提交 f25834a5 编写于 作者: Z Zhang Ting 提交者: Aurelius84

[cherry-pick] modified docs of group_norm and crop_tensor (#20339)

* [cherry-pick] modified doc of group_norm, test=release/1.6, test=document_fix (#20234)

* [cherry-pick] modified doc of crop_tensor, test=release/1.6, test=document_fix (#20203)
上级 f72d82cc
......@@ -188,7 +188,7 @@ paddle.fluid.layers.beam_search (ArgSpec(args=['pre_ids', 'pre_scores', 'ids', '
paddle.fluid.layers.row_conv (ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)), ('document', '1d8a1c8b686b55631ba1b77805e4eacf'))
paddle.fluid.layers.multiplex (ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None), ('document', '2c4d1ae83da6ed35e3b36ba1b3b51d23'))
paddle.fluid.layers.layer_norm (ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)), ('document', '79797f827d89ae72c77960e9696883a9'))
paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None)), ('document', '65231cc8281815124934b1439fbb750c'))
paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None)), ('document', '87dd4b818f102bc1a780e1804c28bd38'))
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '9461e67095a6fc5d568fb2ce8fef66ff'))
paddle.fluid.layers.softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax', 'axis'], varargs=None, keywords=None, defaults=(False, -100, True, False, -1)), ('document', '54e1675aa0364f4a78fa72804ec0f413'))
paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'cbe8940643ac80ef75e1abdfbdb09e88'))
......@@ -223,7 +223,7 @@ paddle.fluid.layers.relu (ArgSpec(args=['x', 'name'], varargs=None, keywords=Non
paddle.fluid.layers.selu (ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'f93c61f5b0bf933cd425a64dca2c4fdd'))
paddle.fluid.layers.log (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '02f668664e3bfc4df6c00d7363467140'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'ba3621917d5beffd3d022b88fbf6dc46'))
paddle.fluid.layers.crop_tensor (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'cb855453e3506bf54c5c013616ffddfb'))
paddle.fluid.layers.crop_tensor (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'd460aaf35afbbeb9beea4789aa6e4343'))
paddle.fluid.layers.rank_loss (ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '8eb36596bb43d7a907d3397c7aedbdb3'))
paddle.fluid.layers.margin_rank_loss (ArgSpec(args=['label', 'left', 'right', 'margin', 'name'], varargs=None, keywords=None, defaults=(0.1, None)), ('document', '6fc86ed23b420c8a0f6c043563cf3937'))
paddle.fluid.layers.elu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None)), ('document', '9af1926c06711eacef9e82d7a9e4d308'))
......
......@@ -4262,30 +4262,39 @@ def group_norm(input,
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
input(Variable): The input tensor variable.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string, default NCHW): NCHW(num_batch, channels, h, w) or NHWC(num_batch, h, w, channels).
name (str): The name of this layer. It is optional.
Parameters:
input(Variable): 4-D Tensor, the data type is float32 or float64.
groups(int): The number of groups that divided from channels, the data type
is int32.
epsilon(float, optional): The small value added to the variance to prevent
division by zero, the data type is float32. Default: 1e-05.
param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
attribute. If a bool type, only False is supported, which means there is no weight parameter.
Default: None, the default weight parameter attribute is used. For more information, please
refer to :ref:`api_guide_ParamAttr` .
bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
attribute. If a bool type, only False is supported, which means there is no bias parameter.
Default: None, the default bias parameter attribute is used. For more information, please
refer to :ref:`api_guide_ParamAttr` .
act(str, optional): Activation to be applied to the output of group normalizaiton.
data_layout(str, optional): The data format of the input and output data. An optional string
from: `"NCHW"`, `"NHWC"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, channels, height, width]`. Default: "NCHW".
name (str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
Variable: A 4-D Tensor has same data type and data format with `input`.
Raises:
ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
Examples:
.. code-block:: python
>>> import paddle.fluid as fluid
>>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
>>> dtype='float32')
>>> x = fluid.layers.group_norm(input=data, groups=4)
import paddle.fluid as fluid
data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
x = fluid.layers.group_norm(input=data, groups=4)
"""
helper = LayerHelper('group_norm', **locals())
dtype = helper.input_dtype()
......@@ -10206,59 +10215,57 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
.. code-block:: text
* Case 1:
Given
X = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]],
and
shape = [2, 2],
offsets = [0, 1],
output is:
* Case 1 (input is a 2-D Tensor):
Input:
X.shape = [3. 5]
X.data = [[0, 1, 2, 0, 0],
[0, 3, 4, 0, 0],
[0, 0, 0, 0, 0]]
Parameters:
shape = [2, 2]
offsets = [0, 1]
Output:
Out = [[1, 2],
[3, 4]].
* Case 2:
Given
X = [[[0, 1, 2, 3]
[0, 5, 6, 7]
[3, 4]]
* Case 2 (input is a 3-D Tensor):
Input:
X.shape = [2, 3, 4]
X.data = [[[0, 1, 2, 3],
[0, 5, 6, 7],
[0, 0, 0, 0]],
[[0, 3, 4, 5]
[0, 6, 7, 8]
[0, 0, 0, 0]]].
and
shape = [2, 2, 3],
offsets = [0, 0, 1],
output is:
Out = [[[1, 2, 3]
[[0, 3, 4, 5],
[0, 6, 7, 8],
[0, 0, 0, 0]]]
Parameters:
shape = [2, 2, 3]
offsets = [0, 0, 1]
Output:
Out = [[[1, 2, 3],
[5, 6, 7]],
[[3, 4, 5]
[6, 7, 8]]].
Args:
x (Variable): The input tensor variable.
shape (Variable|list|tuple of integer): The output shape is specified
by `shape`. It can be a 1-D tensor Variable or a list/tuple. If a
1-D tensor Variable, it's rank must be the same as `x`. If a
list/tuple, it's length must be the same as the rank of `x`. Each
element of list can be an integer or a tensor Variable of shape: [1].
[[3, 4, 5],
[6, 7, 8]]]
Parameters:
x (Variable): 1-D to 6-D Tensor, the data type is float32 or float64.
shape (list|tuple|Variable): The output shape is specified
by `shape`. Its data type is int32. If a list/tuple, it's length must be
the same as the dimension size of `x`. If a Variable, it shoule be a 1-D Tensor.
When it is a list, each element can be an integer or a Tensor of shape: [1].
If Variable contained, it is suitable for the case that the shape may
be changed each iteration. Only the first element of list/tuple can be
set to -1, it means that the first dimension of the output is the same
set to -1, it means that the first dimension's size of the output is the same
as the input.
offsets (Variable|list|tuple of integer|None): Specifies the cropping
offsets at each dimension. It can be a 1-D tensor Variable or a list/tuple.
If a 1-D tensor Variable, it's rank must be the same as `x`. If a list/tuple,
it's length must be the same as the rank of `x`. Each element of list can be
an integer or a tensor Variable of shape: [1]. If Variable contained, it is
suitable for the case that the offsets may be changed each iteration. If None,
the offsets are 0 at each dimension.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
offsets (list|tuple|Variable, optional): Specifies the cropping
offsets at each dimension. Its data type is int32. If a list/tuple, it's length
must be the same as the dimension size of `x`. If a Variable, it shoule be a 1-D
Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
If Variable contained, it is suitable for the case that the offsets may be changed
each iteration. Default: None, the offsets are 0 at each dimension.
name(str, optional): The default value is None. Normally there is no need for user to set
this property. For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: The cropped tensor variable.
Variable: The cropped Tensor has same data type with `x`.
Raises:
ValueError: If shape is not a list, tuple or Variable.
......@@ -10269,11 +10276,11 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
# x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.
# shape is a 1-D tensor variable
crop_shape = fluid.layers.data(name="crop_shape", shape=[3], dtype="int32", append_batch_size=False)
# shape is a 1-D Tensor
crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
# crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.
......@@ -10281,19 +10288,19 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
# crop1.shape = [-1, 2, 3]
# or shape is a list in which each element is a constant or variable
y = fluid.layers.data(name="y", shape=[3, 8, 8], dtype="float32")
dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
crop2 = fluid.layers.crop_tensor(y, shape=[-1, 3, dim1, 4])
# crop2.shape = [-1, 3, -1, 4]
# or shape is a list in which each element is a constant or Variable
y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
# crop2.shape = [3, -1, 4]
# offsets is a 1-D tensor variable
crop_offsets = fluid.layers.data(name="crop_offsets", shape=[3], dtype="int32", append_batch_size=False)
# offsets is a 1-D Tensor
crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
# crop3.shape = [-1, 2, 3]
# offsets is a list in which each element is a constant or variable
offsets_var = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
# offsets is a list in which each element is a constant or Variable
offsets_var = fluid.data(name="dim1", shape=[1], dtype="int32")
crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
# crop4.shape = [-1, 2, 3]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册