提交 f28f2e0a 编写于 作者: L liaogang

Merge branch 'develop' of https://github.com/baidu/Paddle into profiler

......@@ -23,7 +23,7 @@ set -e
export LC_ALL=C
UNAME_STR=`uname`
if [[ ${UNAME_STR} == 'Linux' ]]; then
if [ ${UNAME_STR} == 'Linux' ]; then
SHUF_PROG='shuf'
else
SHUF_PROG='gshuf'
......
......@@ -52,6 +52,20 @@ Matrix* Matrix::createDense(const std::vector<float>& data, size_t height,
return m;
}
Matrix* Matrix::createDenseFromNumpy(float* data, int dim1, int dim2,
bool copy, bool useGpu)
throw (UnsupportError) {
if (useGpu) {
/// Gpu mode only supports copy=True
if (!copy) {
throw UnsupportError("Gpu mode only supports copy=True");
}
return Matrix::createGpuDenseFromNumpy(data, dim1, dim2);
} else {
return Matrix::createCpuDenseFromNumpy(data, dim1, dim2, copy);
}
}
Matrix* Matrix::createCpuDenseFromNumpy(float* data, int dim1, int dim2,
bool copy) {
auto m = new Matrix();
......
......@@ -4,6 +4,13 @@
#define SWIG_FILE_WITH_INIT
#include "api/PaddleAPI.h"
%}
%include "exception.i"
%typemap(throws) UnsupportError %{
SWIG_exception(SWIG_RuntimeError, $1.what());
SWIG_fail;
%}
%include "std_vector.i"
%include "std_pair.i"
#ifdef SWIGPYTHON
......@@ -133,14 +140,21 @@ namespace std {
%newobject Matrix::createZero;
%newobject Matrix::createSparse;
%newobject Matrix::createDense;
%newobject Matrix::createDenseFromNumpy;
%newobject Matrix::createCpuDenseFromNumpy;
%newobject Matrix::createGpuDenseFromNumpy;
%newobject Vector::createZero;
%newobject Vector::create;
%newobject Vector::createVectorFromNumpy;
%newobject Vector::createCpuVectorFromNumpy;
%newobject Vector::createGpuVectorFromNumpy;
%newobject IVector::createZero;
%newobject IVector::create;
%newobject IVector::createVectorFromNumpy;
%newobject IVector::createCpuVectorFromNumpy;
%newobject IVector::createGpuVectorFromNumpy;
%newobject Trainer::createByCommandLine;
%newobject Trainer::getNetworkOutput;
%newobject Trainer::getForwardOutput;
%newobject Trainer::getLayerOutput;
%newobject Arguments::getSlotValue;
%newobject Arguments::getSlotIds;
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <string>
#include <stdexcept>
#include <vector>
#include "paddle/utils/GlobalConstants.h"
#include "paddle/utils/TypeDefs.h"
......@@ -42,6 +43,12 @@ using namespace paddle::enumeration_wrapper; // NOLINT
*/
void initPaddle(int argc, char** argv);
/// Return FLAGS_use_gpu
bool isUsingGpu();
/// Set the Flags_use_gpu to the given parameter
void setUseGpu(bool useGpu);
/// Return true if this py_paddle is compiled in GPU Version
bool isGpuVersion();
......@@ -52,7 +59,11 @@ class IOError {};
class RangeError {};
/// Not support Error, such as access GPU memory directly, etc.
class UnsupportError {};
class UnsupportError : public std::runtime_error {
public:
UnsupportError() : std::runtime_error(" ") {};
UnsupportError(const std::string& message) : std::runtime_error(message) {};
};
/// This type will map to python's list of float.
struct FloatArray {
......@@ -101,7 +112,8 @@ public:
/**
* Create A Matrix with height,width, which is filled by zero.
*/
static Matrix* createZero(size_t height, size_t width, bool useGpu = false);
static Matrix* createZero(size_t height, size_t width,
bool useGpu = isUsingGpu());
/**
* Create Sparse Matrix.
......@@ -114,7 +126,7 @@ public:
*/
static Matrix* createSparse(size_t height, size_t width, size_t nnz,
bool isNonVal = true, bool trans = false,
bool useGpu = false);
bool useGpu = isUsingGpu());
/**
* Create Dense Matrix.
......@@ -123,7 +135,12 @@ public:
* @note the value will be copy into a new matrix.
*/
static Matrix* createDense(const std::vector<float>& data, size_t height,
size_t width, bool useGpu = false);
size_t width, bool useGpu = isUsingGpu());
static Matrix* createDenseFromNumpy(float* data, int dim1, int dim2,
bool copy = true,
bool useGpu = isUsingGpu())
throw (UnsupportError);
/**
* Create Cpu Dense Matrix from numpy matrix, dtype=float32
......@@ -221,15 +238,19 @@ public:
~Vector();
/// Create Vector filled with zero.
static Vector* createZero(size_t sz, bool useGpu = false);
static Vector* createZero(size_t sz, bool useGpu = isUsingGpu());
/**
* Create Vector from list of float.
*
* It will create a new vector, and copy data into it.
*/
static Vector* create(const std::vector<float>& data, bool useGpu = false);
static Vector* create(const std::vector<float>& data,
bool useGpu = isUsingGpu());
static Vector* createVectorFromNumpy(float* data, int dim, bool copy = true,
bool useGpu = isUsingGpu())
throw (UnsupportError);
/**
* Create Cpu Vector from numpy array, which dtype=float32
*
......@@ -259,6 +280,9 @@ public:
/// Return is GPU vector or not.
bool isGpu() const;
/// Return a list of float, the memory is alloced and copied.
FloatArray getData() const;
/// __len__ in python
size_t getSize() const;
......@@ -279,13 +303,18 @@ class IVector {
public:
/// Create IVector filled with zero
static IVector* createZero(size_t sz, bool useGpu = false);
static IVector* createZero(size_t sz, bool useGpu = isUsingGpu());
/**
* Create IVector from list of int.
* It will create a new vector, and copy data into it.
*/
static IVector* create(const std::vector<int>& data, bool useGpu = false);
static IVector* create(const std::vector<int>& data,
bool useGpu = isUsingGpu());
static IVector* createVectorFromNumpy(int* data, int dim, bool copy = true,
bool useGpu = isUsingGpu())
throw (UnsupportError);
/**
* Create Cpu IVector from numpy array, which dtype=int32
......@@ -297,7 +326,7 @@ public:
/**
* Create Gpu IVector from numpy array, which dtype=int32
*/
static IVector* createGpuVectorFromNumy(int* data, int dim);
static IVector* createGpuVectorFromNumpy(int* data, int dim);
/// Cast to numpy array inplace.
void toNumpyArrayInplace(int** view_data, int* dim1) throw(UnsupportError);
......
......@@ -41,6 +41,10 @@ IntWithFloatArray::IntWithFloatArray(const float* v, const int* i, size_t l,
bool f)
: valBuf(v), idxBuf(i), length(l), needFree(f) {}
bool isUsingGpu() {return FLAGS_use_gpu;}
void setUseGpu(bool useGpu) {FLAGS_use_gpu = useGpu;}
bool isGpuVersion() {
#ifdef PADDLE_ONLY_CPU
return false;
......
......@@ -39,6 +39,19 @@ IVector* IVector::create(const std::vector<int>& data, bool useGpu) {
return v;
}
IVector* IVector::createVectorFromNumpy(int* data, int dim, bool copy,
bool useGpu) throw (UnsupportError){
if (useGpu) {
/// if use gpu only copy=true is supported
if (!copy) {
throw UnsupportError("Gpu mode only supports copy=True");
}
return IVector::createGpuVectorFromNumpy(data, dim);
} else {
return IVector::createCpuVectorFromNumpy(data, dim, copy);
}
}
IVector* IVector::createCpuVectorFromNumpy(int* data, int dim, bool copy) {
auto v = new IVector();
if (copy) {
......@@ -50,7 +63,7 @@ IVector* IVector::createCpuVectorFromNumpy(int* data, int dim, bool copy) {
return v;
}
IVector* IVector::createGpuVectorFromNumy(int* data, int dim) {
IVector* IVector::createGpuVectorFromNumpy(int* data, int dim) {
auto v = new IVector();
v->m->vec = paddle::IVector::create(dim, true);
v->m->vec->copyFrom(data, dim);
......@@ -188,12 +201,25 @@ Vector* Vector::createByPaddleVectorPtr(void* ptr) {
}
}
Vector* Vector::createVectorFromNumpy(float* data, int dim, bool copy,
bool useGpu) throw (UnsupportError){
if (useGpu) {
/// if use gpu only copy=True is supported
if (!copy) {
throw UnsupportError("Gpu mode only supports copy=True");
}
return Vector::createGpuVectorFromNumpy(data, dim);
} else {
return Vector::createCpuVectorFromNumpy(data, dim, copy);
}
}
Vector* Vector::createCpuVectorFromNumpy(float* data, int dim, bool copy) {
CHECK_GT(dim, 0);
auto retVec = new Vector();
if (copy) {
retVec->m->vec = paddle::Vector::create((size_t)dim, false);
return retVec;
retVec->m->vec->copyFrom(data, dim);
} else {
retVec->m->vec = paddle::Vector::create(data, (size_t)dim, false);
}
......@@ -237,6 +263,21 @@ void Vector::copyFromNumpyArray(float* data, int dim) {
m->vec->copyFrom(data, dim);
}
FloatArray Vector::getData() const {
if (this->isGpu()) {
float* src = m->vec->getData();
size_t len = m->vec->getSize();
float* dest = new float[len];
hl_memcpy_device2host(dest, src, len * sizeof(float));
FloatArray ret_val(dest, len);
ret_val.needFree = true;
return ret_val;
} else {
FloatArray ret_val(m->vec->getData(), m->vec->getSize());
return ret_val;
}
}
bool Vector::isGpu() const {
return std::dynamic_pointer_cast<paddle::GpuVector>(m->vec) != nullptr;
}
......
......@@ -42,7 +42,7 @@ class TestMatrix(unittest.TestCase):
self.assertEqual(m.getSparseRowCols(2), [])
def test_sparse_value(self):
m = swig_paddle.Matrix.createSparse(3, 3, 6, False)
m = swig_paddle.Matrix.createSparse(3, 3, 6, False, False, False)
self.assertIsNotNone(m)
m.sparseCopyFrom([0, 2, 3, 3], [0, 1, 2], [7.3, 4.2, 3.2])
......@@ -66,7 +66,7 @@ class TestMatrix(unittest.TestCase):
self.assertIsNotNone(m)
self.assertTrue(abs(m.get(1, 1) - 0.5) < 1e-5)
def test_numpy(self):
def test_numpyCpu(self):
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat)
self.assertEqual((int(m.getHeight()), int(m.getWidth())),
......@@ -101,7 +101,19 @@ class TestMatrix(unittest.TestCase):
for a, e in zip(gpu_m.getData(), [1.0, 3.23, 3.0, 4.0, 5.0, 6.0]):
self.assertAlmostEqual(a, e)
def test_numpy(self):
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
m = swig_paddle.Matrix.createDenseFromNumpy(numpy_mat)
self.assertEqual((int(m.getHeight()), int(m.getWidth())), numpy_mat.shape)
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
for a, e in zip(m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
self.assertAlmostEqual(a, e)
if __name__ == "__main__":
swig_paddle.initPaddle("--use_gpu=0")
suite = unittest.TestLoader().loadTestsFromTestCase(TestMatrix)
unittest.TextTestRunner().run(suite)
if swig_paddle.isGpuVersion():
swig_paddle.setUseGpu(True)
unittest.main()
......@@ -20,20 +20,28 @@ import unittest
class TestIVector(unittest.TestCase):
def test_createZero(self):
m = swig_paddle.IVector.createZero(10)
m = swig_paddle.IVector.createZero(10, False)
self.assertIsNotNone(m)
for i in xrange(10):
self.assertEqual(m[i], 0)
m[i] = i
self.assertEqual(m[i], i)
m = swig_paddle.IVector.createZero(10)
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(m.getData(), [0]*10)
def test_create(self):
m = swig_paddle.IVector.create(range(10))
m = swig_paddle.IVector.create(range(10), False)
self.assertIsNotNone(m)
for i in xrange(10):
self.assertEqual(m[i], i)
def test_numpy(self):
m = swig_paddle.IVector.create(range(10))
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(m.getData(), range(10))
def test_cpu_numpy(self):
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec)
self.assertEqual(vec.shape[0], int(iv.__len__()))
......@@ -62,24 +70,42 @@ class TestIVector(unittest.TestCase):
expect_vec[4] = 7
self.assertEqual(vec.getData(), expect_vec)
def test_numpy(self):
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
iv = swig_paddle.IVector.createVectorFromNumpy(vec)
self.assertEqual(iv.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(iv.getData(), list(vec))
class TestVector(unittest.TestCase):
def testCreateZero(self):
v = swig_paddle.Vector.createZero(10)
v = swig_paddle.Vector.createZero(10, False)
self.assertIsNotNone(v)
for i in xrange(len(v)):
self.assertTrue(util.doubleEqual(v[i], 0))
v[i] = i
self.assertTrue(util.doubleEqual(v[i], i))
v = swig_paddle.Vector.createZero(10)
self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(v.getData(), [0]*10)
def testCreate(self):
v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)])
v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)], False)
self.assertIsNotNone(v)
for i in xrange(len(v)):
self.assertTrue(util.doubleEqual(v[i], i / 100.0))
self.assertEqual(100, len(v))
def testNumpy(self):
v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)])
self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(100, len(v))
vdata = v.getData()
for i in xrange(len(v)):
self.assertTrue(util.doubleEqual(vdata[i], i / 100.0))
def testCpuNumpy(self):
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr)
assert isinstance(vec, swig_paddle.Vector)
......@@ -103,8 +129,17 @@ class TestVector(unittest.TestCase):
for i in xrange(1, len(numpy_3)):
util.doubleEqual(numpy_3[i], vec[i])
def testNumpy(self):
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
vec = swig_paddle.Vector.createVectorFromNumpy(numpy_arr)
self.assertEqual(vec.isGpu(), swig_paddle.isUsingGpu())
vecData = vec.getData()
for n, v in zip(numpy_arr, vecData):
self.assertTrue(util.doubleEqual(n, v))
def testCopyFromNumpy(self):
vec = swig_paddle.Vector.createZero(1)
vec = swig_paddle.Vector.createZero(1, False)
arr = np.array([1.3, 3.2, 2.4], dtype="float32")
vec.copyFromNumpyArray(arr)
for i in xrange(len(vec)):
......@@ -112,6 +147,9 @@ class TestVector(unittest.TestCase):
if __name__ == '__main__':
swig_paddle.initPaddle("--use_gpu=1"
if swig_paddle.isGpuVersion() else "--use_gpu=0")
swig_paddle.initPaddle("--use_gpu=0")
suite = unittest.TestLoader().loadTestsFromTestCase(TestVector)
unittest.TextTestRunner().run(suite)
if swig_paddle.isGpuVersion():
swig_paddle.setUseGpu(True)
unittest.main()
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册