Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f35c5606
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f35c5606
编写于
1月 08, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
split tensor to pservers
上级
c70ea1cc
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
398 addition
and
120 deletion
+398
-120
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+94
-93
python/paddle/v2/fluid/distribute_transpiler_simple.py
python/paddle/v2/fluid/distribute_transpiler_simple.py
+242
-0
python/paddle/v2/fluid/distributed_spliter.py
python/paddle/v2/fluid/distributed_spliter.py
+24
-27
python/paddle/v2/fluid/tests/book_distribute/test_split_var.py
...n/paddle/v2/fluid/tests/book_distribute/test_split_var.py
+38
-0
未找到文件。
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
f35c5606
...
@@ -4,6 +4,7 @@ from framework import Program, default_main_program, Parameter, Variable
...
@@ -4,6 +4,7 @@ from framework import Program, default_main_program, Parameter, Variable
import
optimizer
import
optimizer
from
layer_helper
import
LayerHelper
from
layer_helper
import
LayerHelper
from
distributed_spliter
import
*
from
distributed_spliter
import
*
import
math
class
VarBlock
:
class
VarBlock
:
...
@@ -17,6 +18,47 @@ class VarBlock:
...
@@ -17,6 +18,47 @@ class VarBlock:
return
"%s:%d:%d"
%
(
self
.
varname
,
self
.
offset
,
self
.
size
)
return
"%s:%d:%d"
%
(
self
.
varname
,
self
.
offset
,
self
.
size
)
def
split_dense_variable
(
var_list
,
pserver_count
,
min_block_size
=
1024
,
max_block_size
=
1048576
):
"""
We may need to split dense tensor to one or several blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
mininum block size is 1024. The max block size is used to prevent
too large block that may causing send error.
"""
blocks
=
[]
for
var
in
var_list
:
split_count
=
pserver_count
var_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
var
.
shape
)
max_pserver_count
=
int
(
math
.
floor
(
var_numel
/
float
(
min_block_size
)))
if
max_pserver_count
==
0
:
max_pserver_count
=
1
if
max_pserver_count
<
pserver_count
:
split_count
=
max_pserver_count
block_size
=
int
(
math
.
ceil
(
var_numel
/
float
(
split_count
)))
if
len
(
var
.
shape
)
>=
2
:
# align by dim1(width)
dim1
=
reduce
(
lambda
x
,
y
:
x
*
y
,
var
.
shape
[
1
:])
remains
=
block_size
%
dim1
if
remains
!=
0
:
block_size
+=
dim1
-
remains
# update split_count after align
split_count
=
int
(
math
.
ceil
(
var_numel
/
float
(
block_size
)))
for
block_id
in
xrange
(
split_count
):
curr_block_size
=
min
(
block_size
,
var_numel
-
(
(
block_id
)
*
block_size
))
block
=
VarBlock
(
var
.
name
,
block_id
,
curr_block_size
)
blocks
.
append
(
str
(
block
))
return
blocks
class
DistributeTranspiler
:
class
DistributeTranspiler
:
def
transpile
(
self
,
def
transpile
(
self
,
optimize_ops
,
optimize_ops
,
...
@@ -57,43 +99,49 @@ class DistributeTranspiler:
...
@@ -57,43 +99,49 @@ class DistributeTranspiler:
# 5. create parameter server program by split_method generated endpoint->VarBlock
# 5. create parameter server program by split_method generated endpoint->VarBlock
# 6. run compile time infershape for parameter server program
# 6. run compile time infershape for parameter server program
if
kwargs
.
has_key
(
"split_method"
):
pserver_endpoints
=
pservers
.
split
(
","
)
split_method
=
kwargs
[
"split_method"
]
else
:
split_method
=
round_robin
pserver_endpoints
=
kwargs
[
"pservers"
].
split
(
","
)
grad2param
=
dict
()
for
param
,
grad
in
params_and_grads
:
grad2param
[
grad
.
name
()]
=
param
.
name
()
# step1
# step1
param_list
=
[
pg
[
0
]
for
pg
in
params_
and_
grads
]
param_list
=
[
pg
[
0
]
for
pg
in
params_grads
]
grad_list
=
[
pg
[
1
]
for
pg
in
params_
and_
grads
]
grad_list
=
[
pg
[
1
]
for
pg
in
params_grads
]
# TODO: add split selected rows support
# TODO: add split selected rows support
grad_blocks
=
_split_dense_variable
(
grad_list
,
len
(
pserver_endpoints
))
grad_blocks
=
split_dense_variable
(
grad_list
,
len
(
pserver_endpoints
))
param_blocks
=
_split_dense_variable
(
param_list
,
len
(
pserver_endpoints
))
param_blocks
=
split_dense_variable
(
param_list
,
len
(
pserver_endpoints
))
ep2gradblock
=
split_method
(
grad_blocks
,
pserver_endpoints
)
# self.param_grad_map
# step2
# step2
var2splited
=
self
.
_split_trainer_vars
(
program
,
grad_blocks
)
grad_var_mapping
=
self
.
_append_split_op
(
program
,
grad_blocks
)
# step3
# step3
send_inputs
=
[]
send_inputs
=
[]
for
_
,
splited
in
var2splited
.
iteritems
():
send_outputs
=
[]
for
_
,
splited
in
grad_var_mapping
.
iteritems
():
send_inputs
.
extend
(
splited
)
send_inputs
.
extend
(
splited
)
send_outputs
=
self
.
_create_vars_from_blocklist
(
program
,
param_blocks
)
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
program
,
param_blocks
)
for
_
,
splited
in
param_var_mapping
.
iteritems
():
send_outputs
.
extend
(
splited
)
# let send_op know which endpoint to send which var, eplist is of the same
# order of send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
send_op
=
program
.
global_block
().
append_op
(
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
type
=
"send"
,
inputs
=
{
"X"
:
send_inputs
},
inputs
=
{
"X"
:
send_inputs
},
outputs
=
{
"Out"
:
send_outputs
},
outputs
=
{
"Out"
:
send_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
epmap
})
"epmap"
:
eplist
})
# step4
for
varname
,
splited_var
in
param_var_mapping
.
iteritems
():
orig_param
=
program
.
global_block
().
vars
[
varname
]
concat
=
program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
send_outputs
},
outputs
=
{
"Out"
:
orig_param
},
attrs
=
{
"axis"
:
0
})
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
block_map
=
dict
()
block_map
=
dict
()
ret_vars
=
[]
var_mapping
=
dict
()
for
block_str
in
block_list
:
for
block_str
in
block_list
:
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
if
not
block_map
.
has_key
(
varname
):
if
not
block_map
.
has_key
(
varname
):
...
@@ -102,15 +150,26 @@ class DistributeTranspiler:
...
@@ -102,15 +150,26 @@ class DistributeTranspiler:
for
varname
,
splited
in
block_map
.
iteritems
():
for
varname
,
splited
in
block_map
.
iteritems
():
orig_var
=
program
.
global_block
().
vars
[
varname
]
orig_var
=
program
.
global_block
().
vars
[
varname
]
for
block
in
splited
:
orig_shape
=
orig_var
.
shape
orig_dim1_flatten
=
1
if
len
(
orig_shape
)
>=
2
:
orig_dim1_flatten
=
reduce
(
lambda
x
,
y
:
x
*
y
,
orig_shape
[
1
:])
var_list
=
[]
for
i
,
block
in
enumerate
(
splited
):
size
=
block
[
1
]
size
=
block
[
1
]
rows
=
size
/
orig_dim1_flatten
splited_shape
=
[
rows
]
if
len
(
orig_shape
)
>=
2
:
splited_shape
.
extend
(
orig_shape
[
1
:])
print
(
"block, splited shape:"
,
block
,
splited_shape
)
var
=
program
.
global_block
().
create_var
(
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
name
=
"%s.block%d"
%
(
varname
,
i
),
psersistable
=
False
,
psersistable
=
False
,
dtype
=
orig_var
.
dtype
,
dtype
=
orig_var
.
dtype
,
shape
=
[
1
,
size
])
# flattend splited var
shape
=
splited_shape
)
# flattend splited var
ret_vars
.
append
(
var
)
var_list
.
append
(
var
)
return
ret_vars
var_mapping
[
varname
]
=
var_list
return
var_mapping
def
_clone_param
(
self
,
block
,
v
):
def
_clone_param
(
self
,
block
,
v
):
assert
isinstance
(
v
,
Parameter
)
assert
isinstance
(
v
,
Parameter
)
...
@@ -137,80 +196,22 @@ class DistributeTranspiler:
...
@@ -137,80 +196,22 @@ class DistributeTranspiler:
lod_level
=
var
.
lod_level
,
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
persistable
=
var
.
persistable
)
def
_split_dense_variable
(
self
,
def
_append_split_op
(
self
,
program
,
gradblocks
):
var_list
,
var_mapping
=
self
.
_create_vars_from_blocklist
(
program
,
gradblocks
)
pserver_count
,
for
varname
,
splited_vars
in
var_mapping
.
iteritems
():
min_block_size
=
1024
,
if
len
(
splited_vars
)
==
1
:
max_block_size
=
1048576
):
continue
"""
We may need to split dense tensor to one or several blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
mininum block size is 1024. The max block size is used to prevent
too large block that may causing send error.
"""
block_sizes
=
[]
blocks
=
[]
for
grad
in
var_list
:
dim1
=
reduce
(
lambda
x
,
y
:
x
*
y
,
grad
.
shape
[
1
:])
grad_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
grad
.
shape
)
if
grad_numel
<
min_block_size
:
block_sizes
.
append
(
grad_numel
)
block_size
=
grad_numel
/
min_block_size
if
block_size
<
min_block_size
:
block_size
=
min_block_size
# align by dim1(width)
remains
=
block_size
%
dim1
if
remains
!=
0
:
block_size
+=
dim1
-
remains
block_sizes
.
append
(
block_size
)
num_blocks
=
grad_numel
/
block_size
print
(
"grad numel :%d, blocksize: %d"
%
grad_numel
,
block_size
)
for
block_id
in
xrange
(
num_blocks
):
block
=
VarBlock
(
grad
.
name
(),
block_id
,
block_size
)
blocks
.
append
(
str
(
block
))
return
blocks
def
_split_trainer_vars
(
self
,
program
,
gradblocks
,
params_and_grads
):
var2blocks
=
dict
()
splited
=
dict
()
for
block_str
in
gradblocks
:
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
if
not
var2blocks
.
has_key
(
varname
):
var2blocks
[
varname
]
=
[]
var2blocks
[
varname
].
append
((
long
(
offset
),
long
(
size
)))
for
varname
,
blocks
in
var2blocks
.
iteritems
():
orig_var
=
program
.
global_block
().
vars
[
varname
]
orig_var
=
program
.
global_block
().
vars
[
varname
]
split_outs
=
[]
sections
=
[]
for
i
in
xrange
(
len
(
blocks
)):
for
v
in
splited_vars
:
size
=
blocks
[
i
][
1
]
sections
.
append
(
v
.
shape
[
0
])
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
psersistable
=
False
,
dtype
=
orig_var
.
dtype
,
shape
=
[
1
,
size
])
# flattend splited var
split_outs
.
append
(
var
)
splited
[
varname
]
=
split_outs
program
.
global_block
().
append_op
(
program
.
global_block
().
append_op
(
type
=
"split"
,
type
=
"split"
,
inputs
=
{
"X"
:
orig_var
},
inputs
=
{
"X"
:
orig_var
},
outputs
=
{
"Out"
:
split
_out
s
},
outputs
=
{
"Out"
:
split
ed_var
s
},
attrs
=
{
"
num"
:
len
(
blocks
)
}
# assume split evenly
attrs
=
{
"
sections"
:
sections
}
# assume split evenly
)
)
return
splited
return
var_mapping
def
_concat_trainer_vars
(
self
,
program
,
splited
):
for
varname
,
to_merge_list
in
splited
.
iteritems
():
orig_var
=
program
.
global_block
().
vars
[
varname
]
program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
to_merge_list
},
outputs
=
{
"Out"
:
orig_var
},
attrs
=
{})
def
get_trainer_program
(
self
):
def
get_trainer_program
(
self
):
# remove optimize ops and add a send op to main_program
# remove optimize ops and add a send op to main_program
...
...
python/paddle/v2/fluid/distribute_transpiler_simple.py
0 → 100644
浏览文件 @
f35c5606
import
framework
from
framework
import
Program
,
default_main_program
,
Parameter
,
Variable
import
optimizer
from
layer_helper
import
LayerHelper
def
hash_name_to_server
(
params_grads
,
pserver_endpoints
):
"""
:param param_grads:
:return: a map of pserver endpoint ->
params -> [param list]
grads -> [grad list]
"""
def
_hash_param
(
param_name
,
total
):
return
hash
(
param_name
)
%
total
param_grad_map
=
dict
()
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
and
grad
is
not
None
:
server_id
=
_hash_param
(
param
.
name
,
len
(
pserver_endpoints
))
server_for_param
=
pserver_endpoints
[
server_id
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
return
param_grad_map
def
round_robin
(
params_grads
,
pserver_endpoints
):
assert
(
len
(
params_grads
)
>
len
(
pserver_endpoints
))
param_grad_map
=
dict
()
pserver_idx
=
0
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
:
server_for_param
=
pserver_endpoints
[
pserver_idx
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
pserver_idx
+=
1
if
pserver_idx
>=
len
(
pserver_endpoints
):
pserver_idx
=
0
return
param_grad_map
class
DistributeTranspiler
:
def
transpile
(
self
,
optimize_ops
,
params_grads
,
program
=
None
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
,
split_method
=
round_robin
):
"""
Transpile the program to a distributed data-parallelism programs.
The main_program will be transform to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
in to a parameter server program.
Use different methods to split trainable varialbles to different
parameter servers.
Example to run:
exe = fluid.Executor(place)
t = fluid.DistributeTranspiler()
t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1)
pserver_endpoint = os.getenv("PSERVER")
if pserver_endpoint:
pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
else:
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
...
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param program: program to optimize, default default_main_program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:return: return a list of programs
"""
if
program
is
None
:
program
=
default_main_program
()
self
.
program
=
program
self
.
trainers
=
trainers
self
.
optimize_ops
=
optimize_ops
self
.
_optimize_distributed
(
optimize_ops
,
program
,
params_grads
,
pservers
=
pservers
,
trainers
=
trainers
,
split_method
=
split_method
)
def
_clone_param
(
self
,
block
,
v
):
assert
isinstance
(
v
,
Parameter
)
new_p
=
Parameter
(
block
=
block
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
lod_level
=
v
.
lod_level
,
stop_gradient
=
v
.
stop_gradient
,
trainable
=
v
.
trainable
,
optimize_attr
=
v
.
optimize_attr
,
regularizer
=
v
.
regularizer
,
name
=
v
.
name
)
block
.
vars
[
new_p
.
name
]
=
new_p
def
_clone_var
(
self
,
block
,
var
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
name
=
var
.
name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
type
=
var
.
type
,
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
def
_optimize_distributed
(
self
,
optimize_ops
,
program
,
params_and_grads
,
**
kwargs
):
if
kwargs
.
has_key
(
"split_method"
):
split_method
=
kwargs
[
"split_method"
]
else
:
split_method
=
round_robin
assert
(
callable
(
split_method
))
pserver_endpoints
=
kwargs
[
"pservers"
].
split
(
","
)
self
.
param_grad_map
=
split_method
(
params_and_grads
,
pserver_endpoints
)
send_op_ordered_inputs
=
[]
send_op_ordered_outputs
=
[]
epmap
=
[]
for
ep
,
v
in
self
.
param_grad_map
.
iteritems
():
send_op_ordered_inputs
.
extend
(
v
[
"grads"
])
send_op_ordered_outputs
.
extend
(
v
[
"params"
])
for
i
in
v
[
"grads"
]:
epmap
.
append
(
ep
)
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_op_ordered_inputs
},
# inputs is a list of tensors to be send
outputs
=
{
"Out"
:
send_op_ordered_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
epmap
})
def
get_trainer_program
(
self
):
# remove optimize ops and add a send op to main_program
self
.
program
.
global_block
().
delete_ops
(
self
.
optimize_ops
)
return
self
.
program
def
_create_var_for_trainers
(
self
,
block
,
var
,
trainers
):
var_list
=
[]
for
i
in
xrange
(
trainers
):
var_each
=
block
.
create_var
(
name
=
"%s.trainer_%d"
%
(
var
.
name
,
i
),
psersistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
var_list
.
append
(
var_each
)
return
var_list
def
get_pserver_program
(
self
,
endpoint
,
optimize_ops
):
pserver_program
=
Program
()
for
v
in
self
.
param_grad_map
[
endpoint
][
"params"
]:
self
.
_clone_param
(
pserver_program
.
global_block
(),
v
)
optimize_sub_program
=
Program
()
grad_var_names
=
[
var
.
name
for
var
in
self
.
param_grad_map
[
endpoint
][
"grads"
]
]
for
opt_op
in
optimize_ops
:
for
_
,
var
in
opt_op
.
inputs
.
iteritems
():
# NOTE: append operators to merge gradients from multiple
# trainers. If trainers == 1, this is not needed.
if
self
.
trainers
>
1
and
var
.
name
in
grad_var_names
:
vars2merge
=
self
.
_create_var_for_trainers
(
optimize_sub_program
.
global_block
(),
var
,
self
.
trainers
)
merged_var
=
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
optimize_sub_program
.
global_block
().
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
vars2merge
},
outputs
=
{
"Out"
:
merged_var
})
optimize_sub_program
.
global_block
().
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
merged_var
},
outputs
=
{
"Out"
:
merged_var
},
attrs
=
{
"scale"
:
1.0
/
float
(
self
.
trainers
)})
else
:
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
if
opt_op
.
inputs
.
has_key
(
"Grad"
):
if
opt_op
.
inputs
[
"Grad"
].
name
in
grad_var_names
:
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
else
:
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
self
.
param_grad_map
[
endpoint
][
"grads"
]},
# grads to recv
outputs
=
{},
attrs
=
{
"OptimizeProgram"
:
optimize_sub_program
.
desc
,
"endpoint"
:
endpoint
,
"ParamList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"params"
]],
"GradList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"grads"
]],
"Trainers"
:
self
.
trainers
})
pserver_program
.
sync_with_cpp
()
return
pserver_program
python/paddle/v2/fluid/distributed_spliter.py
浏览文件 @
f35c5606
def
hash_name
(
var
blocks
,
pserver_endpoints
):
def
hash_name
(
var
list
,
pserver_endpoints
):
"""
"""
:param varblocks: a list of VarBlock string indicating
hash variable names to several endpoints.
sub blocks of variables
:return: a map of pserver endpoint -> varblock_str
:param varlist: a list of Variables
:return: a map of pserver endpoint -> varname
"""
"""
def
_hash_block
(
block_str
,
total
):
def
_hash_block
(
block_str
,
total
):
return
hash
(
block_str
)
%
total
return
hash
(
block_str
)
%
total
ep2block
=
dict
()
eplist
=
[]
for
varblock_str
in
varblocks
:
for
var
in
varlist
:
if
param
.
trainable
is
True
and
grad
is
not
None
:
server_id
=
_hash_block
(
var
.
name
(),
len
(
pserver_endpoints
))
server_id
=
_hash_block
(
varblock_str
,
len
(
pserver_endpoints
))
server_for_param
=
pserver_endpoints
[
server_id
]
server_for_param
=
pserver_endpoints
[
server_id
]
if
not
ep2block
.
has_key
(
server_for_param
):
eplist
.
append
(
server_for_param
)
ep2block
[
server_for_param
]
=
[]
return
eplist
ep2block
[
server_for_param
].
append
(
varblock_str
)
return
ep2block
def
round_robin
(
varblocks
,
pserver_endpoints
):
def
round_robin
(
varlist
,
pserver_endpoints
):
assert
(
len
(
varblocks
)
>
len
(
pserver_endpoints
))
"""
distribute variables to several endpoints.
"""
assert
(
len
(
varlist
)
>
len
(
pserver_endpoints
))
ep
2block
=
dict
()
ep
list
=
[]
pserver_idx
=
0
pserver_idx
=
0
for
varblock_str
in
varblocks
:
for
var
in
varlist
:
if
param
.
trainable
is
True
:
server_for_param
=
pserver_endpoints
[
pserver_idx
]
server_for_param
=
pserver_endpoints
[
pserver_idx
]
if
not
ep2block
.
has_key
(
server_for_param
):
eplist
.
append
(
server_for_param
)
ep2block
[
server_for_param
]
=
[]
ep2block
[
server_for_param
].
append
(
varblock_str
)
pserver_idx
+=
1
pserver_idx
+=
1
if
pserver_idx
>=
len
(
pserver_endpoints
):
if
pserver_idx
>=
len
(
pserver_endpoints
):
pserver_idx
=
0
pserver_idx
=
0
return
ep
2block
return
ep
list
python/paddle/v2/fluid/tests/book_distribute/test_split_var.py
0 → 100644
浏览文件 @
f35c5606
import
math
import
unittest
from
paddle.v2.fluid.distribute_transpiler
import
split_dense_variable
import
paddle.v2.fluid
as
fluid
import
random
class
TestSplitVar
(
unittest
.
TestCase
):
def
test_check_output
(
self
):
# split below shapes to 10 servers
shapes
=
[[
3
,
5
],
[
1024
],
[
28
,
784
],
[
8
,
1020
],
[
800
,
10
]]
expected_sizes
=
[
[
15
],
[
1024
],
[
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
784
],
[
2040
,
2040
,
2040
,
2040
],
[
1150
,
1150
,
1150
,
1150
,
1150
,
1150
,
1100
]
]
var_list
=
[]
program
=
fluid
.
Program
()
for
shape
in
shapes
:
var
=
program
.
global_block
().
create_var
(
name
=
str
(
random
.
randint
(
10000
)),
persistable
=
True
,
dtype
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
shape
)
var_list
.
append
(
var
)
blocks
=
split_dense_variable
(
var_list
,
10
)
all_sizes
=
[]
for
s
in
expected_sizes
:
for
s2
in
s
:
all_sizes
.
append
(
s2
)
for
i
,
block_str
in
enumerate
(
blocks
):
varname
,
block_id
,
size
=
block_str
.
split
(
":"
)
self
.
assertEqual
(
int
(
size
),
all_sizes
[
i
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录