Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f37a23a7
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f37a23a7
编写于
1月 19, 2022
作者:
H
huzhiqiang
提交者:
GitHub
1月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert paddle op definations into pd dialect in infrt (#38708)
上级
c7de7440
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
370 addition
and
226 deletion
+370
-226
paddle/infrt/dialect/pd_op_base.td
paddle/infrt/dialect/pd_op_base.td
+1
-0
paddle/infrt/dialect/pd_ops.cc
paddle/infrt/dialect/pd_ops.cc
+3
-2
paddle/infrt/dialect/pd_ops.td
paddle/infrt/dialect/pd_ops.td
+0
-212
paddle/infrt/dialect/rewrite.td
paddle/infrt/dialect/rewrite.td
+2
-2
paddle/scripts/infrt_build.sh
paddle/scripts/infrt_build.sh
+41
-10
tools/infrt/custom_pdop.td
tools/infrt/custom_pdop.td
+57
-0
tools/infrt/generate_pd_op_dialect_from_paddle_op_maker.py
tools/infrt/generate_pd_op_dialect_from_paddle_op_maker.py
+266
-0
未找到文件。
paddle/infrt/dialect/pd_op_base.td
浏览文件 @
f37a23a7
...
...
@@ -73,5 +73,6 @@ def PD_ElementType : Type<Or<[PD_Float.predicate,
def PD_Tensor : TensorOf<[PD_ElementType]>;
def PD_Tensor_Array : VectorOf<[PD_Tensor]>;
#endif // PD_OP_BASE
paddle/infrt/dialect/pd_ops.cc
浏览文件 @
f37a23a7
...
...
@@ -25,6 +25,7 @@
namespace
mlir
{
namespace
pd
{
PaddleDialect
::
PaddleDialect
(
MLIRContext
*
context
)
:
Dialect
(
"pd"
,
context
,
TypeID
::
get
<
PaddleDialect
>
())
{
addOperations
<
...
...
@@ -69,7 +70,7 @@ mlir::OpFoldResult ConstantOp::fold(
::
llvm
::
ArrayRef
<
mlir
::
Attribute
>
operands
)
{
return
value
();
}
/*
LogicalResult ElementwiseAdd::inferReturnTypes(
MLIRContext *context,
Optional<Location> location,
...
...
@@ -165,7 +166,7 @@ void FusedRepeatedFCRelu::getCanonicalizationPatterns(
void BatchNormOp::getCanonicalizationPatterns(
mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
results.insert<FuseBatchNormWithConvPattern>(context);
}
}
*/
}
// namespace pd
}
// namespace mlir
paddle/infrt/dialect/pd_ops.td
已删除
100644 → 0
浏览文件 @
c7de7440
#ifndef PD_OPS
#define PD_OPS
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/LoopLikeInterface.td"
include "mlir/IR/OpBase.td"
include "paddle/infrt/dialect/pd_op_base.td"
def PD_FeedOp : PD_Op<"feed"> {
let summary = "Feed Op";
let description = [{
Feed a tensor into the model.
}];
let arguments = (ins StrAttr:$name);
let results = (outs PD_Tensor:$out);
let assemblyFormat = [{
`(` `)` attr-dict `:` type($out)
}];
}
def PD_FetchOp : PD_Op<"fetch", [Terminator]> {
let summary = "fetch Op";
let description = [{
Return the output tensor from the subgraph.
}];
let arguments = (ins PD_Tensor :$inputs, StrAttr:$name);
}
def PD_ReturnOp : PD_Op<"return", [Terminator]> {
let summary = "return Op";
let description = [{
Fetch tensor from the graph.
}];
let arguments = (ins Variadic<PD_Tensor>:$inputs);
}
def PD_GraphOp : PD_Op<"graph", [SingleBlockImplicitTerminator<"ReturnOp">]> {
let summary = "paddle graph Op";
let description = [{
Describe a paddle graph or subgraph.
}];
let regions = (region SizedRegion<1>:$body);
let arguments = (ins Variadic<PD_Tensor>:$inputs);
let results = (outs Variadic<PD_Tensor>:$outputs);
}
def PD_ConstantOp : PD_Op<"constant", [NoSideEffect, ConstantLike, DeclareOpInterfaceMethods<InferTypeOpInterface>, AllTypesMatch<["value", "output"]>]> {
let summary = "constant Op";
let description = [{}];
let arguments = (ins ElementsAttr:$value);
let results = (outs PD_Tensor:$output);
let hasFolder = 1;
let builders = [
OpBuilder<(ins "Attribute":$value)>,
];
}
def PD_AbsOp : PD_Op<"abs", [NoSideEffect, SameOperandsAndResultType]> {
let summary = "Computes the absolute value of a tensor";
let description = [{
}];
let arguments = (ins PD_Tensor:$x);
let results = (outs PD_Tensor:$y);
}
def PD_SqrtOp : PD_Op<"sqrt", [NoSideEffect, SameOperandsAndResultType]> {
let summary = "Computes the sqrt value of a tensor";
let description = [{
}];
let arguments = (ins PD_Tensor:$x);
let results = (outs PD_Tensor:$y);
}
def PD_ReluOp : PD_Op<"relu", [NoSideEffect, SameOperandsAndResultType]> {
let summary = "Computes the Relu of a tensor";
let description = [{
}];
let arguments = (ins PD_Tensor:$x);
let results = (outs PD_Tensor:$y);
let hasCanonicalizer = 1;
}
def PD_Relu6Op : PD_Op<"relu6", [NoSideEffect, SameOperandsAndResultType]> {
let summary = "Computes the Relu6 of a tensor";
let description = [{
}];
let arguments = (ins PD_Tensor:$x);
let results = (outs PD_Tensor:$y);
}
def PD_ElementwiseAdd : PD_Op<"elementwise_add", [NoSideEffect, Commutative, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let summary = "ElementwiseAdd Op";
let description = [{
}];
let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
let results = (outs PD_Tensor:$out);
let hasCanonicalizer = 1;
let hasFolder = 1;
}
def PD_ElementwiseSub : PD_Op<"elementwise_sub", [NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let summary = "ElementwiseSub Op";
let description = [{
}];
let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
let results = (outs PD_Tensor:$out);
}
def PD_ElementwiseMul : PD_Op<"elementwise_mul", [NoSideEffect, Commutative, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let summary = "ElementwiseMul Op";
let description = [{
}];
let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
let results = (outs PD_Tensor:$out);
}
def PD_ElementwiseDiv : PD_Op<"elementwise_div", [NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let summary = "ElementwiseDiv Op";
let description = [{
}];
let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
let results = (outs PD_Tensor:$out);
}
def PD_MatmulOp : PD_Op<"matmul", [NoSideEffect]> {
let summary = "Computes the matrix mulplication result of two tensors";
let description = [{
}];
let arguments = (ins PD_Tensor:$x, PD_Tensor:$y,
DefaultValuedAttr<BoolAttr, "false">:$transpose_x,
DefaultValuedAttr<BoolAttr, "false">:$transpose_y,
DefaultValuedAttr<F32Attr, "1.0">:$alpha);
let results = (outs PD_Tensor:$out);
//let hasCanonicalizer = 1;
}
def PD_MulOp : PD_Op<"mul", [NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let summary = "paddle mul op";
let description = [{}];
let arguments = (ins PD_Tensor:$x, PD_Tensor:$y);
let results = (outs PD_Tensor:$out);
//let hasCanonicalizer = 1;
}
def PD_Conv2dOp : PD_Op<"conv2d", [NoSideEffect]> {
let summary = "paddle conv2d operation";
let description = [{
}];
let arguments = (ins PD_Tensor:$Input, PD_Tensor:$Filter, PD_Tensor:$Bias);
let results = (outs PD_Tensor:$Output);
//let hasCanonicalizer = 1;
}
def PD_BatchNormOp : PD_Op<"batch_norm", [NoSideEffect]> {
let summary = "paddle batch_norm operation";
let description = [{
}];
let arguments = (ins PD_Tensor:$X, PD_Tensor:$Scale, PD_Tensor:$Bias,
PD_Tensor:$Mean, PD_Tensor:$Variance,
DefaultValuedAttr<F32Attr, "1e-05">:$epsilon);
let results = (outs PD_Tensor:$Y);
let hasCanonicalizer = 1;
}
def PD_FusedFC : PD_Op<"fc", [NoSideEffect]> {
let summary = "Computes the Fully Connected result of two tensors";
let description = [{
}];
let arguments = (ins PD_Tensor:$input, PD_Tensor:$w, PD_Tensor:$bias, DefaultValuedAttr<I32Attr, "1">:$in_num_col_dims);
let results = (outs PD_Tensor:$out);
}
def PD_FusedRepeatedFCRelu : PD_Op<"fusion_repeated_fc_relu", [SameVariadicOperandSize, NoSideEffect]> {
let summary = "";
let description = [{ }];
let arguments = (ins PD_Tensor:$input, Variadic<PD_Tensor>:$w, Variadic<PD_Tensor>:$bias);
let results = (outs PD_Tensor:$out);
let hasCanonicalizer = 1;
}
#endif // PD_OPS
paddle/infrt/dialect/rewrite.td
浏览文件 @
f37a23a7
...
...
@@ -4,7 +4,7 @@
include "paddle/infrt/dialect/infrt_base.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
include "paddle/infrt/dialect/pd_ops.td"
/*
//===----------------------------------------------------------------------===//
// This is to fuse the composition: 'Matmul o ElementwiseAdd' into 'PD_FusedFC'.
//
...
...
@@ -89,5 +89,5 @@ def FuseBatchNormWithConvPattern: Pat<
$coefficientW),
(INFRT_createI32Attr<"1">)))
>;
*/
#endif // INFRT_REWRITE
paddle/scripts/infrt_build.sh
浏览文件 @
f37a23a7
...
...
@@ -18,7 +18,7 @@
# Utils
#=================================================
set
-e
x
set
-e
if
[
-z
${
BRANCH
}
]
;
then
BRANCH
=
"develop"
...
...
@@ -27,6 +27,22 @@ fi
EXIT_CODE
=
0
;
tmp_dir
=
`
mktemp
-d
`
function
update_pd_ops
()
{
PADDLE_ROOT
=
"
$(
cd
"
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
/../../"
&&
pwd
)
"
# compile and install paddle
rm
-rf
${
PADDLE_ROOT
}
/build
&&
mkdir
-p
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
cmake ..
-DWITH_PYTHON
=
ON
-DWITH_GPU
=
OFF
-DPYTHON_EXECUTABLE
=
`
which python3
`
make
-j8
cd
${
PADDLE_ROOT
}
/build
cd
python/dist/
python3
-m
pip uninstall
-y
paddlepaddle
python3
-m
pip
install
*
whl
# update pd_ops.td
cd
${
PADDLE_ROOT
}
/tools/infrt/
python3 generate_pd_op_dialect_from_paddle_op_maker.py
}
function
init
()
{
RED
=
'\033[0;31m'
BLUE
=
'\033[0;34m'
...
...
@@ -62,7 +78,11 @@ function infrt_gen_and_build() {
fi
startTime_s
=
`
date
+%s
`
set
+e
mkdir
-p
${
PADDLE_ROOT
}
/build
# step1. reinstall paddle and generate pd_ops.td
update_pd_ops
# step2. compile infrt
cd
${
PADDLE_ROOT
}
/build
rm
-f
infrt_summary.txt
cmake ..
-DWITH_MKL
=
OFF
-DWITH_GPU
=
OFF
-DWITH_CRYPTO
=
OFF
-DCMAKE_BUILD_TYPE
=
Release
-DWITH_INFRT
=
ON
-DWITH_PYTHON
=
OFF
-DWITH_TESTING
==
${
WITH_TESTING
:-
ON
}
;
build_error
=
$?
...
...
@@ -106,7 +126,17 @@ EOF
function
main
()
{
local
CMD
=
$1
local
parallel_number
=
$2
if
[
-z
"
$1
"
]
;
then
echo
"Usage:"
echo
" (1)bash infrt_build.sh build_and_test"
echo
" (2)bash infrt_build.sh build_only"
echo
" (3)bash infrt_build.sh test_only"
echo
" optional command: --update_pd_ops : pd_ops.td will be updated according to paddle's code."
exit
0
fi
init
case
$CMD
in
build_and_test
)
infrt_gen_and_build
${
parallel_number
}
...
...
@@ -123,6 +153,7 @@ function main() {
exit
1
;;
esac
set
+x
if
[[
-f
${
PADDLE_ROOT
}
/build/infrt_summary.txt
]]
;
then
echo
"=====================build summary======================"
...
...
tools/infrt/custom_pdop.td
0 → 100644
浏览文件 @
f37a23a7
def PD_FeedOp : PD_Op<"feed"> {
let summary = "Feed Op";
let description = [{
Feed a tensor into the model.
}];
let arguments = (ins StrAttr:$name);
let results = (outs PD_Tensor:$out);
let assemblyFormat = [{
`(` `)` attr-dict `:` type($out)
}];
}
def PD_FetchOp : PD_Op<"fetch", [Terminator]> {
let summary = "fetch Op";
let description = [{
Return the output tensor from the subgraph.
}];
let arguments = (ins PD_Tensor :$inputs, StrAttr:$name);
}
def PD_ReturnOp : PD_Op<"return", [Terminator]> {
let summary = "return Op";
let description = [{
Fetch tensor from the graph.
}];
let arguments = (ins Variadic<PD_Tensor>:$inputs);
}
def PD_GraphOp : PD_Op<"graph", [SingleBlockImplicitTerminator<"ReturnOp">]> {
let summary = "paddle graph Op";
let description = [{
Describe a paddle graph or subgraph.
}];
let regions = (region SizedRegion<1>:$body);
let arguments = (ins Variadic<PD_Tensor>:$inputs);
let results = (outs Variadic<PD_Tensor>:$outputs);
}
def PD_ConstantOp : PD_Op<"constant", [NoSideEffect, ConstantLike, DeclareOpInterfaceMethods<InferTypeOpInterface>, AllTypesMatch<["value", "output"]>]> {
let summary = "constant Op";
let description = [{}];
let arguments = (ins ElementsAttr:$value);
let results = (outs PD_Tensor:$output);
let hasFolder = 1;
let builders = [
OpBuilder<(ins "Attribute":$value)>,
];
}
tools/infrt/generate_pd_op_dialect_from_paddle_op_maker.py
0 → 100644
浏览文件 @
f37a23a7
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid.framework
as
framework
from
paddle.fluid
import
core
from
paddle
import
compat
as
cpt
# collect original ops: op which has both inference and grid defination
def
get_original_ops
():
all_ops
,
_
,
_
=
core
.
op_supported_infos
(
'CPU'
,
core
.
VarDesc
.
VarType
.
FP16
)
grad_ops
=
[]
original_ops
=
[]
for
op
in
all_ops
:
if
op
.
endswith
(
"_grad"
):
if
op
.
endswith
(
"_grad_grad"
):
continue
grad_ops
.
append
(
op
)
for
op
in
all_ops
:
if
str
(
op
+
"_grad"
)
in
grad_ops
:
original_ops
.
append
(
op
)
print
(
"Grad ops num: "
+
str
(
len
(
grad_ops
)))
print
(
"Responded original ops num: "
+
str
(
len
(
original_ops
)))
return
original_ops
# functions of parsing Paddle Proto
INPUTS
=
"Inputs"
OUTPUTS
=
"Outputs"
ATTRS
=
"Attrs"
COMMENT
=
"Comment"
DUPLICABLE
=
"duplicable"
INTERMEDIATE
=
"intermediate"
DISPENSABLE
=
"dispensable"
TYPE
=
"type"
GENERATED
=
"generated"
DEFAULT_VALUE
=
"default_value"
EXTRA
=
"extra"
QUANT
=
"quant"
def
get_attr_default_value
(
op_name
):
return
core
.
get_op_attrs_default_value
(
cpt
.
to_bytes
(
op_name
))
def
get_vars_info
(
op_vars_proto
):
vars_info
=
{}
for
var_proto
in
op_vars_proto
:
name
=
str
(
var_proto
.
name
)
vars_info
[
name
]
=
{}
vars_info
[
name
][
DUPLICABLE
]
=
var_proto
.
duplicable
vars_info
[
name
][
DISPENSABLE
]
=
var_proto
.
dispensable
vars_info
[
name
][
INTERMEDIATE
]
=
var_proto
.
intermediate
vars_info
[
name
][
EXTRA
]
=
var_proto
.
extra
vars_info
[
name
][
QUANT
]
=
var_proto
.
quant
return
vars_info
def
get_attrs_info
(
op_proto
,
op_attrs_proto
):
attrs_info
=
{}
attrs_default_values
=
get_attr_default_value
(
op_proto
.
type
)
for
attr_proto
in
op_attrs_proto
:
attr_name
=
str
(
attr_proto
.
name
)
attrs_info
[
attr_name
]
=
{}
attrs_info
[
attr_name
][
TYPE
]
=
attr_proto
.
type
attrs_info
[
attr_name
][
GENERATED
]
=
attr_proto
.
generated
attrs_info
[
attr_name
][
DEFAULT_VALUE
]
=
attrs_default_values
[
attr_name
]
if
attr_name
in
attrs_default_values
else
None
attrs_info
[
attr_name
][
EXTRA
]
=
attr_proto
.
extra
attrs_info
[
attr_name
][
QUANT
]
=
attr_proto
.
quant
return
attrs_info
def
get_op_desc
(
op_proto
):
op_info
=
{}
op_info
[
INPUTS
]
=
get_vars_info
(
op_proto
.
inputs
)
op_info
[
OUTPUTS
]
=
get_vars_info
(
op_proto
.
outputs
)
op_info
[
ATTRS
]
=
get_attrs_info
(
op_proto
,
op_proto
.
attrs
)
op_info
[
COMMENT
]
=
op_proto
.
comment
return
op_info
def
get_all_ops_desc
():
all_op_protos_dict
=
{}
all_op_protos
=
framework
.
get_all_op_protos
()
for
op_proto
in
all_op_protos
:
op_type
=
str
(
op_proto
.
type
)
all_op_protos_dict
[
op_type
]
=
get_op_desc
(
op_proto
)
return
all_op_protos_dict
# funtion to generate paddle op dialect file
def
convert_op_proto_into_mlir
(
op_descs
):
dst_dialect_file
=
"../../paddle/infrt/dialect/pd_ops.td"
custom_dialect_file
=
"custom_pdop.td"
# 1. Head files
comment_
=
"/*===- TableGen'source file -----------------------------------------------===*
\\\n\
|* *|
\n\
|* Op Definitions *|
\n\
|* *|
\n\
|* Automatically generated file, do not edit! *|
\n\
|* Generated by tools/infrt/generate_pd_op_dialect_from_paddle_op_maker.py *|
\n\
|* *|
\n\
\*===----------------------------------------------------------------------===*/
\n
"
start_
=
comment_
+
"#ifndef PD_OPS
\n
#define PD_OPS
\n
include
\"
mlir/Interfaces/InferTypeOpInterface.td
\"\n
include
\"
mlir/Interfaces/LoopLikeInterface.td
\"\n
include
\"
mlir/IR/OpBase.td
\"\n
include
\"
paddle/infrt/dialect/pd_op_base.td
\"\n\n
"
with
open
(
dst_dialect_file
,
'w'
)
as
ops_mlir_file
:
ops_mlir_file
.
write
(
start_
)
# 2. Op dialect
# skip list ( ops whose dialect can not be generated automatically will be recorded here)
skipped_op_list
=
[
"cos_sim"
,
"fused_embedding_seq_pool"
,
"cosh"
,
"kron"
,
"recurrent"
,
"while"
,
"conditional_block"
,
"set_value"
,
"run_program"
]
skipped_attr_list
=
[
"trainable_statistics"
,
"use_global_stats"
,
"is_test"
,
"use_mkldnn"
,
"use_cudnn"
]
original_ops_
=
get_original_ops
()
automatically_generated_op_dialect
=
[]
for
op_type
,
op_proto
in
op_descs
.
items
():
if
(
op_type
in
skipped_op_list
)
or
(
op_type
not
in
original_ops_
):
continue
automatically_generated_op_dialect
.
append
(
op_type
)
# 2.1 OpDef
HEAD
=
"def PD_"
+
op_type
.
capitalize
(
)
+
"Op : PD_Op<
\"
"
+
op_type
+
"
\"
, [NoSideEffect]> {
\n
"
SUMMARY
=
" let summary =
\"
"
+
op_type
+
" op
\"
;
\n
"
# 2.2 Description
DESCRIPTION
=
" let description = [{
\n
"
contents
=
(
op_proto
[
COMMENT
]).
split
(
"
\n
"
)
for
line_
in
contents
:
DESCRIPTION
=
DESCRIPTION
+
" "
+
line_
+
"
\n
"
DESCRIPTION
+=
" }];
\n
"
# 2.3 arguments info
ARGUMENTS
=
""
if
(
len
(
op_proto
[
INPUTS
])
>
0
or
len
(
op_proto
[
ATTRS
])
>
0
):
ARGUMENTS
=
" let arguments = (ins "
# 2.3.1 inputs
for
input_
in
op_proto
[
INPUTS
]:
if
op_proto
[
INPUTS
][
input_
][
EXTRA
]
!=
True
and
op_proto
[
INPUTS
][
input_
][
INTERMEDIATE
]
!=
True
:
if
op_proto
[
INPUTS
][
input_
][
DUPLICABLE
]
!=
"true"
:
ARGUMENTS
=
ARGUMENTS
+
" PD_Tensor:$"
+
input_
+
","
else
:
ARGUMENTS
=
ARGUMENTS
+
" PD_Tensor_Array:$"
+
input_
+
","
# unsupported: BLOCK = 8; BLOCKS = 10;
attr_mlir_converter
=
{
0
:
'SI32Attr'
,
1
:
'F32Attr'
,
2
:
'StrAttr'
,
3
:
'I32ArrayAttr'
,
4
:
'F32ArrayAttr'
,
5
:
'StrArrayAttr'
,
6
:
'BoolAttr'
,
7
:
'BoolArrayAttr'
,
9
:
'SI64Attr'
,
11
:
'I64ArrayAttr'
}
# 2.3.2 attributes
for
attr
in
op_proto
[
ATTRS
]:
if
(
op_proto
[
ATTRS
][
attr
][
EXTRA
]
==
True
)
or
(
attr
in
skipped_attr_list
):
continue
if
op_proto
[
ATTRS
][
attr
][
DEFAULT_VALUE
]
!=
None
:
if
op_proto
[
ATTRS
][
attr
][
TYPE
]
in
attr_mlir_converter
:
default_value
=
str
(
op_proto
[
ATTRS
][
attr
][
DEFAULT_VALUE
])
if
(
attr_mlir_converter
[
op_proto
[
ATTRS
][
attr
][
TYPE
]]
in
[
'I32ArrayAttr'
,
'F32ArrayAttr'
,
'StrArrayAttr'
,
'BoolArrayAttr'
,
'I64ArrayAttr'
]):
default_value
=
default_value
.
replace
(
'['
,
'{'
).
replace
(
']'
,
'}'
)
if
(
attr_mlir_converter
[
op_proto
[
ATTRS
][
attr
][
TYPE
]]
in
[
'BoolAttr'
,
'BoolArrayAttr'
]):
default_value
=
default_value
.
lower
()
elif
(
attr_mlir_converter
[
op_proto
[
ATTRS
][
attr
][
TYPE
]]
in
[
'StrAttr'
,
'StrArrayAttr'
]):
default_value
=
default_value
.
replace
(
'
\'
'
,
'
\\\"
'
)
if
attr_mlir_converter
[
op_proto
[
ATTRS
][
attr
][
TYPE
]]
==
"StrAttr"
:
default_value
=
'
\\\"
'
+
default_value
+
'
\\\"
'
attr_list
=
" DefaultValuedAttr<"
+
attr_mlir_converter
[
op_proto
[
ATTRS
][
attr
]
[
TYPE
]]
+
",
\"
"
+
default_value
+
"
\"
>:$"
+
attr
+
","
ARGUMENTS
+=
attr_list
else
:
print
(
"Error:"
+
op_type
+
":"
+
attr
+
":"
+
str
(
op_proto
[
ATTRS
][
attr
][
TYPE
]))
else
:
if
op_proto
[
ATTRS
][
attr
][
TYPE
]
in
attr_mlir_converter
:
attr_type_
=
attr_mlir_converter
[
op_proto
[
ATTRS
][
attr
][
TYPE
]]
if
(
attr_type_
in
[
'I32ArrayAttr'
,
'F32ArrayAttr'
,
'StrArrayAttr'
,
'BoolArrayAttr'
,
'I64ArrayAttr'
]):
attr_list
=
attr_type_
+
":$"
+
attr
+
","
ARGUMENTS
+=
attr_list
else
:
print
(
" ouch Error:"
+
op_type
+
":"
+
attr
+
":"
+
str
(
op_proto
[
ATTRS
][
attr
][
TYPE
]))
ARGUMENTS
=
ARGUMENTS
[:
-
1
]
+
");
\n
"
# 2.4 results info
RESULTS
=
""
if
(
len
(
op_proto
[
OUTPUTS
])
>
0
):
RESULTS
=
"
\n
let results = (outs "
for
output_
in
op_proto
[
OUTPUTS
]:
if
op_proto
[
OUTPUTS
][
output_
][
EXTRA
]
!=
True
and
op_proto
[
OUTPUTS
][
output_
][
INTERMEDIATE
]
!=
True
:
if
op_proto
[
OUTPUTS
][
output_
][
DUPLICABLE
]
!=
"true"
:
RESULTS
=
RESULTS
+
"PD_Tensor:$"
+
output_
+
","
else
:
RESULTS
=
RESULTS
+
"PD_Tensor_Array:$"
+
output_
+
","
print
(
HEAD
+
" PD_Tensor_Array:$"
+
output_
+
","
)
RESULTS
=
RESULTS
[:
-
1
]
+
");
\n
"
with
open
(
dst_dialect_file
,
'a'
)
as
ops_mlir_file
:
ops_mlir_file
.
write
(
HEAD
)
ops_mlir_file
.
write
(
SUMMARY
)
ops_mlir_file
.
write
(
DESCRIPTION
)
ops_mlir_file
.
write
(
ARGUMENTS
)
ops_mlir_file
.
write
(
RESULTS
)
ops_mlir_file
.
write
(
"}
\n
"
)
print
(
"Skipped ops num: "
+
str
(
len
(
skipped_op_list
)))
print
(
"Automatically generated op dialects num: "
+
str
(
len
(
automatically_generated_op_dialect
)))
# 3. custom op dialect and end of file
with
open
(
dst_dialect_file
,
'a'
)
as
ops_mlir_file
:
with
open
(
custom_dialect_file
,
'r'
)
as
custom_ops_file
:
custom_ops
=
custom_ops_file
.
readlines
()
ops_mlir_file
.
writelines
(
custom_ops
)
end_
=
"
\n
#endif // PD_OPS"
ops_mlir_file
.
write
(
end_
)
if
__name__
==
"__main__"
:
all_op_protos_dict
=
get_all_ops_desc
()
convert_op_proto_into_mlir
(
all_op_protos_dict
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录