def _dataflow_analyze(self): + self._build_graph() + live_in = defaultdict(set) + live_out = defaultdict(set) + while True: + for i in range(self.op_size): + live_in[i] = set(self._live_in[i]) + live_out[i] = set(self._live_out[i]) + self._live_in[i] = self._uses[i] | ( + self._live_out[i] - self._defs[i]) + for s in self._succesors[i]: + self._live_out[i] |= self._live_in[s] + + if self._reach_fixed_point(live_in, live_out): + break + + def _get_diff(self, a, b): + u = a & b + return a - u, b - u + + def memory_optimize(self): + self._build_graph() + self._dataflow_analyze() + self.pool = [] + for i in range(self.op_size): + if self.pool: + out_pair = [(x, self.global_block.var(str(x)).shape()) + for x in self._defs[i]] + for x, x_shape in out_pair: + for index, cache_pair in enumerate(self.pool): + cache_var = cache_pair[0] + cache_shape = cache_pair[1] + if x_shape == cache_shape: + print( + "Hit Cache !!!! cache pool index is %d, var name is %s, cached var name is %s, var shape is %s " + % (index, x, cache_var, str(cache_shape))) + self.pool.pop(index) + _rename_arg_(self.ops, x, cache_var, begin_idx=i) + self._dataflow_analyze() + break + + in_diff, out_diff = self._get_diff(self._live_in[i], + self._live_out[i]) + can_optimize = filter( + lambda x: not self.global_block.var(str(x)).persistable(), + in_diff) + if can_optimize: + for var_name in can_optimize: + self.pool.append(( + var_name, self.global_block.var(str(var_name)).shape())) + + def get_program(self): + return self._program + + +def memory_optimize(input_program): + graph = ControlFlowGraph(input_program) + graph.memory_optimize() + result_program = graph.get_program() + return result_program diff --git a/python/paddle/v2/fluid/optimizer.py b/python/paddle/v2/fluid/optimizer.py index ff3e5315a2c2b115e4ba563f60de4139f248e93a..40721b5e97a3ab2b6fe772635454105f5cdf7b6c 100644 --- a/python/paddle/v2/fluid/optimizer.py +++ b/python/paddle/v2/fluid/optimizer.py @@ -6,7 +6,7 @@ from framework import unique_name, program_guard from initializer import Constant from layer_helper import LayerHelper from regularizer import append_regularization_ops -from clip import append_gradient_clip_ops +from clip import append_gradient_clip_ops, error_clip_callback __all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad'] @@ -197,7 +197,8 @@ class Optimizer(object): This method combines interface `append_backward()` and `create_optimization_pass()` into one. """ - params_grads = append_backward(loss, parameter_list, no_grad_set) + params_grads = append_backward(loss, parameter_list, no_grad_set, + error_clip_callback) params_grads = append_gradient_clip_ops(params_grads) diff --git a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py index c3591a613acafb268a5bd70618cd4555450bac29..74ca56182c47de2e74e80a56bf84dcf90ca6c104 100644 --- a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py +++ b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py @@ -4,6 +4,7 @@ import numpy as np import paddle.v2 as paddle import paddle.v2.dataset.conll05 as conll05 import paddle.v2.fluid as fluid +import time word_dict, verb_dict, label_dict = conll05.get_dict() word_dict_len = len(word_dict) @@ -160,7 +161,8 @@ def main(): paddle.reader.shuffle( paddle.dataset.conll05.test(), buf_size=8192), batch_size=BATCH_SIZE) - place = fluid.CPUPlace() + #place = fluid.CPUPlace() + place = fluid.CUDAPlace(0) feeder = fluid.DataFeeder( feed_list=[ word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target @@ -170,10 +172,11 @@ def main(): exe.run(fluid.default_startup_program()) - embedding_param = fluid.g_scope.find_var(embedding_name).get_tensor() + embedding_param = fluid.global_scope().find_var(embedding_name).get_tensor() embedding_param.set( load_parameter(conll05.get_embedding(), word_dict_len, word_dim), place) + start_time = time.time() batch_id = 0 for pass_id in xrange(PASS_NUM): chunk_evaluator.reset(exe) @@ -191,6 +194,9 @@ def main(): f1_score) + " pass_precision:" + str( pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) + if batch_id != 0: + print("second per batch: " + str((time.time() - start_time) + / batch_id)) # exit early for CI exit(0) diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py index fc073f6be8563a363c0f98b9235ae267fa68562d..51bfe2973db7bd2ec4b43bb588be4c1fcfb11e74 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py @@ -14,6 +14,7 @@ hidden1 = fluid.layers.fc(input=image, param_attr=fluid.ParamAttr( regularizer=regularizer, clip=fluid.clip.ClipByValue(10))) + hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu', @@ -73,5 +74,9 @@ for pass_id in range(PASS_NUM): + " test_acc=" + str(test_pass_acc)) if test_pass_acc > 0.7: + fluid.io.save_inference_model( + "./recognize_digits_mlp.inference.model/", ["x"], [predict], + exe) exit(0) + exit(1) diff --git a/python/paddle/v2/fluid/tests/book_distribute/test_dist_word2vec.py b/python/paddle/v2/fluid/tests/book_distribute/test_dist_word2vec.py new file mode 100644 index 0000000000000000000000000000000000000000..b41853784d607c566fc596ab93f2282520778a4b --- /dev/null +++ b/python/paddle/v2/fluid/tests/book_distribute/test_dist_word2vec.py @@ -0,0 +1,96 @@ +from __future__ import print_function +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import os + +PASS_NUM = 100 +EMBED_SIZE = 32 +HIDDEN_SIZE = 256 +N = 5 +BATCH_SIZE = 32 +IS_SPARSE = True +TRAINERS = 2 + +word_dict = paddle.dataset.imikolov.build_dict() +dict_size = len(word_dict) + +first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') +second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64') +third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') +forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') +next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') + +embed_first = fluid.layers.embedding( + input=first_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') +embed_second = fluid.layers.embedding( + input=second_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') +embed_third = fluid.layers.embedding( + input=third_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') +embed_forth = fluid.layers.embedding( + input=forth_word, + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + +concat_embed = fluid.layers.concat( + input=[embed_first, embed_second, embed_third, embed_forth], axis=1) +hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid') +predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax') +cost = fluid.layers.cross_entropy(input=predict_word, label=next_word) +avg_cost = fluid.layers.mean(x=cost) +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) +optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) +train_reader = paddle.batch( + paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) + +t = fluid.DistributeTranspiler() +# all parameter server endpoints list for spliting parameters +pserver_endpoints = os.getenv("PSERVERS") +# server endpoint for current node +current_endpoint = os.getenv("SERVER_ENDPOINT") +# run as trainer or parameter server +training_role = os.getenv("TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver +t.transpile( + optimize_ops, params_grads, pservers=pserver_endpoints, trainers=TRAINERS) +if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) + exe.run(fluid.default_startup_program()) + exe.run(pserver_prog) +elif training_role == "TRAINER": + feeder = fluid.DataFeeder( + feed_list=[first_word, second_word, third_word, forth_word, next_word], + place=place) + exe.run(fluid.default_startup_program()) + for pass_id in range(PASS_NUM): + for data in train_reader(): + avg_cost_np = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost]) + print("avg_cost_np", avg_cost_np) + if avg_cost_np[0] < 5.0: + exit( + 0) # if avg cost less than 10.0, we think our code is good. +else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") +exit(1) diff --git a/python/paddle/v2/fluid/tests/decorators.py b/python/paddle/v2/fluid/tests/decorators.py new file mode 100644 index 0000000000000000000000000000000000000000..154619b0e93455922700a12d734967b4d20c4f13 --- /dev/null +++ b/python/paddle/v2/fluid/tests/decorators.py @@ -0,0 +1,29 @@ +import paddle.v2.fluid as fluid + +__all__ = ['many_times', 'prog_scope'] + + +def many_times(times): + def __impl__(fn): + def __fn__(*args, **kwargs): + for _ in range(times): + fn(*args, **kwargs) + + return __fn__ + + return __impl__ + + +def prog_scope(): + def __impl__(fn): + def __fn__(*args, **kwargs): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + fn(*args, **kwargs) + + return __fn__ + + return __impl__ diff --git a/python/paddle/v2/fluid/tests/test_adam_op.py b/python/paddle/v2/fluid/tests/test_adam_op.py index a0d6655d4cbcff8ed3d55df0f4e68fc6591fbb11..7dbc2fa0858a68c5da9e8d48dcb187494357e940 100644 --- a/python/paddle/v2/fluid/tests/test_adam_op.py +++ b/python/paddle/v2/fluid/tests/test_adam_op.py @@ -1,6 +1,8 @@ import unittest import numpy as np from op_test import OpTest +from paddle.v2.fluid import core +from paddle.v2.fluid.op import Operator class TestAdamOp1(OpTest): @@ -176,5 +178,124 @@ def adam_step(inputs, attributes): return param_out, moment1_out, moment2_out +def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad): + ''' + Simulate one step of the adam optimizer + :param inputs: dict of inputs + :param attributes: dict of attributes + :return tuple: tuple of output param, moment1, moment2, + beta1 power accumulator and beta2 power accumulator + ''' + param = inputs['Param'] + # grad = inputs['Grad'] + moment1 = inputs['Moment1'] + moment2 = inputs['Moment2'] + lr = inputs['LearningRate'] + beta1_pow = inputs['Beta1Pow'] + beta2_pow = inputs['Beta2Pow'] + + beta1 = attributes['beta1'] + beta2 = attributes['beta2'] + epsilon = attributes['epsilon'] + + moment1_out = np.zeros(shape=[height, row_numel]) + moment2_out = np.zeros(shape=[height, row_numel]) + param_out = np.zeros(shape=[height, row_numel]) + + for idx, row_id in enumerate(rows): + moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1 + ) * np_grad[idx] + moment2_out[row_id] = beta2 * moment2[row_id] + ( + 1 - beta2) * np.square(np_grad[idx]) + lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow) + param_out[row_id] = param[row_id] - lr_t * (moment1_out[row_id] / ( + np.sqrt(moment2_out[row_id]) + epsilon)) + return param_out, moment1_out, moment2_out + + +class TestSparseAdamOp(unittest.TestCase): + def setup(self, scope, place): + beta1 = 0.78 + beta2 = 0.836 + epsilon = 1e-4 + + height = 10 + rows = [0, 4, 7] + self.rows = rows + row_numel = 12 + self.row_numel = row_numel + self.dense_inputs = { + "Param": np.full((height, row_numel), 5.0).astype("float32"), + "Moment1": np.full((height, row_numel), 5.0).astype("float32"), + "Moment2": np.full((height, row_numel), 5.0).astype("float32"), + 'Beta1Pow': np.array([beta1**10]).astype("float32"), + 'Beta2Pow': np.array([beta2**10]).astype("float32"), + "LearningRate": np.full((1), 2.0).astype("float32") + } + self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} + + grad_selected_rows = scope.var('Grad').get_selected_rows() + grad_selected_rows.set_height(height) + grad_selected_rows.set_rows(rows) + np_array = np.ones((len(rows), row_numel)).astype("float32") + np_array[0, 0] = 2.0 + np_array[2, 8] = 4.0 + + grad_tensor = grad_selected_rows.get_tensor() + grad_tensor.set(np_array, place) + + self.sparse_inputs = ["Grad"] + + param_out, mom1, mom2 = adam_step_sparse( + self.dense_inputs, self.attrs, height, rows, row_numel, np_array) + self.outputs = { + "ParamOut": param_out, + "Moment1Out": mom1, + "Moment2Out": mom2 + } + + def check_with_place(self, place): + scope = core.Scope() + self.setup(scope, place) + + op_args = dict() + for key, np_array in self.dense_inputs.iteritems(): + var = scope.var(key).get_tensor() + var.set(np_array, place) + op_args[key] = key + for s in self.sparse_inputs: + op_args[s] = s + for s in self.outputs: + var = scope.var(s).get_tensor() + var.set(self.outputs[s], place) + op_args[s] = s + for k in self.attrs: + op_args[k] = self.attrs[k] + + # create and run sgd operator + adam_op = Operator("adam", **op_args) + adam_op.run(scope, place) + + for key, np_array in self.outputs.iteritems(): + out_var = scope.var(key).get_tensor() + actual = np.array(out_var) + actual = actual.reshape([actual.size]) + np_array = np_array.reshape([np_array.size]) + for idx, row_id in enumerate(self.rows): + j = 0 + while j < self.row_numel: + pos = row_id * self.row_numel + j + self.assertLess((actual[pos] - np_array[pos]) / actual[pos], + 0.00001) + j += 1 + + def test_sparse_sgd(self): + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.CUDAPlace(0)) + for place in places: + self.check_with_place(place) + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_batch_norm_op.py b/python/paddle/v2/fluid/tests/test_batch_norm_op.py index abbd48d2b843cedb77caffc13413d2f9695defa6..ac9418549f45f818257d74045cabb9c581816968 100644 --- a/python/paddle/v2/fluid/tests/test_batch_norm_op.py +++ b/python/paddle/v2/fluid/tests/test_batch_norm_op.py @@ -341,9 +341,6 @@ class TestBatchNormOp(OpTest): if core.is_compile_gpu() and core.op_support_gpu("batch_norm"): places.append(core.CUDAPlace(0)) - core.init_devices(["CPU", "GPU:0"]) - else: - core.init_devices(["CPU"]) for place in places: for data_format in ["NCHW", "NHWC"]: test_with_place(place, data_format, [2, 3, 4, 5]) diff --git a/python/paddle/v2/fluid/tests/test_beam_search_op.py b/python/paddle/v2/fluid/tests/test_beam_search_op.py index 595f132fa85f0a65f15d9ac31ad320e567c96358..319a7e49e35b0515e69703b2d03080cd9ffcae9d 100644 --- a/python/paddle/v2/fluid/tests/test_beam_search_op.py +++ b/python/paddle/v2/fluid/tests/test_beam_search_op.py @@ -37,13 +37,13 @@ class BeamSearchOpTester(unittest.TestCase): print 'lod', selected_ids.lod() def _create_pre_ids(self): - np_data = np.array([[1, 2, 3, 4]], dtype='int32') + np_data = np.array([[1, 2, 3, 4]], dtype='int64') tensor = create_tensor(self.scope, "pre_ids", np_data) def _create_ids(self): self.lod = [[0, 1, 4], [0, 1, 2, 3, 4]] np_data = np.array( - [[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]], dtype='int32') + [[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]], dtype='int64') tensor = create_tensor(self.scope, "ids", np_data) tensor.set_lod(self.lod) diff --git a/python/paddle/v2/fluid/tests/test_calc_gradient.py b/python/paddle/v2/fluid/tests/test_calc_gradient.py new file mode 100644 index 0000000000000000000000000000000000000000..c34c8ff6d143ff2c8ae0def935d2b44982c0764e --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_calc_gradient.py @@ -0,0 +1,25 @@ +import unittest + +import paddle.v2.fluid as fluid +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.optimizer as optimizer +from paddle.v2.fluid.backward import calc_gradient + + +class TestCalcGradient(unittest.TestCase): + def test_calc_gradient(self): + x = layers.create_parameter(dtype="float32", shape=[5, 10]) + y = layers.create_parameter(dtype="float32", shape=[10, 8]) + mul_out = layers.mul(x=x, y=y) + mean_out = layers.mean(x=mul_out) + a = calc_gradient(mean_out, mul_out) + b = calc_gradient(mean_out, x) + place = fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(fluid.default_startup_program()) + exe.run(fluid.default_main_program(), feed={}, fetch_list=[a, b]) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv2d_op.py b/python/paddle/v2/fluid/tests/test_conv2d_op.py index e82e3ab0c9c0bc75a13a8948fda925bc4f0b6512..958300e655e012b91598360105ca2734c3bd2c37 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_op.py @@ -1,5 +1,7 @@ import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest @@ -47,6 +49,7 @@ def conv2d_forward_naive(input, filter, group, conv_param): class TestConv2dOp(OpTest): def setUp(self): + core.use_cuda() self.init_op_type() self.init_group() self.init_dilation() @@ -167,26 +170,31 @@ class TestWithDilation(TestConv2dOp): #----------------Conv2dCudnn---------------- class TestCudnn(TestConv2dOp): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWithPad(TestWithPad): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWithStride(TestWithStride): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWithGroup(TestWithGroup): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWith1x1(TestWith1x1): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" diff --git a/python/paddle/v2/fluid/tests/test_detection_output_op.py b/python/paddle/v2/fluid/tests/test_detection_output_op.py new file mode 100644 index 0000000000000000000000000000000000000000..080a9743b0182cb7e6dd0030fc306a7f82510a05 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_detection_output_op.py @@ -0,0 +1,57 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestUnpoolOp(OpTest): + def setUp(self): + self.op_type = "detection_output" + self.init_test_case() + + #loc.shape ((1, 4, 4, 1, 1)) + #conf.shape ((1, 4, 2, 1, 1)) + + loc = np.array([[[[[0.1]], [[0.1]], [[0.1]], [[0.1]]], + [[[0.1]], [[0.1]], [[0.1]], [[0.1]]], + [[[0.1]], [[0.1]], [[0.1]], [[0.1]]], + [[[0.1]], [[0.1]], [[0.1]], [[0.1]]]]]) + conf = np.array([[[[[0.1]], [[0.9]]], [[[0.2]], [[0.8]]], + [[[0.3]], [[0.7]]], [[[0.4]], [[0.6]]]]]) + priorbox = np.array([ + 0.1, 0.1, 0.5, 0.5, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.6, 0.6, 0.1, + 0.1, 0.2, 0.2, 0.3, 0.3, 0.7, 0.7, 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, + 0.8, 0.8, 0.1, 0.1, 0.2, 0.2 + ]) + + output = np.array([ + 0, 1, 0.68997443, 0.099959746, 0.099959746, 0.50804031, 0.50804031 + ]) + self.inputs = { + 'Loc': loc.astype('float32'), + 'Conf': conf.astype('float32'), + 'PriorBox': priorbox.astype('float32') + } + self.attrs = { + 'num_classes': self.num_classes, + 'top_k': self.top_k, + 'nms_top_k': self.nms_top_k, + 'background_label_id': self.background_label_id, + 'nms_threshold': self.nms_threshold, + 'confidence_threshold': self.confidence_threshold, + } + self.outputs = {'Out': output.astype('float32')} + + def test_check_output(self): + self.check_output() + + def init_test_case(self): + self.num_classes = 2 + self.top_k = 10 + self.nms_top_k = 20 + self.background_label_id = 0 + self.nms_threshold = 0.01 + self.confidence_threshold = 0.01 + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py b/python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py new file mode 100644 index 0000000000000000000000000000000000000000..c02c59284e1ca2e28ba2f6c5ec13b241c15fc288 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py @@ -0,0 +1,347 @@ +import numpy +import random +import collections +import paddle.v2.fluid as fluid +import unittest +from decorators import * + + +class Memory(object): + def __init__(self, shape, dtype='float32'): + self.ex = numpy.zeros(shape=shape, dtype=dtype) + self.cur = None + + def update(self, val): + assert val.shape == self.ex.shape + assert val.dtype == self.ex.dtype + self.cur = val + + def ex(self): + return self.ex + + def next(self): + self.ex = self.cur + self.cur = None + + def __next__(self): + self.next() + + def reset(self): + self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype) + self.cur = None + + +class Output(object): + def __init__(self): + self.outs = [] + + def next_sequence(self): + self.outs.append([]) + + def out(self, val): + self.outs[-1].append(val) + + def last(self): + return self.outs[-1][-1] + + +class BaseRNN(object): + def __init__(self, ins, mems, params, outs, num_seq=5, max_seq_len=15): + self.num_seq = num_seq + self.inputs = collections.defaultdict(list) + + for _ in xrange(num_seq): + seq_len = random.randint(1, max_seq_len - 1) + for iname in ins: + ishape = ins[iname].get('shape', None) + idtype = ins[iname].get('dtype', 'float32') + lst = [] + for _ in xrange(seq_len): + lst.append(numpy.random.random(size=ishape).astype(idtype)) + self.inputs[iname].append(lst) + + self.mems = dict() + for mname in mems: + mshape = mems[mname].get('shape', None) + mdtype = mems[mname].get('dtype', 'float32') + self.mems[mname] = Memory(shape=mshape, dtype=mdtype) + + self.params = dict() + for pname in params: + pshape = params[pname].get('shape', None) + pdtype = params[pname].get('dtype', 'float32') + self.params[pname] = numpy.random.random(size=pshape).astype(pdtype) + + self.outputs = dict() + + for oname in outs: + self.outputs[oname] = Output() + + def step(self, **kwargs): + raise NotImplementedError() + + def exe(self): + retv = dict() + for out in self.outputs: + retv[out] = [] + + for seq_id in xrange(self.num_seq): + for mname in self.mems: + self.mems[mname].reset() + for out in self.outputs: + self.outputs[out].next_sequence() + + iname0 = self.inputs.keys()[0] + seq_len = len(self.inputs[iname0][seq_id]) + + for step_id in xrange(seq_len): + xargs = dict() + + for iname in self.inputs: + xargs[iname] = self.inputs[iname][seq_id][step_id] + + for mname in self.mems: + xargs[mname] = self.mems[mname] + + for pname in self.params: + xargs[pname] = self.params[pname] + + for out in self.outputs: + xargs[out] = self.outputs[out] + + self.step(**xargs) + + for mname in self.mems: + next(self.mems[mname]) + + for out in self.outputs: + retv[out].append(self.outputs[out].last()) + + for out in retv: + retv[out] = numpy.array(retv[out]) + return retv + + def to_feed(self, place): + feed_dict = dict() + + for iname in self.inputs: + lod = [0] + np_flatten = [] + for seq_id in xrange(len(self.inputs[iname])): + seq_len = len(self.inputs[iname][seq_id]) + lod.append(lod[-1] + seq_len) + np_flatten.extend(self.inputs[iname][seq_id]) + + t = fluid.Tensor() + t.set(numpy.array(np_flatten), place) + t.set_lod([lod]) + feed_dict[iname] = t + + for pname in self.params: + feed_dict[pname] = self.params[pname] + return feed_dict + + def get_numeric_gradient_of_param(self, param_name, delta=0.001): + p = self.params[param_name] + if len(p.shape) != 2: + raise ValueError("Not support get numeric gradient of an parameter," + " which is not matrix") + g = numpy.zeros(shape=p.shape, dtype=p.dtype) + + for i in xrange(p.shape[0]): + for j in xrange(p.shape[1]): + o = p[i][j] + p[i][j] += delta + pos = self._exe_mean_out_() + p[i][j] -= 2 * delta + neg = self._exe_mean_out_() + p[i][j] = o + g[i][j] = (pos - neg) / (delta * 2) + return g + + def get_numeric_gradient_of_input(self, + input_name, + delta=0.001, + return_one_tensor=True): + ipt = self.inputs[input_name] + grad = [] + + for seq in ipt: + seq_grad = [] + for item in seq: + item_grad = numpy.zeros(shape=item.shape, dtype=item.dtype) + if len(item.shape) != 1: + raise ValueError("Not support") + + for i in xrange(len(item)): + o = item[i] + item[i] += delta + pos = self._exe_mean_out_() + item[i] -= 2 * delta + neg = self._exe_mean_out_() + item[i] = o + item_grad[i] = (pos - neg) / (delta * 2) + seq_grad.append(item_grad) + grad.append(seq_grad) + + if not return_one_tensor: + return grad + + for i in xrange(len(grad)): + grad[i] = numpy.concatenate(grad[i]) + grad = numpy.concatenate(grad) + return grad + + def _exe_mean_out_(self): + outs = self.exe() + return numpy.array([o.mean() for o in outs.itervalues()]).mean() + + +class TestSimpleMul(unittest.TestCase): + DATA_NAME = 'X' + DATA_WIDTH = 32 + PARAM_NAME = 'W' + HIDDEN_WIDTH = 10 + OUT_NAME = 'Out' + + class SimpleMul(BaseRNN): + def __init__(self): + base = TestSimpleMul + super(base.SimpleMul, self).__init__({ + base.DATA_NAME: { + 'shape': [base.DATA_WIDTH] + } + }, {}, { + base.PARAM_NAME: { + 'shape': [base.DATA_WIDTH, base.HIDDEN_WIDTH] + } + }, [base.OUT_NAME]) + + def step(self, X, W, Out): + Out.out(numpy.matmul(X, W)) + + # Test many times in local to ensure the random seed cannot breaks CI + # @many_times(10) + @prog_scope() + def test_forward_backward(self): + py_rnn = TestSimpleMul.SimpleMul() + dat = fluid.layers.data( + name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1) + dat.stop_gradient = False + + rnn = fluid.layers.DynamicRNN() + with rnn.block(): + d = rnn.step_input(dat) + o = fluid.layers.fc(input=d, + param_attr=self.PARAM_NAME, + bias_attr=False, + size=self.HIDDEN_WIDTH, + act=None) + rnn.output(o) + + out = rnn() + out = fluid.layers.sequence_pool(out, pool_type='last') + loss = fluid.layers.mean(x=out) + fluid.backward.append_backward(loss) + + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + out, w_g, i_g = map(numpy.array, + exe.run(feed=py_rnn.to_feed(cpu), + fetch_list=[ + out, self.PARAM_NAME + "@GRAD", + self.DATA_NAME + "@GRAD" + ], + return_numpy=False)) + out_by_python = py_rnn.exe()[self.OUT_NAME] + self.assertTrue(numpy.allclose(out, out_by_python)) + w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME) + self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.05)) + i_g_num = py_rnn.get_numeric_gradient_of_input( + input_name=self.DATA_NAME) + i_g_num = i_g_num.reshape(i_g.shape) + self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.05)) + + +class TestSimpleMulWithMemory(unittest.TestCase): + DATA_WIDTH = 32 + HIDDEN_WIDTH = 20 + DATA_NAME = 'X' + PARAM_NAME = 'W' + + class SimpleMulWithMemory(BaseRNN): + def __init__(self): + super(TestSimpleMulWithMemory.SimpleMulWithMemory, self).__init__({ + TestSimpleMulWithMemory.DATA_NAME: { + 'shape': [TestSimpleMulWithMemory.DATA_WIDTH] + } + }, {'Mem': { + 'shape': [TestSimpleMulWithMemory.HIDDEN_WIDTH] + }}, { + TestSimpleMulWithMemory.PARAM_NAME: { + 'shape': [ + TestSimpleMulWithMemory.DATA_WIDTH, + TestSimpleMulWithMemory.HIDDEN_WIDTH + ] + } + }, ['Out']) + + def step(self, X, Mem, W, Out): + o = numpy.matmul(X, W) + assert isinstance(Mem, Memory) + o += Mem.ex + Mem.update(o) + assert isinstance(Out, Output) + Out.out(o) + + # many_times used locally for debug. Make sure the calculation is stable. + # @many_times(10) + @prog_scope() + def test_forward_backward(self): + py_rnn = TestSimpleMulWithMemory.SimpleMulWithMemory() + data = fluid.layers.data( + name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1) + data.stop_gradient = False + rnn = fluid.layers.DynamicRNN() + with rnn.block(): + d = rnn.step_input(data) + mem = rnn.memory(value=0.0, shape=[self.HIDDEN_WIDTH]) + hidden = fluid.layers.fc(input=d, + size=self.HIDDEN_WIDTH, + param_attr=self.PARAM_NAME, + bias_attr=False, + act=None) + o = fluid.layers.elementwise_add(x=hidden, y=mem) + rnn.update_memory(mem, o) + rnn.output(o) + + out = rnn() + last = fluid.layers.sequence_pool(input=out, pool_type='last') + loss = fluid.layers.mean(x=last) + fluid.backward.append_backward(loss) + + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + feed = py_rnn.to_feed(cpu) + last_np, w_g, i_g = map(numpy.array, + exe.run(feed=feed, + fetch_list=[ + last, self.PARAM_NAME + "@GRAD", + self.DATA_NAME + "@GRAD" + ], + return_numpy=False)) + last_by_py, = py_rnn.exe().values() + w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME) + self.assertTrue(numpy.allclose(last_np, last_by_py)) + + self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.1)) + i_g_num = py_rnn.get_numeric_gradient_of_input(self.DATA_NAME) + i_g_num = i_g_num.reshape(i_g.shape) + + # Since this RNN has many float add. The number could be not stable. + # rtol = 0.1 + self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.1)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_get_places_op.py b/python/paddle/v2/fluid/tests/test_get_places_op.py new file mode 100644 index 0000000000000000000000000000000000000000..c4346f6786c096026fa9cbd55fbd44c68f2f9981 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_get_places_op.py @@ -0,0 +1,17 @@ +import paddle.v2.fluid as fluid +import decorators +import unittest + + +class TestGetPlaces(unittest.TestCase): + @decorators.prog_scope() + def test_get_places(self): + places = fluid.layers.get_places() + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + exe.run(fluid.default_main_program()) + self.assertEqual(places.type, fluid.core.VarDesc.VarType.PLACE_LIST) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_layers.py b/python/paddle/v2/fluid/tests/test_layers.py index 9d2dcca56dd1361b9e2448be9f1d5403f8ee17e3..a56277d216c28ddeb752a0aad46daca305a685e4 100644 --- a/python/paddle/v2/fluid/tests/test_layers.py +++ b/python/paddle/v2/fluid/tests/test_layers.py @@ -177,8 +177,8 @@ class TestBook(unittest.TestCase): name='x_t_data', shape=[10, 10], dtype='float32') x_t = layers.fc(input=x_t_data, size=10) prev_hidden_data = layers.data( - name='prev_hidden_data', shape=[10, 20], dtype='float32') - prev_hidden = layers.fc(input=prev_hidden_data, size=20) + name='prev_hidden_data', shape=[10, 30], dtype='float32') + prev_hidden = layers.fc(input=prev_hidden_data, size=30) prev_cell_data = layers.data( name='prev_cell', shape=[10, 30], dtype='float32') prev_cell = layers.fc(input=prev_cell_data, size=30) @@ -196,6 +196,13 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(layers.sequence_softmax(x=seq)) print(str(program)) + def test_get_places(self): + program = Program() + with program_guard(program): + x = layers.get_places(device_count=4) + self.assertIsNotNone(x) + print(str(program)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_memory_optimization_transpiler.py b/python/paddle/v2/fluid/tests/test_memory_optimization_transpiler.py new file mode 100644 index 0000000000000000000000000000000000000000..5cce75ddb8df50a35156fc2b8b411823711989c0 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_memory_optimization_transpiler.py @@ -0,0 +1,33 @@ +from __future__ import print_function +import unittest + +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.optimizer as optimizer +from paddle.v2.fluid.framework import Program, program_guard +from paddle.v2.fluid.memory_optimization_transpiler import memory_optimize + + +class TestControlFlowGraph(unittest.TestCase): + def setUp(self): + program = Program() + with program_guard(program, startup_program=Program()): + x = layers.data(name='x', shape=[13], dtype='float32') + y_predict = layers.fc(input=x, size=1, act=None) + y = layers.data(name='y', shape=[1], dtype='float32') + cost = layers.square_error_cost(input=y_predict, label=y) + avg_cost = layers.mean(x=cost) + opt = optimizer.SGD(learning_rate=0.001) + opt = opt.minimize(avg_cost) + + self.program = program + + def test_control_flow_graph(self): + print("before optimization") + print(str(self.program)) + result_program = memory_optimize(self.program) + print("after optimization") + print(str(result_program)) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_norm_op.py b/python/paddle/v2/fluid/tests/test_norm_op.py new file mode 100644 index 0000000000000000000000000000000000000000..7d56320489b24c5547e045cb51b778851ff94a32 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_norm_op.py @@ -0,0 +1,57 @@ +import unittest +import numpy as np +from op_test import OpTest + + +def norm(input, scale, epsilon): + s0, s1, s2, s3 = input.shape + x_square = input * input + for i in xrange(s0): + input_batch = input[i:i + 1, :, :, :] + input_batch = input_batch.reshape(s1, s2 * s3) + x_square_batch = x_square[i:i + 1, :, :, :] + x_square_batch = x_square_batch.reshape(s1, s2 * s3) + square_colsum = x_square_batch.sum(axis=0) + epsilon + tmp = pow(square_colsum, 0.5) + tmp = np.reciprocal(tmp) + tmp_tile = np.tile(tmp, s1) + tmp_tile = tmp_tile.reshape(s1, s2 * s3) + scale_tile = np.tile(scale, (1, s2 * s3)) + scale_tile = scale_tile.reshape(s1, s2 * s3) + out_batch = input_batch * tmp_tile * scale_tile + out_batch = out_batch.reshape(1, s1, s2, s3) + if i == 0: + out = out_batch + else: + out = np.concatenate((out, out_batch), 0) + out.reshape(s0, s1, s2, s3) + return out + + +class TestNormOp(OpTest): + def setUp(self): + self.op_type = "norm" + self.init_test_case() + input = np.random.random(self.shape).astype("float32") + scale = np.array([10, 10, 10]) + self.inputs = { + 'X': input.astype('float32'), + 'Scale': scale.astype('float32') + } + self.attrs = {'epsilon': self.epsilon} + output = norm(input, scale, self.epsilon) + self.outputs = {'Out': output.astype('float32')} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + def init_test_case(self): + self.shape = [2, 3, 2, 2] + self.epsilon = 1e-6 + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_parallel_op.py b/python/paddle/v2/fluid/tests/test_parallel_op.py new file mode 100644 index 0000000000000000000000000000000000000000..59ed041e7fa1dd68c0f8d610f2575886442d1b4d --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_parallel_op.py @@ -0,0 +1,46 @@ +import unittest + +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid as fluid +from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.executor import Executor +from paddle.v2.fluid.backward import append_backward +import numpy as np +import paddle.v2.fluid.core as core + + +class ParallelOpTest(unittest.TestCase): + def setUp(self): + x = layers.data( + shape=[-1, 30, 40], + dtype='float32', + name='x', + append_batch_size=False, + stop_gradient=False) + + places = layers.get_places(device_count=4) + pd = layers.ParallelDo(places=places) + + with pd.do(): + data = pd.read_input(x) + hidden = layers.fc(input=data, size=7) + pd.write_output(hidden) + data = pd() + loss = layers.mean(x=data) + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) + sgd_optimizer.minimize(loss) + + exe = fluid.Executor(fluid.CPUPlace()) + exe.run(fluid.default_startup_program()) + exe.run(fluid.default_main_program(), + feed={ + x.name: np.random.uniform(0.1, 0.6, + (20, 30, 40)).astype("float32") + }) + + def test_forward(self): + pass + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py b/python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py index 7c136f6360ce73a7c532b5486e544796e6853bcb..8b79d448e263d00849877c29158d7898bafe1937 100644 --- a/python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py +++ b/python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py @@ -1,46 +1,186 @@ import unittest import paddle.v2.fluid as fluid +import paddle.v2.fluid.core as core import numpy class TestReorderLoDTensor(unittest.TestCase): - def test_reorder(self): - dat = fluid.layers.data(name='input', shape=[1], lod_level=2) + num_seq = 5 + # [name, dim, lod_level] pair indicating data info of source and target + data_desc = (['input', 9, 0], ['ref', 5, 1]) + + @classmethod + def setUpClass(cls): + cls.set_program() + + @classmethod + def set_program(cls): + dat = fluid.layers.data( + name=cls.data_desc[0][0], shape=[cls.data_desc[0][1]]) dat.stop_gradient = False - rank_dat = fluid.layers.data(name='ref', shape=[1], lod_level=1) + rank_dat = fluid.layers.data( + name=cls.data_desc[1][0], shape=[cls.data_desc[1][1]]) table = fluid.layers.lod_rank_table(rank_dat) new_dat = fluid.layers.reorder_lod_tensor_by_rank( x=dat, rank_table=table) - loss = fluid.layers.mean(x=new_dat) + loss = fluid.layers.reduce_sum(new_dat) fluid.backward.append_backward(loss=loss) + cls.fetch_list = [new_dat, cls.data_desc[0][0] + '@GRAD'] + + def run_program(self): + outputs = [] + input_grads = [] + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.CUDAPlace(0)) + for place in places: + self.set_inputs(place) + exe = fluid.Executor(place) + output, input_grad = exe.run(fluid.default_main_program(), + feed=self.inputs, + fetch_list=self.fetch_list, + return_numpy=False) + outputs.append(output) + input_grads.append(input_grad) + self.actual_outputs = outputs + self.actual_grads = input_grads + + def set_data(self): + self.data = {} + for desc in self.data_desc: + data_name = desc[0] + data_dim = desc[1] + data_lod_level = desc[2] + data_lod = [] + for i in range(data_lod_level): + lod_level_i = numpy.random.randint( + low=1, + high=5, + size=self.num_seq if i == 0 else lod_level_i[-1]) + lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist() + data_lod.append(lod_level_i) + data_value = numpy.random.random(size=[ + data_lod[-1][-1] if data_lod else self.num_seq, data_dim + ]).astype('float32') + self.data[data_name] = (data_value, data_lod) + + def set_inputs(self, place): + self.inputs = {} + for desc in self.data_desc: + tensor = fluid.Tensor() + tensor.set(self.data[desc[0]][0], place) + if self.data[desc[0]][1]: + tensor.set_lod(self.data[desc[0]][1]) + self.inputs[desc[0]] = tensor + + def reorder(self): + level = 0 + + # compute the rank_table according to ref_lod + ref_lod = self.data[self.data_desc[1][0]][1][level] + rank_table = [] # list of (index, length) + for i in range(len(ref_lod) - 1): + rank_table.append((i, ref_lod[i + 1] - ref_lod[i])) + rank_table = sorted(rank_table, lambda x, y: y[1] - x[1]) + + # compute the input sequence info according to input_lod + input_value, input_lod = self.data[self.data_desc[0][0]] + + input_table = [] # list of (offset, length, sub_lod) + if input_lod: + for i in range(len(input_lod[level]) - 1): + start_idx = i + end_idx = i + 1 + sub_lod = [] + for lod_level_i in input_lod[level:]: + sub_lod_i = [] + for idx in range(start_idx, end_idx): + sub_lod_i.append(lod_level_i[idx + 1] - lod_level_i[ + idx]) + sub_lod.append(sub_lod_i) + start_idx = lod_level_i[start_idx] + end_idx = lod_level_i[end_idx] + input_table.append((start_idx, end_idx - start_idx, sub_lod)) + else: + input_table = [(i, 1, []) for i in range(len(rank_table))] + + # reorder by rank_table + output_value = numpy.zeros_like(input_value) + output_lod = [] + offset = 0 + for index, length in rank_table: + input_seq_start = input_table[index][0] + input_seq_len = input_table[index][1] + input_seq_end = input_seq_start + input_seq_len + output_value[offset:offset + input_seq_len] = input_value[ + input_seq_start:input_seq_end] + offset += input_seq_len + + input_seq_sub_lod = input_table[index][2] + if len(output_lod) == 0: + output_lod = [[0] for i in input_seq_sub_lod] + for i, sub_lod_i in enumerate(input_seq_sub_lod): + for idx_sub in sub_lod_i: + output_lod[i].append(output_lod[i][-1] + idx_sub) + return output_value, output_lod + + def test_reorder_lod_tensor(self): + self.data_desc[0][-1] = 2 # input is lod_tensor + self.set_data() + self.run_program() + # check output + expect_output, expect_output_lod = self.reorder() + for actual_output in self.actual_outputs: + self.assertTrue( + numpy.allclose( + numpy.array(actual_output), expect_output, atol=0.001)) + self.assertEqual(expect_output_lod, actual_output.lod()) + # check gradient + expect_grad = numpy.ones_like(self.data[self.data_desc[0][0]][0]) + expect_grad_lod = self.data[self.data_desc[0][0]][1] + for actual_grad in self.actual_grads: + self.assertTrue( + numpy.allclose( + numpy.array(actual_grad), expect_grad, atol=0.001)) + self.assertEqual(expect_grad_lod, actual_grad.lod()) + + def test_reorder_tensor(self): + self.data_desc[0][-1] = 0 # input is tensor + self.set_data() + self.run_program() + # check output + expect_output, expect_output_lod = self.reorder() + for actual_output in self.actual_outputs: + self.assertTrue( + numpy.allclose( + numpy.array(actual_output), expect_output, atol=0.001)) + self.assertEqual(expect_output_lod, actual_output.lod()) + # check gradient + expect_grad = numpy.ones_like(self.data[self.data_desc[0][0]][0]) + expect_grad_lod = self.data[self.data_desc[0][0]][1] + for actual_grad in self.actual_grads: + self.assertTrue( + numpy.allclose( + numpy.array(actual_grad), expect_grad, atol=0.001)) + self.assertEqual(expect_grad_lod, actual_grad.lod()) + global outputs_from_tensor_implicit_lod + outputs_from_tensor_implicit_lod = self.actual_outputs - cpu = fluid.CPUPlace() - exe = fluid.Executor(cpu) - exe.run(fluid.default_startup_program()) - - ref = fluid.Tensor() - ref_lod = [0, 3, 4, 7, 8, 14] - ref.set_lod([ref_lod]) - - ref.set(numpy.random.random(size=[14, 1]).astype('float32'), cpu) - input = fluid.Tensor() - lod_level_0 = numpy.random.randint(low=1, high=5, size=5) - lod_level_0 = [0] + numpy.cumsum(lod_level_0).tolist() - lod_level_1 = numpy.random.randint(low=1, high=5, size=lod_level_0[-1]) - lod_level_1 = [0] + numpy.cumsum(lod_level_1).tolist() - - input.set_lod([lod_level_0, lod_level_1]) - input.set( - numpy.random.random(size=[lod_level_1[-1], 1]).astype('float32'), - cpu) - - ig = exe.run(fluid.default_main_program(), - feed={'input': input, - 'ref': ref}, - fetch_list=['input@GRAD'], - return_numpy=False)[0] - self.assertAlmostEqual(numpy.array(ig).sum(), 1.0, delta=0.001) - self.assertEqual(input.lod(), ig.lod()) + # compare outputs between LodTensors with explicit and implicit lod + # use the same data but set the input lod explicitly + input_lod = [[ + i for i in range(len(self.data[self.data_desc[0][0]][0]) + 1) + ]] + self.inputs[self.data_desc[0][0]].set_lod(input_lod) + # preserve the output of LodTensor with implicit lod to compare + expect_output = [ + numpy.array(actual_output) for actual_output in self.actual_outputs + ] + self.run_program() + for actual_output in self.actual_outputs: + self.assertTrue( + numpy.allclose( + numpy.array(actual_output), expect_output, atol=0.001)) if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py b/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py index b54a56aa6d3f76baa4d1fc6ba8f963332deba002..8bffdd585699bfae2262bcfcd0387d22fa1e62db 100644 --- a/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py +++ b/python/paddle/v2/fluid/tests/test_sequence_softmax_op.py @@ -1,13 +1,7 @@ import unittest import numpy as np from op_test import OpTest - - -def stable_softmax(x): - """Compute the softmax of vector x in a numerically stable way.""" - shiftx = x - np.max(x).clip(-64.) - exps = np.exp(shiftx) - return exps / np.sum(exps) +from test_softmax_op import stable_softmax class TestSequenceSoftmaxOp(OpTest): diff --git a/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py b/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py index be1588fc2d09fa58882425eb3d080ef1560ebc79..a14721b9aacfa7437623024af41555fd26990499 100644 --- a/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py +++ b/python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py @@ -3,43 +3,86 @@ import paddle.v2.fluid.core as core from paddle.v2.fluid.executor import Executor import paddle.v2.fluid.layers as layers from paddle.v2.fluid.backward import append_backward -from paddle.v2.fluid.framework import default_main_program -import numpy +from paddle.v2.fluid.framework import default_main_program, switch_main_program +from paddle.v2.fluid.framework import Program +import numpy as np -main_program = default_main_program() - -class TestShrinkRNNMemory(unittest.TestCase): - def test_shrink_rnn_memory(self): +class TestShrinkRNNMemoryBase(unittest.TestCase): + def setUp(self): + self.main_program = Program() + switch_main_program(self.main_program) x = layers.data('x', shape=[100], dtype='float32') x.stop_gradient = False - table = layers.lod_rank_table(x=x) + rank_table_tensor = layers.data( + 'rank_table_tensor', shape=[1], dtype='float32', lod_level=1) + table = layers.lod_rank_table(x=rank_table_tensor) i = layers.zeros(dtype='int64', shape=[1]) - mem1 = layers.shrink_memory(x=x, i=i, table=table) + self.mem1 = layers.shrink_memory(x=x, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True - mem2 = layers.shrink_memory(x=mem1, i=i, table=table) + self.mem2 = layers.shrink_memory(x=self.mem1, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True - mem3 = layers.shrink_memory(x=mem2, i=i, table=table) + self.mem3 = layers.shrink_memory(x=self.mem2, i=i, table=table) + mem3_mean = layers.mean(x=self.mem3) + append_backward(loss=mem3_mean) + self.x_grad = self.main_program.global_block().var('x@GRAD') + + def sum_lodtensor(self, tensor): + sum_res = 0.0 + for i in xrange(np.product(tensor.get_dims())): + sum_res += tensor.get_float_element(i) + return sum_res + +class TestShrinkRNNMemoryReferLoD(TestShrinkRNNMemoryBase): + def test_refer_lod(self): cpu = core.CPUPlace() - tensor = core.LoDTensor() - tensor.set_lod([[0, 2, 5, 6]]) - tensor_np = numpy.random.random(size=(3, 100)).astype('float32') - tensor.set(tensor_np, cpu) + x_tensor = core.LoDTensor() + x_tensor.set_lod([[0, 2, 5, 6]]) + tensor_np = np.random.random(size=(6, 100)).astype('float32') + x_tensor.set(tensor_np, cpu) + + rank_table_tensor = core.LoDTensor() + rank_table_tensor.set_lod([[0, 1, 3, 6]]) + rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'), + cpu) + exe = Executor(cpu) - outs = exe.run(feed={'x': tensor}, fetch_list=[mem1, mem2, mem3]) - self.assertTrue(numpy.allclose(tensor_np[0:3], outs[0])) - self.assertTrue(numpy.allclose(tensor_np[0:2], outs[1])) - self.assertTrue(numpy.allclose(tensor_np[0:1], outs[2])) + outs = exe.run( + feed={'x': x_tensor, + 'rank_table_tensor': rank_table_tensor}, + fetch_list=[self.mem1, self.mem2, self.mem3, self.x_grad], + return_numpy=False) + self.assertTrue(np.allclose(tensor_np[0:6], outs[0])) + self.assertTrue(np.allclose(tensor_np[0:5], outs[1])) + self.assertTrue(np.allclose(tensor_np[0:2], outs[2])) + self.assertAlmostEqual(1.0, self.sum_lodtensor(outs[3]), delta=0.01) - mem3_mean = layers.mean(x=mem3) - append_backward(loss=mem3_mean) - x_grad = exe.run( - feed={'x': tensor}, - fetch_list=[main_program.global_block().var('x@GRAD')])[0] - self.assertAlmostEqual(1.0, x_grad.sum(), delta=0.1) + +class TestShrinkRNNMemoryNoLoD(TestShrinkRNNMemoryBase): + def test_no_lod(self): + cpu = core.CPUPlace() + x_tensor = core.LoDTensor() + tensor_np = np.random.random(size=(3, 100)).astype('float32') + x_tensor.set(tensor_np, cpu) + + rank_table_tensor = core.LoDTensor() + rank_table_tensor.set_lod([[0, 1, 3, 6]]) + rank_table_tensor.set(np.random.random(size=(6, 1)).astype('float32'), + cpu) + + exe = Executor(cpu) + outs = exe.run( + feed={'x': x_tensor, + 'rank_table_tensor': rank_table_tensor}, + fetch_list=[self.mem1, self.mem2, self.mem3, self.x_grad], + return_numpy=False) + self.assertTrue(np.allclose(tensor_np[0:3], outs[0])) + self.assertTrue(np.allclose(tensor_np[0:2], outs[1])) + self.assertTrue(np.allclose(tensor_np[0:1], outs[2])) + self.assertAlmostEqual(1.0, self.sum_lodtensor(outs[3]), delta=0.01) if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_warpctc_op.py b/python/paddle/v2/fluid/tests/test_warpctc_op.py new file mode 100644 index 0000000000000000000000000000000000000000..59390d5303b9642ede0d421e908a1b129c68a072 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_warpctc_op.py @@ -0,0 +1,200 @@ +import sys +import unittest +import numpy as np +from op_test import OpTest +from test_softmax_op import stable_softmax + + +class CTCForward(object): + def __init__(self, softmax, softmax_lod, labels, labels_lod, blank, + norm_by_times): + self.softmax = softmax + self.softmax_lod = softmax_lod + assert labels.shape[1] == 1 + self.labels = labels + self.labels_lod = labels_lod + self.blank = blank + self.norm_by_times = norm_by_times + + self.level = 0 + self.num_classes = softmax.shape[1] + self.batch_size = len(softmax_lod[self.level]) - 1 + assert self.batch_size == len(labels_lod[self.level]) - 1 + + self.loss = np.zeros([self.batch_size, 1], dtype="float32") + self.gradient = np.zeros(self.softmax.shape, dtype="float32") + + # float64 + self.EXP_MAX = sys.float_info.max + self.EXP_MIN = sys.float_info.min + self.LOG_ZERO = np.log(self.EXP_MIN) + self.LOG_INFINITY = np.log(self.EXP_MAX) + + def safe_exp(self, x): + if x <= self.LOG_ZERO: + return 0.0 + if x >= self.LOG_INFINITY: + return self.EXP_MAX + return np.exp(x) + + def safe_log(self, x): + if x <= self.EXP_MIN: + return self.LOG_ZERO + return np.log(x) + + # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb + def log_div(self, x, y): + res = x - y + if res <= self.LOG_ZERO: + return self.LOG_ZERO + if res >= self.LOG_INFINITY: + return self.LOG_INFINITY + return res + + # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb + def log_mul(self, x, y): + res = x + y + if res <= self.LOG_ZERO: + return self.LOG_ZERO + if res >= self.LOG_INFINITY: + return self.LOG_INFINITY + return res + + # x = lna and y = lnb are in log scale, + # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a + def log_add(self, x, y): + if x < y: + t = y + y = x + x = t + return x + self.safe_log(1 + self.safe_exp(y - x)) + + def segment_range(self, time, total_times, total_segments): + start = max(0, total_segments - (2 * (total_times - time))) + end = min(total_segments, 2 * (time + 1)) + return start, end + + def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence): + total_times = softmax_a_sequence.shape[0] + total_segments = labels_a_sequence.shape[0] * 2 + 1 + + required_times = labels_a_sequence.shape[0] + old_label = -1 + for i in range(labels_a_sequence.shape[0]): + # two contingous labels with the same value + if labels_a_sequence[i, 0] == old_label: + required_times = required_times + 1 + old_label = labels_a_sequence[i, 0] + + if total_times < required_times: + return 0 + + # calculate the forward and backward variables, + # reference Chapter 7.3 of "Alex Grave, Supervised Sequence + # Labelling with Recurrent Neural Networks" + log_acts = np.zeros([total_times, self.num_classes], dtype="float32") + for i in range(total_times): + for j in range(self.num_classes): + log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j]) + + # calculate the forward variables + forward_vars = np.zeros([total_times, total_segments], dtype="float32") + for i in range(total_times): + for j in range(total_segments): + forward_vars[i, j] = self.LOG_ZERO + + for i in range(total_times): + # dp initialization at t0 + if i == 0: + forward_vars[i, 0] = log_acts[0, self.blank] + if total_segments > 1: + forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]] + continue + + # dp from t1 + start, end = self.segment_range(i, total_times, total_segments) + for k in range(end - start): + j = k + start + if j & 1 == 1: + label_idx = j / 2 + label_val = labels_a_sequence[label_idx, 0] + fv = self.log_add(forward_vars[i - 1, j], + forward_vars[i - 1, j - 1]) + if j > 1 and label_val != labels_a_sequence[label_idx - 1, + 0]: + fv = self.log_add(fv, forward_vars[i - 1, j - 2]) + fv = self.log_mul(fv, log_acts[i, label_val]) + else: + fv = forward_vars[i - 1, j] + if j > 0: + fv = self.log_add(fv, forward_vars[i - 1, j - 1]) + fv = self.log_mul(fv, log_acts[i, self.blank]) + forward_vars[i, j] = fv + + # sum the last two value as log_prob + log_prob = forward_vars[total_times - 1, total_segments - 1] + if total_segments > 1: + log_prob = self.log_add( + log_prob, forward_vars[total_times - 1, total_segments - 2]) + + return -log_prob + + def forward(self): + for i in range(self.batch_size): + softmax_start_i = self.softmax_lod[self.level][i] + softmax_end_i = self.softmax_lod[self.level][i + 1] + labels_start_i = self.labels_lod[self.level][i] + labels_end_i = self.labels_lod[self.level][i + 1] + + softmax_a_sequence = self.softmax[softmax_start_i:softmax_end_i, :] + labels_a_sequence = self.labels[labels_start_i:labels_end_i, :] + self.loss[i] = self.forward_a_sequence(softmax_a_sequence, + labels_a_sequence) + return self.loss + + +class TestWarpCTCOp(OpTest): + def setUp(self): + self.op_type = "warpctc" + + batch_size = 4 + num_classes = 8 + logits_lod = [[0, 4, 5, 8, 11]] + logits = np.random.uniform(0.1, 1.0, + [11, num_classes]).astype("float32") + softmax = np.apply_along_axis(stable_softmax, 1, logits) + labels_lod = [[0, 3, 4, 8, 12]] + # labels should not be blank + labels = np.random.randint(0, num_classes - 1, [12, 1], dtype="int32") + + blank = num_classes - 1 + norm_by_times = False + + ctc = CTCForward(softmax, logits_lod, labels, labels_lod, blank, + norm_by_times) + loss = ctc.forward() + + max_sequence_length = 0 + for i in range(batch_size): + max_sequence_length = max(max_sequence_length, + logits_lod[0][i + 1] - logits_lod[0][i]) + gradient = np.zeros( + [max_sequence_length, batch_size, num_classes], dtype="float32") + + self.inputs = { + "Logits": (logits, logits_lod), + "Label": (labels, labels_lod) + } + self.outputs = {"Loss": loss} + self.attrs = {"blank": blank, "norm_by_times": norm_by_times} + + def test_check_output(self): + self.check_output() + + +# def test_check_grad(self): +# self.outputs["WarpCTCGrad"] = None +# self.check_grad(["Logits"], "Loss", max_relative_error=0.01) + +if __name__ == "__main__": + unittest.main()