Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f2dc29a9
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f2dc29a9
编写于
2月 19, 2021
作者:
A
Aurelius84
提交者:
GitHub
2月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CustomOp] Support output dtypes in generated Python API (#31045)
上级
615d8a22
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
125 addition
and
29 deletion
+125
-29
python/paddle/fluid/tests/custom_op/relu_op3_simple.cc
python/paddle/fluid/tests/custom_op/relu_op3_simple.cc
+1
-1
python/paddle/fluid/tests/custom_op/relu_op_simple.cc
python/paddle/fluid/tests/custom_op/relu_op_simple.cc
+24
-4
python/paddle/fluid/tests/custom_op/relu_op_simple.cu
python/paddle/fluid/tests/custom_op/relu_op_simple.cu
+21
-1
python/paddle/fluid/tests/custom_op/test_simple_custom_op_jit.py
...paddle/fluid/tests/custom_op/test_simple_custom_op_jit.py
+57
-0
python/paddle/fluid/tests/custom_op/test_simple_custom_op_setup.py
...ddle/fluid/tests/custom_op/test_simple_custom_op_setup.py
+6
-4
python/paddle/utils/cpp_extension/extension_utils.py
python/paddle/utils/cpp_extension/extension_utils.py
+16
-19
未找到文件。
python/paddle/fluid/tests/custom_op/relu_op3_simple.cc
浏览文件 @
f2dc29a9
...
@@ -33,7 +33,7 @@ std::vector<paddle::DataType> ReluInferDType(paddle::DataType x_dtype);
...
@@ -33,7 +33,7 @@ std::vector<paddle::DataType> ReluInferDType(paddle::DataType x_dtype);
// to test jointly compile multi operators at same time.
// to test jointly compile multi operators at same time.
PD_BUILD_OP
(
"relu3"
)
PD_BUILD_OP
(
"relu3"
)
.
Inputs
({
"X"
})
.
Inputs
({
"X"
})
.
Outputs
({
"Out"
})
.
Outputs
({
"Out"
,
"Fake_float64"
,
"ZFake_int32"
})
.
SetKernelFn
(
PD_KERNEL
(
ReluForward
))
.
SetKernelFn
(
PD_KERNEL
(
ReluForward
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
ReluInferShape
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
ReluInferShape
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
ReluInferDType
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
ReluInferDType
))
...
...
python/paddle/fluid/tests/custom_op/relu_op_simple.cc
浏览文件 @
f2dc29a9
...
@@ -17,6 +17,13 @@
...
@@ -17,6 +17,13 @@
#include "paddle/extension.h"
#include "paddle/extension.h"
template
<
typename
data_t
>
void
fill_constant_cpu_kernel
(
data_t
*
out_data
,
int64_t
x_numel
,
data_t
value
)
{
for
(
int
i
=
0
;
i
<
x_numel
;
++
i
)
{
out_data
[
i
]
=
value
;
}
}
template
<
typename
data_t
>
template
<
typename
data_t
>
void
relu_cpu_forward_kernel
(
const
data_t
*
x_data
,
void
relu_cpu_forward_kernel
(
const
data_t
*
x_data
,
data_t
*
out_data
,
data_t
*
out_data
,
...
@@ -46,8 +53,21 @@ std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor& x) {
...
@@ -46,8 +53,21 @@ std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor& x) {
relu_cpu_forward_kernel
<
data_t
>
(
relu_cpu_forward_kernel
<
data_t
>
(
x
.
data
<
data_t
>
(),
out
.
mutable_data
<
data_t
>
(
x
.
place
()),
x
.
size
());
x
.
data
<
data_t
>
(),
out
.
mutable_data
<
data_t
>
(
x
.
place
()),
x
.
size
());
}));
}));
// fake multi output: Fake_float64 with float64 dtype
auto
fake_float64
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kCPU
);
fake_float64
.
reshape
(
x
.
shape
());
fill_constant_cpu_kernel
<
double
>
(
fake_float64
.
mutable_data
<
double
>
(
x
.
place
()),
x
.
size
(),
0.
);
// fake multi output: ZFake_int32 with int32 dtype
auto
zfake_int32
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kCPU
);
zfake_int32
.
reshape
(
x
.
shape
());
fill_constant_cpu_kernel
<
int32_t
>
(
zfake_int32
.
mutable_data
<
int32_t
>
(
x
.
place
()),
x
.
size
(),
1
);
return
{
out
};
return
{
out
,
fake_float64
,
zfake_int32
};
}
}
std
::
vector
<
paddle
::
Tensor
>
relu_cpu_backward
(
const
paddle
::
Tensor
&
x
,
std
::
vector
<
paddle
::
Tensor
>
relu_cpu_backward
(
const
paddle
::
Tensor
&
x
,
...
@@ -97,16 +117,16 @@ std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor& x,
...
@@ -97,16 +117,16 @@ std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor& x,
}
}
std
::
vector
<
std
::
vector
<
int64_t
>>
ReluInferShape
(
std
::
vector
<
int64_t
>
x_shape
)
{
std
::
vector
<
std
::
vector
<
int64_t
>>
ReluInferShape
(
std
::
vector
<
int64_t
>
x_shape
)
{
return
{
x_shape
};
return
{
x_shape
,
x_shape
,
x_shape
};
}
}
std
::
vector
<
paddle
::
DataType
>
ReluInferDType
(
paddle
::
DataType
x_dtype
)
{
std
::
vector
<
paddle
::
DataType
>
ReluInferDType
(
paddle
::
DataType
x_dtype
)
{
return
{
x_dtype
};
return
{
x_dtype
,
paddle
::
DataType
::
FLOAT64
,
paddle
::
DataType
::
INT32
};
}
}
PD_BUILD_OP
(
"relu2"
)
PD_BUILD_OP
(
"relu2"
)
.
Inputs
({
"X"
})
.
Inputs
({
"X"
})
.
Outputs
({
"Out"
})
.
Outputs
({
"Out"
,
"Fake_float64"
,
"ZFake_int32"
})
.
SetKernelFn
(
PD_KERNEL
(
ReluForward
))
.
SetKernelFn
(
PD_KERNEL
(
ReluForward
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
ReluInferShape
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
ReluInferShape
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
ReluInferDType
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
ReluInferDType
))
...
...
python/paddle/fluid/tests/custom_op/relu_op_simple.cu
浏览文件 @
f2dc29a9
...
@@ -14,6 +14,16 @@
...
@@ -14,6 +14,16 @@
#include "paddle/extension.h"
#include "paddle/extension.h"
template
<
typename
data_t
>
__global__
void
fill_constant_cuda_kernel
(
data_t
*
y
,
const
int
num
,
data_t
value
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(
int
i
=
gid
;
i
<
num
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
y
[
i
]
=
value
;
}
}
template
<
typename
data_t
>
template
<
typename
data_t
>
__global__
void
relu_cuda_forward_kernel
(
const
data_t
*
x
,
__global__
void
relu_cuda_forward_kernel
(
const
data_t
*
x
,
data_t
*
y
,
data_t
*
y
,
...
@@ -47,8 +57,18 @@ std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x) {
...
@@ -47,8 +57,18 @@ std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x) {
relu_cuda_forward_kernel
<
data_t
><<<
grid
,
block
>>>
(
relu_cuda_forward_kernel
<
data_t
><<<
grid
,
block
>>>
(
x
.
data
<
data_t
>
(),
out
.
mutable_data
<
data_t
>
(
x
.
place
()),
numel
);
x
.
data
<
data_t
>
(),
out
.
mutable_data
<
data_t
>
(
x
.
place
()),
numel
);
}));
}));
// fake multi output: Fake_1
auto
fake_float64
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kGPU
);
fake_float64
.
reshape
(
x
.
shape
());
fill_constant_cuda_kernel
<
double
><<<
grid
,
block
>>>
(
fake_float64
.
mutable_data
<
double
>
(
x
.
place
()),
numel
,
0.
);
// fake multi output: ZFake_1
auto
zfake_int32
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kGPU
);
zfake_int32
.
reshape
(
x
.
shape
());
fill_constant_cuda_kernel
<
int32_t
><<<
grid
,
block
>>>
(
zfake_int32
.
mutable_data
<
int32_t
>
(
x
.
place
()),
numel
,
1
);
return
{
out
};
return
{
out
,
fake_float64
,
zfake_int32
};
}
}
std
::
vector
<
paddle
::
Tensor
>
relu_cuda_backward
(
const
paddle
::
Tensor
&
x
,
std
::
vector
<
paddle
::
Tensor
>
relu_cuda_backward
(
const
paddle
::
Tensor
&
x
,
...
...
python/paddle/fluid/tests/custom_op/test_simple_custom_op_jit.py
浏览文件 @
f2dc29a9
...
@@ -64,5 +64,62 @@ class TestJITLoad(unittest.TestCase):
...
@@ -64,5 +64,62 @@ class TestJITLoad(unittest.TestCase):
x_grad
,
pd_x_grad
))
x_grad
,
pd_x_grad
))
class
TestMultiOutputDtypes
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
custom_op
=
custom_module
.
relu2
self
.
dtypes
=
[
'float32'
,
'float64'
]
self
.
devices
=
[
'cpu'
,
'gpu'
]
def
test_static
(
self
):
paddle
.
enable_static
()
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
res
=
self
.
run_static
(
device
,
dtype
)
self
.
check_multi_outputs
(
res
)
paddle
.
disable_static
()
def
test_dynamic
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
paddle
.
set_device
(
device
)
x_data
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
8
]).
astype
(
dtype
)
x
=
paddle
.
to_tensor
(
x_data
)
outs
=
self
.
custom_op
(
x
)
self
.
assertTrue
(
len
(
outs
)
==
3
)
self
.
check_multi_outputs
(
outs
,
True
)
def
check_multi_outputs
(
self
,
outs
,
is_dynamic
=
False
):
out
,
zero_float64
,
one_int32
=
outs
if
is_dynamic
:
zero_float64
=
zero_float64
.
numpy
()
one_int32
=
one_int32
.
numpy
()
# Fake_float64
self
.
assertTrue
(
'float64'
in
str
(
zero_float64
.
dtype
))
self
.
assertTrue
(
np
.
array_equal
(
zero_float64
,
np
.
zeros
([
4
,
8
]).
astype
(
'float64'
)))
# ZFake_int32
self
.
assertTrue
(
'int32'
in
str
(
one_int32
.
dtype
))
self
.
assertTrue
(
np
.
array_equal
(
one_int32
,
np
.
ones
([
4
,
8
]).
astype
(
'int32'
)))
def
run_static
(
self
,
device
,
dtype
):
paddle
.
set_device
(
device
)
x_data
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
8
]).
astype
(
dtype
)
with
paddle
.
static
.
scope_guard
(
paddle
.
static
.
Scope
()):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'X'
,
shape
=
[
None
,
8
],
dtype
=
dtype
)
outs
=
self
.
custom_op
(
x
)
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
paddle
.
static
.
default_startup_program
())
res
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
'X'
:
x_data
},
fetch_list
=
outs
)
return
res
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/custom_op/test_simple_custom_op_setup.py
浏览文件 @
f2dc29a9
...
@@ -29,7 +29,7 @@ def relu2_dynamic(func, device, dtype, np_x, use_func=True):
...
@@ -29,7 +29,7 @@ def relu2_dynamic(func, device, dtype, np_x, use_func=True):
t
=
paddle
.
to_tensor
(
np_x
)
t
=
paddle
.
to_tensor
(
np_x
)
t
.
stop_gradient
=
False
t
.
stop_gradient
=
False
out
=
func
(
t
)
if
use_func
else
paddle
.
nn
.
functional
.
relu
(
t
)
out
=
func
(
t
)
[
0
]
if
use_func
else
paddle
.
nn
.
functional
.
relu
(
t
)
out
.
stop_gradient
=
False
out
.
stop_gradient
=
False
out
.
backward
()
out
.
backward
()
...
@@ -45,17 +45,18 @@ def relu2_static(func, device, dtype, np_x, use_func=True):
...
@@ -45,17 +45,18 @@ def relu2_static(func, device, dtype, np_x, use_func=True):
with
static
.
program_guard
(
static
.
Program
()):
with
static
.
program_guard
(
static
.
Program
()):
x
=
static
.
data
(
name
=
'X'
,
shape
=
[
None
,
8
],
dtype
=
dtype
)
x
=
static
.
data
(
name
=
'X'
,
shape
=
[
None
,
8
],
dtype
=
dtype
)
x
.
stop_gradient
=
False
x
.
stop_gradient
=
False
out
=
func
(
x
)
if
use_func
else
paddle
.
nn
.
functional
.
relu
(
x
)
# out, fake_float64, fake_int32
out
=
func
(
x
)[
0
]
if
use_func
else
paddle
.
nn
.
functional
.
relu
(
x
)
static
.
append_backward
(
out
)
static
.
append_backward
(
out
)
exe
=
static
.
Executor
()
exe
=
static
.
Executor
()
exe
.
run
(
static
.
default_startup_program
())
exe
.
run
(
static
.
default_startup_program
())
# in static mode, x data has been covered by out
# in static mode, x data has been covered by out
out_v
=
exe
.
run
(
static
.
default_main_program
(),
out_v
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
{
'X'
:
np_x
},
feed
=
{
'X'
:
np_x
},
fetch_list
=
[
out
.
name
])
fetch_list
=
[
out
.
name
])
paddle
.
disable_static
()
return
out_v
return
out_v
...
@@ -68,7 +69,7 @@ def relu2_static_pe(func, device, dtype, np_x, use_func=True):
...
@@ -68,7 +69,7 @@ def relu2_static_pe(func, device, dtype, np_x, use_func=True):
with
static
.
program_guard
(
static
.
Program
()):
with
static
.
program_guard
(
static
.
Program
()):
x
=
static
.
data
(
name
=
'X'
,
shape
=
[
None
,
8
],
dtype
=
dtype
)
x
=
static
.
data
(
name
=
'X'
,
shape
=
[
None
,
8
],
dtype
=
dtype
)
x
.
stop_gradient
=
False
x
.
stop_gradient
=
False
out
=
func
(
x
)
if
use_func
else
paddle
.
nn
.
functional
.
relu
(
x
)
out
=
func
(
x
)
[
0
]
if
use_func
else
paddle
.
nn
.
functional
.
relu
(
x
)
static
.
append_backward
(
out
)
static
.
append_backward
(
out
)
exe
=
static
.
Executor
()
exe
=
static
.
Executor
()
...
@@ -82,6 +83,7 @@ def relu2_static_pe(func, device, dtype, np_x, use_func=True):
...
@@ -82,6 +83,7 @@ def relu2_static_pe(func, device, dtype, np_x, use_func=True):
feed
=
{
'X'
:
np_x
},
feed
=
{
'X'
:
np_x
},
fetch_list
=
[
out
.
name
])
fetch_list
=
[
out
.
name
])
paddle
.
disable_static
()
return
out_v
return
out_v
...
...
python/paddle/utils/cpp_extension/extension_utils.py
浏览文件 @
f2dc29a9
...
@@ -402,12 +402,9 @@ def parse_op_info(op_name):
...
@@ -402,12 +402,9 @@ def parse_op_info(op_name):
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_name
)
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_name
)
in_names
=
[
x
.
name
for
x
in
op_proto
.
inputs
]
in_names
=
[
x
.
name
for
x
in
op_proto
.
inputs
]
assert
len
(
op_proto
.
outputs
)
==
1
out_names
=
[
x
.
name
for
x
in
op_proto
.
outputs
]
out_name
=
op_proto
.
outputs
[
0
].
name
# TODO(Aurelius84): parse necessary out_dtype of custom op
return
in_names
,
out_names
out_infos
=
{
out_name
:
[
'float32'
]}
return
in_names
,
out_infos
def
_import_module_from_library
(
module_name
,
build_directory
,
verbose
=
False
):
def
_import_module_from_library
(
module_name
,
build_directory
,
verbose
=
False
):
...
@@ -450,13 +447,10 @@ def _generate_python_module(module_name,
...
@@ -450,13 +447,10 @@ def _generate_python_module(module_name,
def
_custom_api_content
(
op_name
):
def
_custom_api_content
(
op_name
):
params_str
,
ins_str
=
_get_api_inputs_str
(
op_name
)
params_str
,
ins_str
,
outs_str
=
_get_api_inputs_str
(
op_name
)
API_TEMPLATE
=
textwrap
.
dedent
(
"""
API_TEMPLATE
=
textwrap
.
dedent
(
"""
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layer_helper import LayerHelper
from paddle.utils.cpp_extension import parse_op_info
_, _out_infos = parse_op_info('{op_name}')
def {op_name}({inputs}):
def {op_name}({inputs}):
helper = LayerHelper("{op_name}", **locals())
helper = LayerHelper("{op_name}", **locals())
...
@@ -464,21 +458,22 @@ def _custom_api_content(op_name):
...
@@ -464,21 +458,22 @@ def _custom_api_content(op_name):
# prepare inputs and output
# prepare inputs and output
ins = {ins}
ins = {ins}
outs = {{}}
outs = {{}}
for out_name in _out_infos:
out_names = {out_names}
outs[out_name] = [helper.create_variable(dtype=dtype) for dtype in _out_infos[out_name]]
for out_name in out_names:
# Set 'float32' temporarily, and the actual dtype of output variable will be inferred
# in runtime.
outs[out_name] = helper.create_variable(dtype='float32')
helper.append_op(type="{op_name}", inputs=ins, outputs=outs)
helper.append_op(type="{op_name}", inputs=ins, outputs=outs)
res = list(outs.values())[0]
res = [outs[out_name] for out_name in out_names]
if len(res) == 1:
return res[0]
return res[0] if len(res)==1 else res
else:
return res
"""
).
lstrip
()
"""
).
lstrip
()
# generate python api file
# generate python api file
api_content
=
API_TEMPLATE
.
format
(
api_content
=
API_TEMPLATE
.
format
(
op_name
=
op_name
,
inputs
=
params_str
,
ins
=
ins_str
)
op_name
=
op_name
,
inputs
=
params_str
,
ins
=
ins_str
,
out_names
=
outs_str
)
return
api_content
return
api_content
...
@@ -509,13 +504,15 @@ def _get_api_inputs_str(op_name):
...
@@ -509,13 +504,15 @@ def _get_api_inputs_str(op_name):
"""
"""
Returns string of api parameters and inputs dict.
Returns string of api parameters and inputs dict.
"""
"""
in_names
,
_
=
parse_op_info
(
op_name
)
in_names
,
out_names
=
parse_op_info
(
op_name
)
# e.g: x, y, z
# e.g: x, y, z
params_str
=
','
.
join
([
p
.
lower
()
for
p
in
in_names
])
params_str
=
','
.
join
([
p
.
lower
()
for
p
in
in_names
])
# e.g: {'X': x, 'Y': y, 'Z': z}
# e.g: {'X': x, 'Y': y, 'Z': z}
ins_str
=
"{%s}"
%
','
.
join
(
ins_str
=
"{%s}"
%
','
.
join
(
[
"'{}' : {}"
.
format
(
in_name
,
in_name
.
lower
())
for
in_name
in
in_names
])
[
"'{}' : {}"
.
format
(
in_name
,
in_name
.
lower
())
for
in_name
in
in_names
])
return
params_str
,
ins_str
# e.g: ['Out', 'Index']
outs_str
=
"[%s]"
%
','
.
join
([
"'{}'"
.
format
(
name
)
for
name
in
out_names
])
return
params_str
,
ins_str
,
outs_str
def
_write_setup_file
(
name
,
def
_write_setup_file
(
name
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录