未验证 提交 f215534e 编写于 作者: K Kaipeng Deng 提交者: GitHub

Merge pull request #14205 from heavengate/nearest_interp

Add interpolate operator replace bilinear_interp_op and add nearest neighbor interp mode
...@@ -118,9 +118,10 @@ paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon', ...@@ -118,9 +118,10 @@ paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon',
paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)) paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0))
paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)) paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None))
paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)) paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR')) paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)) paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.resize_nearest ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class BilinearInterpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input_t = ctx.Input<Tensor>("X"); // float tensor
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
auto out_dims = output_t->dims();
auto* input = input_t->data<T>();
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
auto out_size_t = ctx.Input<Tensor>("OutSize");
if (out_size_t != nullptr) {
auto out_size_data = out_size_t->data<int>();
out_h = out_size_data[0];
out_w = out_size_data[1];
}
auto* output = output_t->mutable_data<T>(
{out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());
int batch_size = input_t->dims()[0];
int channels = input_t->dims()[1];
int in_h = input_t->dims()[2];
int in_w = input_t->dims()[3];
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
float ratio_h =
(out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(output, input, input_t->numel() * sizeof(T));
} else {
for (int k = 0; k < batch_size; ++k) { // loop for batches
for (int i = 0; i < out_h; ++i) { // loop for images
int h = ratio_h * i;
int hid = (h < in_h - 1) ? 1 : 0;
float h1lambda = ratio_h * i - h;
float h2lambda = 1.f - h1lambda;
for (int j = 0; j < out_w; ++j) {
int w = ratio_w * j;
int wid = (w < in_w - 1) ? 1 : 0;
float w1lambda = ratio_w * j - w;
float w2lambda = 1.f - w1lambda;
// calculate four position for bilinear interpolation
const T* in_pos = &input[k * in_chw + h * in_w + w];
T* out_pos = &output[k * out_chw + i * out_w + j];
for (int c = 0; c < channels; ++c) { // loop for channels
// bilinear interpolation
out_pos[0] = static_cast<T>(
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[wid]) +
h1lambda * (w2lambda * in_pos[hid * in_w] +
w1lambda * in_pos[hid * in_w + wid]));
in_pos += in_hw;
out_pos += out_hw;
}
}
}
}
}
}
};
template <typename T>
class BilinearInterpGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* d_output = d_output_t->data<T>();
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero;
zero(device_ctx, d_input_t, static_cast<T>(0.0));
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
auto out_size_t = ctx.Input<Tensor>("OutSize");
if (out_size_t != nullptr) {
auto out_size_data = out_size_t->data<int>();
out_h = out_size_data[0];
out_w = out_size_data[1];
}
int batch_size = d_input_t->dims()[0];
int channels = d_input_t->dims()[1];
int in_h = d_input_t->dims()[2];
int in_w = d_input_t->dims()[3];
int in_hw = in_h * in_w;
int out_hw = out_h * out_w;
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
float ratio_h =
(out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
} else {
for (int k = 0; k < batch_size; ++k) { // loop for batches
for (int i = 0; i < out_h; ++i) { // loop for images
int h = ratio_h * i;
int hid = (h < in_h - 1) ? 1 : 0;
float h1lambda = ratio_h * i - h;
float h2lambda = 1 - h1lambda;
for (int j = 0; j < out_w; ++j) {
int w = ratio_w * j;
int wid = (w < in_w - 1) ? 1 : 0;
float w1lambda = ratio_w * j - w;
float w2lambda = 1 - w1lambda;
T* in_pos = &d_input[k * in_chw + h * in_w + w];
const T* out_pos = &d_output[k * out_chw + i * out_w + j];
for (int c = 0; c < channels; ++c) { // loop for channels
in_pos[0] += static_cast<T>(h2lambda * w2lambda * out_pos[0]);
in_pos[wid] += static_cast<T>(h2lambda * w1lambda * out_pos[0]);
in_pos[hid * in_w] +=
static_cast<T>(h1lambda * w2lambda * out_pos[0]);
in_pos[hid * in_w + wid] +=
static_cast<T>(h1lambda * w1lambda * out_pos[0]);
in_pos += in_hw;
out_pos += out_hw;
}
}
}
}
}
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
...@@ -9,7 +9,8 @@ ...@@ -9,7 +9,8 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/bilinear_interp_op.h" #include "paddle/fluid/operators/interpolate_op.h"
#include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
...@@ -18,27 +19,34 @@ namespace operators { ...@@ -18,27 +19,34 @@ namespace operators {
using framework::Tensor; using framework::Tensor;
class BilinearInterpOp : public framework::OperatorWithKernel { class InterpolateOp : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of BilinearInterOp should not be null."); "Input(X) of InterpolateOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of BilinearInterOp should not be null."); "Output(Out) of InterpolationOp should not be null.");
auto interp_method = ctx->Attrs().Get<std::string>("interp_method");
PADDLE_ENFORCE(
"bilinear" == interp_method || "nearest" == interp_method,
"Interpolation method can only be \"bilinear\" or \"nearest\".");
auto dim_x = ctx->GetInputDim("X"); // NCHW format auto dim_x = ctx->GetInputDim("X"); // NCHW format
int out_h = ctx->Attrs().Get<int>("out_h"); int out_h = ctx->Attrs().Get<int>("out_h");
int out_w = ctx->Attrs().Get<int>("out_w"); int out_w = ctx->Attrs().Get<int>("out_w");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4"); PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");
if (ctx->HasInput("OutSize")) { if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
auto out_size_dim = ctx->GetInputDim("OutSize"); auto out_size_dim = ctx->GetInputDim("OutSize");
PADDLE_ENFORCE_EQ(out_size_dim.size(), 1, PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
"OutSize's dimension size must be 1"); "OutSize's dimension size must be 1");
PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2"); PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
ctx->ShareLoD("X", "Out");
return;
} }
std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w}); std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
ctx->SetOutputDim("Out", framework::make_ddim(dim_out)); ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
...@@ -52,35 +60,53 @@ class BilinearInterpOp : public framework::OperatorWithKernel { ...@@ -52,35 +60,53 @@ class BilinearInterpOp : public framework::OperatorWithKernel {
} }
}; };
class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker { class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("X", AddInput("X",
"The input tensor of bilinear interpolation, " "The input tensor of interpolate operator, "
"This is a 4-D tensor with shape of (N x C x h x w)"); "This is a 4-D tensor with shape of [N, C, H, w].");
AddInput("OutSize", AddInput("OutSize",
"This is a 1-D tensor with two number. " "This is a 1-D tensor with two numbers to specify output size. "
"The first number is height and the second number is width.") "The first number is height and the second number is width.")
.AsDispensable(); .AsDispensable();
AddOutput("Out", "The dimension of output is (N x C x out_h x out_w)"); AddOutput("Out",
"The output tensor of interpolate operator, "
AddAttr<int>("out_h", "output height of bilinear interpolation op."); "This is a 4-D tensor with shape of [N, C, H, W].");
AddAttr<int>("out_w", "output width of bilinear interpolation op.");
AddAttr<int>("out_h", "output height of interpolate op.");
AddAttr<int>("out_w", "output width of interpolate op.");
AddAttr<std::string>(
"interp_method",
"(string), interpolation method, can be \"bilinear\" for "
"bilinear interpolation and \"nearest\" for nearest "
"neighbor interpolation.");
AddComment(R"DOC( AddComment(R"DOC(
This operator samples input X to given output shape by using specified
interpolation method, the interpolation methods can be \"nearest\"
for nearest neighbor interpolation and \"bilinear\" for bilinear
interpolation.
Nearest neighbor interpolation is to perform nearest neighbor interpolation
in both the 3rd dimention(in height direction) and the 4th dimention(in width
direction) on input tensor.
Bilinear interpolation is an extension of linear interpolation for Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
The key idea is to perform linear interpolation first in one For details of nearest neighbor interpolation, please refer to Wikipedia:
direction, and then again in the other direction. https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
For details, please refer to Wikipedia: For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation https://en.wikipedia.org/wiki/Bilinear_interpolation
)DOC"); )DOC");
} }
}; };
class BilinearInterpOpGrad : public framework::OperatorWithKernel { class InterpolateOpGrad : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
...@@ -106,11 +132,11 @@ class BilinearInterpOpGrad : public framework::OperatorWithKernel { ...@@ -106,11 +132,11 @@ class BilinearInterpOpGrad : public framework::OperatorWithKernel {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OPERATOR(bilinear_interp, ops::BilinearInterpOp, REGISTER_OPERATOR(interpolate, ops::InterpolateOp, ops::InterpolateOpMaker,
ops::BilinearInterpOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>); paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(bilinear_interp_grad, ops::BilinearInterpOpGrad); REGISTER_OPERATOR(interpolate_grad, ops::InterpolateOpGrad);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::BilinearInterpKernel<float>, REGISTER_OP_CPU_KERNEL(interpolate, ops::InterpolateKernel<float>,
ops::BilinearInterpKernel<uint8_t>); ops::InterpolateKernel<double>,
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateKernel<uint8_t>);
ops::BilinearInterpGradKernel<float>); REGISTER_OP_CPU_KERNEL(interpolate_grad, ops::InterpolateGradKernel<float>,
ops::InterpolateGradKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
...@@ -9,7 +9,8 @@ ...@@ -9,7 +9,8 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/bilinear_interp_op.h" #include <string>
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/platform/cuda_primitives.h" #include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle { namespace paddle {
...@@ -17,15 +18,72 @@ namespace operators { ...@@ -17,15 +18,72 @@ namespace operators {
using framework::Tensor; using framework::Tensor;
template <typename T>
__global__ void KeNearestNeighborInterpFw(
const T* in, const size_t in_img_h, const size_t in_img_w,
const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
const size_t out_img_w, const size_t output_h, const size_t output_w,
const size_t num_channels, const float ratio_h, const float ratio_w) {
int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (; tid < nthreads; tid += stride) {
int out_id_h = tid / output_w;
int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels;
int out_img_size = output_w / num_channels;
int channel_id = out_id_w / out_img_size;
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
int in_img_idy = static_cast<int>(ratio_h * out_img_idy + 0.5);
int out_img_idx = tid % out_img_w;
int in_img_idx = static_cast<int>(ratio_w * out_img_idx + 0.5);
out[tid] = in[out_id_h * input_w + channel_id * in_img_size +
in_img_idy * in_img_w + in_img_idx];
}
}
template <typename T>
__global__ void KeNearestNeighborInterpBw(
T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
const size_t input_w, const T* out, const size_t out_img_h,
const size_t out_img_w, const size_t output_h, const size_t output_w,
const size_t num_channels, const float ratio_h, const float ratio_w) {
int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (; tid < nthreads; tid += stride) {
int out_id_h = tid / output_w;
int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels;
int out_img_size = output_w / num_channels;
int channel_id = out_id_w / out_img_size;
int out_img_idy = (out_id_w % out_img_size) / out_img_w;
int in_img_idy = static_cast<int>(ratio_h * out_img_idy + 0.5);
int out_img_idx = tid % out_img_w;
int in_img_idx = static_cast<int>(ratio_w * out_img_idx + 0.5);
T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
in_img_idy * in_img_w + in_img_idx];
const T out_pos = out[out_id_h * output_w + out_id_w];
platform::CudaAtomicAdd(in_pos, out_pos);
}
}
template <typename T> template <typename T>
__global__ void KeBilinearInterpFw( __global__ void KeBilinearInterpFw(
const T* in, const size_t in_img_h, const size_t in_img_w, const T* in, const size_t in_img_h, const size_t in_img_w,
const size_t input_h, const size_t input_w, T* out, const size_t out_img_h, const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
const size_t out_img_w, const size_t output_h, const size_t output_w, const size_t out_img_w, const size_t output_h, const size_t output_w,
const size_t num_channels, const T ratio_h, const T ratioW) { const size_t num_channels, const float ratio_h, const float ratio_w) {
int nthreads = output_h * output_w; int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x; int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < nthreads) { int stride = blockDim.x * gridDim.x;
for (; tid < nthreads; tid += stride) {
int out_id_h = tid / output_w; int out_id_h = tid / output_w;
int out_id_w = tid % output_w; int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels; int in_img_size = input_w / num_channels;
...@@ -39,9 +97,9 @@ __global__ void KeBilinearInterpFw( ...@@ -39,9 +97,9 @@ __global__ void KeBilinearInterpFw(
T h2lambda = 1.f - h1lambda; T h2lambda = 1.f - h1lambda;
int out_img_idx = tid % out_img_w; int out_img_idx = tid % out_img_w;
int in_img_idx = ratioW * out_img_idx; int in_img_idx = ratio_w * out_img_idx;
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0; int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
T w1lambda = ratioW * out_img_idx - in_img_idx; T w1lambda = ratio_w * out_img_idx - in_img_idx;
T w2lambda = 1.f - w1lambda; T w2lambda = 1.f - w1lambda;
const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size + const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
...@@ -60,10 +118,11 @@ __global__ void KeBilinearInterpBw( ...@@ -60,10 +118,11 @@ __global__ void KeBilinearInterpBw(
T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h, T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
const size_t input_w, const T* out, const size_t out_img_h, const size_t input_w, const T* out, const size_t out_img_h,
const size_t out_img_w, const size_t output_h, const size_t output_w, const size_t out_img_w, const size_t output_h, const size_t output_w,
const size_t num_channels, const T ratio_h, const T ratioW) { const size_t num_channels, const T ratio_h, const T ratio_w) {
int nthreads = output_h * output_w; int nthreads = output_h * output_w;
int tid = blockIdx.x * blockDim.x + threadIdx.x; int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < nthreads) { int stride = blockDim.x * gridDim.x;
for (; tid < nthreads; tid += stride) {
int out_id_h = tid / output_w; int out_id_h = tid / output_w;
int out_id_w = tid % output_w; int out_id_w = tid % output_w;
int in_img_size = input_w / num_channels; int in_img_size = input_w / num_channels;
...@@ -77,122 +136,146 @@ __global__ void KeBilinearInterpBw( ...@@ -77,122 +136,146 @@ __global__ void KeBilinearInterpBw(
T h2lambda = 1.f - h1lambda; T h2lambda = 1.f - h1lambda;
int out_img_idx = tid % out_img_w; int out_img_idx = tid % out_img_w;
int in_img_idx = ratioW * out_img_idx; int in_img_idx = ratio_w * out_img_idx;
int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0; int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
T w1lambda = ratioW * out_img_idx - in_img_idx; T w1lambda = ratio_w * out_img_idx - in_img_idx;
T w2lambda = 1.f - w1lambda; T w2lambda = 1.f - w1lambda;
T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size + T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
in_img_idy * in_img_w + in_img_idx]; in_img_idy * in_img_w + in_img_idx];
const T* out_pos = &out[out_id_h * output_w + out_id_w]; const T* out_pos = &out[out_id_h * output_w + out_id_w];
atomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]); platform::CudaAtomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]);
atomicAdd(&in_pos[w_id], h2lambda * w1lambda * out_pos[0]); platform::CudaAtomicAdd(&in_pos[w_id], h2lambda * w1lambda * out_pos[0]);
atomicAdd(&in_pos[h_id * in_img_w], h1lambda * w2lambda * out_pos[0]); platform::CudaAtomicAdd(&in_pos[h_id * in_img_w],
atomicAdd(&in_pos[h_id * in_img_w + w_id], h1lambda * w2lambda * out_pos[0]);
platform::CudaAtomicAdd(&in_pos[h_id * in_img_w + w_id],
h1lambda * w1lambda * out_pos[0]); h1lambda * w1lambda * out_pos[0]);
} }
} }
template <typename T> template <typename T>
class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> { class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"This kernel only runs on GPU device."); "This kernel only runs on GPU device.");
auto* input_t = ctx.Input<Tensor>("X"); // float tensor auto* input = ctx.Input<Tensor>("X");
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor auto* output = ctx.Output<Tensor>("Out");
auto* input = input_t->data<T>(); auto* input_data = input->data<T>();
auto interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
auto out_dims = output_t->dims(); auto out_size = ctx.Input<Tensor>("OutSize");
auto out_size_t = ctx.Input<Tensor>("OutSize"); if (out_size != nullptr) {
if (out_size_t != nullptr) {
Tensor sizes; Tensor sizes;
framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes); framework::TensorCopy(*out_size, platform::CPUPlace(), &sizes);
auto size_data = sizes.data<int>(); auto size_data = sizes.data<int>();
out_h = size_data[0]; out_h = size_data[0];
out_w = size_data[1]; out_w = size_data[1];
} }
auto* output = output_t->mutable_data<T>(
{out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());
int batch_size = input_t->dims()[0]; int n = input->dims()[0];
int channels = input_t->dims()[1]; int c = input->dims()[1];
int in_h = input_t->dims()[2]; int in_h = input->dims()[2];
int in_w = input_t->dims()[3]; int in_w = input->dims()[3];
auto* output_data =
output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
int in_hw = in_h * in_w; int in_hw = in_h * in_w;
int out_hw = out_h * out_w; int out_hw = out_h * out_w;
int in_chw = channels * in_hw; int in_chw = c * in_hw;
int out_chw = channels * out_hw; int out_chw = c * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f; float ratio_h =
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f; (out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) { if (in_h == out_h && in_w == out_w) {
memcpy(output, input, input_t->numel() * sizeof(T)); framework::TensorCopy(*input, ctx.GetPlace(), output);
} else { return;
int threadNum = batch_size * out_chw; }
int blocks = (threadNum + 1024 - 1) / 1024;
int pixelNum = n * out_chw;
int grid_dim = (pixelNum + 512 - 1) / 512;
grid_dim = grid_dim > 8 ? 8 : grid_dim;
if ("nearest" == interp_method) {
KeNearestNeighborInterpFw<
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
input_data, in_h, in_w, n, in_chw, output_data, out_h, out_w, n,
out_chw, c, ratio_h, ratio_w);
} else if ("bilinear" == interp_method) {
KeBilinearInterpFw< KeBilinearInterpFw<
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>( T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
input, in_h, in_w, batch_size, in_chw, output, out_h, out_w, input_data, in_h, in_w, n, in_chw, output_data, out_h, out_w, n,
batch_size, out_chw, channels, ratio_h, ratio_w); out_chw, c, ratio_h, ratio_w);
} }
} }
}; };
template <typename T> template <typename T>
class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> { class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X")); auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out")); auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* d_output = d_output_t->data<T>(); auto* output_grad_data = output_grad->data<T>();
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace()); auto* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
auto& device_ctx = auto& device_ctx =
ctx.template device_context<platform::CUDADeviceContext>(); ctx.template device_context<platform::CUDADeviceContext>();
math::SetConstant<platform::CUDADeviceContext, T> zero; math::SetConstant<platform::CUDADeviceContext, T> zero;
zero(device_ctx, d_input_t, static_cast<T>(0.0)); zero(device_ctx, input_grad, static_cast<T>(0.0));
auto interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
auto out_size = ctx.Input<Tensor>("OutSize");
auto out_size_t = ctx.Input<Tensor>("OutSize"); if (out_size != nullptr) {
if (out_size_t != nullptr) {
Tensor sizes; Tensor sizes;
framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes); framework::TensorCopy(*out_size, platform::CPUPlace(), &sizes);
auto size_data = sizes.data<int>(); auto size_data = sizes.data<int>();
out_h = size_data[0]; out_h = size_data[0];
out_w = size_data[1]; out_w = size_data[1];
} }
int batch_size = d_input_t->dims()[0]; int n = input_grad->dims()[0];
int channels = d_input_t->dims()[1]; int c = input_grad->dims()[1];
int in_h = d_input_t->dims()[2]; int in_h = input_grad->dims()[2];
int in_w = d_input_t->dims()[3]; int in_w = input_grad->dims()[3];
int in_hw = in_h * in_w; int in_hw = in_h * in_w;
int out_hw = out_h * out_w; int out_hw = out_h * out_w;
int in_chw = channels * in_hw; int in_chw = c * in_hw;
int out_chw = channels * out_hw; int out_chw = c * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f; float ratio_h =
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f; (out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) { if (in_h == out_h && in_w == out_w) {
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T)); framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
} else { return;
int threadNum = batch_size * out_chw; }
int blocks = (threadNum + 1024 - 1) / 1024;
int pixelNum = n * out_chw;
int grid_dim = (pixelNum + 512 - 1) / 512;
grid_dim = grid_dim > 8 ? 8 : grid_dim;
if ("nearest" == interp_method) {
KeNearestNeighborInterpBw<
T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
input_grad_data, in_h, in_w, n, in_chw, output_grad_data, out_h,
out_w, n, out_chw, c, ratio_h, ratio_w);
} else if ("bilinear" == interp_method) {
KeBilinearInterpBw< KeBilinearInterpBw<
T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>( T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
d_input, in_h, in_w, batch_size, in_chw, d_output, out_h, out_w, input_grad_data, in_h, in_w, n, in_chw, output_grad_data, out_h,
batch_size, out_chw, channels, ratio_h, ratio_w); out_w, n, out_chw, c, ratio_h, ratio_w);
} }
} }
}; };
...@@ -201,7 +284,9 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> { ...@@ -201,7 +284,9 @@ class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(bilinear_interp, REGISTER_OP_CUDA_KERNEL(interpolate, ops::InterpolateOpCUDAKernel<float>,
ops::BilinearInterpOpCUDAKernel<float>); ops::InterpolateOpCUDAKernel<double>,
REGISTER_OP_CUDA_KERNEL(bilinear_interp_grad, ops::InterpolateOpCUDAKernel<int>);
ops::BilinearInterpGradOpCUDAKernel<float>); REGISTER_OP_CUDA_KERNEL(interpolate_grad,
ops::InterpolateGradOpCUDAKernel<float>,
ops::InterpolateGradOpCUDAKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;
template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
const float ratio_h, const float ratio_w,
const int n, const int c,
const int out_h, const int out_w) {
auto input_t = EigenTensor<T, 4>::From(input);
auto output_t = EigenTensor<T, 4>::From(*output);
for (int k = 0; k < out_h; k++) { // loop for images
int in_k = static_cast<int>(ratio_h * k + 0.5);
for (int l = 0; l < out_w; l++) {
int in_l = static_cast<int>(ratio_w * l + 0.5);
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
}
}
}
}
}
template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
const float ratio_h, const float ratio_w,
const int in_h, const int in_w, const int n,
const int c, const int out_h,
const int out_w) {
auto input_t = EigenTensor<T, 4>::From(input);
auto output_t = EigenTensor<T, 4>::From(*output);
for (int k = 0; k < out_h; k++) { // loop for images
int y_n = static_cast<int>(ratio_h * k);
int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
float d_n = ratio_h * k - y_n;
float d_s = 1.f - d_n;
for (int l = 0; l < out_w; l++) {
int x_w = static_cast<int>(ratio_w * l);
int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
float d_w = ratio_w * l - x_w;
float d_e = 1.f - d_w;
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
// bilinear interpolation
output_t(i, j, k, l) = input_t(i, j, y_n, x_w) * d_s * d_e +
input_t(i, j, y_s, x_w) * d_n * d_e +
input_t(i, j, y_n, x_e) * d_s * d_w +
input_t(i, j, y_s, x_e) * d_n * d_w;
}
}
}
}
}
template <typename T>
static void NearestNeighborInterpolateGrad(const Tensor& output_grad,
Tensor* input_grad,
const float ratio_h,
const float ratio_w, const int n,
const int c, const int out_h,
const int out_w) {
auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
for (int k = 0; k < out_h; k++) { // loop for images
int in_k = static_cast<int>(ratio_h * k + 0.5);
for (int l = 0; l < out_w; l++) {
int in_l = static_cast<int>(ratio_w * l + 0.5);
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
}
}
}
}
}
template <typename T>
static void BilinearInterpolationGrad(const Tensor& output_grad,
Tensor* input_grad, const float ratio_h,
const float ratio_w, const int in_h,
const int in_w, const int n, const int c,
const int out_h, const int out_w) {
auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
for (int k = 0; k < out_h; k++) { // loop for images
int y_n = static_cast<int>(ratio_h * k);
int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
float d_n = ratio_h * k - y_n;
float d_s = 1.f - d_n;
for (int l = 0; l < out_w; l++) {
int x_w = static_cast<int>(ratio_w * l);
int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
float d_w = ratio_w * l - x_w;
float d_e = 1.f - d_w;
for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < c; j++) { // loop for channels
// bilinear interpolation grad
const T grad = output_grad_t(i, j, k, l);
input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
}
}
}
}
}
template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
std::string interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = out_size->data<int>();
out_h = out_size_data[0];
out_w = out_size_data[1];
}
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero;
zero(device_ctx, output, static_cast<T>(0.0));
if (in_h == out_h && in_w == out_w) {
framework::TensorCopy(*input, ctx.GetPlace(), output);
return;
}
float ratio_h =
(out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if ("bilinear" == interp_method) {
BilinearInterpolation<T>(*input, output, ratio_h, ratio_w, in_h, in_w, n,
c, out_h, out_w);
} else if ("nearest" == interp_method) {
NearestNeighborInterpolate<T>(*input, output, ratio_h, ratio_w, n, c,
out_h, out_w);
}
}
};
template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
std::string interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = out_size->data<int>();
out_h = out_size_data[0];
out_w = out_size_data[1];
}
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero;
zero(device_ctx, input_grad, static_cast<T>(0.0));
if (in_h == out_h && in_w == out_w) {
framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
return;
}
float ratio_h =
(out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if ("bilinear" == interp_method) {
BilinearInterpolationGrad<T>(*output_grad, input_grad, ratio_h, ratio_w,
in_h, in_w, n, c, out_h, out_w);
} else if ("nearest" == interp_method) {
NearestNeighborInterpolateGrad<T>(*output_grad, input_grad, ratio_h,
ratio_w, n, c, out_h, out_w);
}
}
};
} // namespace operators
} // namespace paddle
...@@ -101,6 +101,7 @@ __all__ = [ ...@@ -101,6 +101,7 @@ __all__ = [
'image_resize', 'image_resize',
'image_resize_short', 'image_resize_short',
'resize_bilinear', 'resize_bilinear',
'resize_nearest',
'gather', 'gather',
'scatter', 'scatter',
'sequence_scatter', 'sequence_scatter',
...@@ -5640,7 +5641,8 @@ def image_resize(input, ...@@ -5640,7 +5641,8 @@ def image_resize(input,
out_shape=None, out_shape=None,
scale=None, scale=None,
name=None, name=None,
resample='BILINEAR'): resample='BILINEAR',
actual_shape=None):
""" """
**Resize a Batch of Images** **Resize a Batch of Images**
...@@ -5650,6 +5652,7 @@ def image_resize(input, ...@@ -5650,6 +5652,7 @@ def image_resize(input,
Supporting resample methods: Supporting resample methods:
'BILINEAR' : Bilinear interpolation 'BILINEAR' : Bilinear interpolation
'NEAREST' : Nearest neighbor interpolation
Args: Args:
input (Variable): The input tensor of image resize layer, input (Variable): The input tensor of image resize layer,
...@@ -5664,25 +5667,51 @@ def image_resize(input, ...@@ -5664,25 +5667,51 @@ def image_resize(input,
Default: None Default: None
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
resample(str): The resample method. It can only be 'BILINEAR' currently. resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
currently.
Default: 'BILINEAR' Default: 'BILINEAR'
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
Returns: Returns:
Variable: The output is a 4-D tensor of the shape Variable: The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w). (num_batches, channls, out_h, out_w).
Raises:
TypeError: out_shape should be a list or tuple or Variable.
TypeError: actual_shape should either be Variable or None.
ValueError: The 'resample' of image_resize can only be 'BILINEAR'
or 'NEAREST' currently.
ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2.
Examples: Examples:
.. code-block:: python .. code-block:: python
out = fluid.layers.image_resize(input, out_shape=[12, 12]) out = fluid.layers.image_resize(input, out_shape=[12, 12])
""" """
resample_methods = {'BILINEAR': 'bilinear_interp'} resample_methods = {
'BILINEAR': 'bilinear',
'NEAREST': 'nearest',
}
if resample not in resample_methods: if resample not in resample_methods:
raise ValueError( raise ValueError(
"The 'resample' of image_resize can only be 'BILINEAR' currently.") "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
)
if out_shape is None and scale is None: if out_shape is None and scale is None:
raise ValueError("One of out_shape and scale must not be None") raise ValueError("One of out_shape and scale must not be None.")
helper = LayerHelper('bilinear_interp', **locals()) helper = LayerHelper('interpolate', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
def _is_list_or_turple_(data): def _is_list_or_turple_(data):
...@@ -5692,33 +5721,106 @@ def image_resize(input, ...@@ -5692,33 +5721,106 @@ def image_resize(input,
out_w = 0 out_w = 0
inputs = {"X": input} inputs = {"X": input}
if out_shape is not None: if out_shape is not None:
if not (_is_list_or_turple_(out_shape) and if isinstance(out_shape, Variable):
len(out_shape) == 2) and not isinstance(out_shape, Variable): warnings.warn("out_shape as Variable type is deprecated, \
raise ValueError('out_shape should be a list or tuple or variable') it is recommended to use actual_shape instead of \
if _is_list_or_turple_(out_shape): out_shape to specify output shape dynamically.")
inputs['OutSize'] = out_shape
elif not (_is_list_or_turple_(out_shape)):
raise TypeError("out_shape should be a list or tuple or Variable.")
elif len(out_shape) != 2:
raise ValueError("out_shape length should be 2.")
out_shape = list(map(int, out_shape)) out_shape = list(map(int, out_shape))
out_h = out_shape[0] out_h = out_shape[0]
out_w = out_shape[1] out_w = out_shape[1]
else:
inputs['OutSize'] = out_shape
else: else:
out_h = int(input.shape[2] * scale) out_h = int(input.shape[2] * scale)
out_w = int(input.shape[3] * scale) out_w = int(input.shape[3] * scale)
if isinstance(actual_shape, Variable):
inputs["OutSize"] = actual_shape
elif actual_shape is not None:
raise TypeError("actual_shape should either be Variable or None.")
out = helper.create_variable_for_type_inference(dtype) out = helper.create_variable_for_type_inference(dtype)
helper.append_op( helper.append_op(
type=resample_methods[resample], type='interpolate',
inputs=inputs, inputs=inputs,
outputs={"Out": out}, outputs={"Out": out},
attrs={"out_h": out_h, attrs={
"out_w": out_w}) "out_h": out_h,
"out_w": out_w,
"interp_method": resample_methods[resample]
})
return out return out
@templatedoc(op_type="bilinear_interp") @templatedoc(op_type="interpolate")
def resize_bilinear(input, out_shape=None, scale=None, name=None): def resize_bilinear(input,
out_shape=None,
scale=None,
name=None,
actual_shape=None):
""" """
${comment} Resize input by performing bilinear interpolation based on given
output shape which specified by actual_shape, out_shape and scale
in priority order.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
Args:
input(${x_type}): ${x_comment}.
out_shape(${out_size_type}): ${out_size_comment}.
scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has
a higher priority than scale. Default: None.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
Returns:
${out_comment}.
"""
return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
@templatedoc(op_type="interpolate")
def resize_nearest(input,
out_shape=None,
scale=None,
name=None,
actual_shape=None):
"""
Resize input by performing nearest neighbor interpolation in both the
3rd dimention(in height direction) and the 4th dimention(in width
direction) based on given output shape which specified by actual_shape,
out_shape and scale in priority order.
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Args: Args:
input(${x_type}): ${x_comment}. input(${x_type}): ${x_comment}.
...@@ -5730,12 +5832,25 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None): ...@@ -5730,12 +5832,25 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
a higher priority than scale. Default: None. a higher priority than scale. Default: None.
name(str|None): The output variable name. name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
Returns: Returns:
${out_comment}. ${out_comment}.
""" """
return image_resize(input, out_shape, scale, name, 'BILINEAR') return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
def image_resize_short(input, out_short_len, resample='BILINEAR'): def image_resize_short(input, out_short_len, resample='BILINEAR'):
......
...@@ -20,10 +20,44 @@ from op_test import OpTest ...@@ -20,10 +20,44 @@ from op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
def bilinear_interp_np(input, out_h, out_w, out_size): def nearest_neighbor_interp_np(X,
out_h,
out_w,
out_size=None,
actual_shape=None):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if out_size is not None: if out_size is not None:
out_h = out_size[0] out_h = out_size[0]
out_w = out_size[1] out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
n, c, in_h, in_w = X.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0)
if out_w > 1:
ratio_w = (in_w - 1.0) / (out_w - 1.0)
out = np.zeros((n, c, out_h, out_w))
for i in range(out_h):
in_i = int(ratio_h * i + 0.5)
for j in range(out_w):
in_j = int(ratio_w * j + 0.5)
out[:, :, i, j] = X[:, :, in_i, in_j]
return out.astype(X.dtype)
def bilinear_interp_np(input, out_h, out_w, out_size=None, actual_shape=None):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
batch_size, channel, in_h, in_w = input.shape batch_size, channel, in_h, in_w = input.shape
if out_h > 1: if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0) ratio_h = (in_h - 1.0) / (out_h - 1.0)
...@@ -53,18 +87,32 @@ def bilinear_interp_np(input, out_h, out_w, out_size): ...@@ -53,18 +87,32 @@ def bilinear_interp_np(input, out_h, out_w, out_size):
return out.astype(input.dtype) return out.astype(input.dtype)
class TestBilinearInterpOp(OpTest): INTERPOLATE_FUNCS = {
'bilinear': bilinear_interp_np,
'nearest': nearest_neighbor_interp_np,
}
class TestInterpolateOp(OpTest):
def setUp(self): def setUp(self):
self.out_size = None self.out_size = None
self.actual_shape = None
self.init_test_case() self.init_test_case()
self.op_type = "bilinear_interp" self.op_type = "interpolate"
input_np = np.random.random(self.input_shape).astype("float32") input_np = np.random.random(self.input_shape).astype("float32")
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w,
self.out_size) output_np = INTERPOLATE_FUNCS[self.interp_method](
input_np, self.out_h, self.out_w, self.out_size, self.actual_shape)
self.inputs = {'X': input_np} self.inputs = {'X': input_np}
if self.out_size is not None: if self.out_size is not None:
self.inputs['OutSize'] = self.out_size self.inputs['OutSize'] = self.out_size
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w} if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method
}
self.outputs = {'Out': output_np} self.outputs = {'Out': output_np}
def test_check_output(self): def test_check_output(self):
...@@ -74,90 +122,209 @@ class TestBilinearInterpOp(OpTest): ...@@ -74,90 +122,209 @@ class TestBilinearInterpOp(OpTest):
self.check_grad(['X'], 'Out', in_place=True) self.check_grad(['X'], 'Out', in_place=True)
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 4, 4] self.input_shape = [2, 3, 4, 4]
self.out_h = 2 self.out_h = 2
self.out_w = 2 self.out_w = 2
self.out_size = np.array([3, 3]).astype("int32") self.out_size = np.array([3, 3]).astype("int32")
class TestCase1(TestBilinearInterpOp): class TestBilinearInterpCase1(TestInterpolateOp):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 1 self.out_h = 1
self.out_w = 1 self.out_w = 1
class TestCase2(TestBilinearInterpOp): class TestBilinearInterpCase2(TestInterpolateOp):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6] self.input_shape = [3, 3, 9, 6]
self.out_h = 12 self.out_h = 12
self.out_w = 12 self.out_w = 12
class TestCase3(TestBilinearInterpOp): class TestBilinearInterpCase3(TestInterpolateOp):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 128, 64] self.input_shape = [1, 1, 128, 64]
self.out_h = 64 self.out_h = 64
self.out_w = 128 self.out_w = 128
class TestCase4(TestBilinearInterpOp): class TestBilinearInterpCase4(TestInterpolateOp):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 1 self.out_h = 1
self.out_w = 1 self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32") self.out_size = np.array([2, 2]).astype("int32")
class TestCase5(TestBilinearInterpOp): class TestBilinearInterpCase5(TestInterpolateOp):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6] self.input_shape = [3, 3, 9, 6]
self.out_h = 12 self.out_h = 12
self.out_w = 12 self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32") self.out_size = np.array([11, 11]).astype("int32")
class TestCase6(TestBilinearInterpOp): class TestBilinearInterpCase6(TestInterpolateOp):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 128, 64] self.input_shape = [1, 1, 128, 64]
self.out_h = 64 self.out_h = 64
self.out_w = 128 self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32") self.out_size = np.array([65, 129]).astype("int32")
class TestBilinearInterpOpUint8(OpTest): class TestBilinearInterpActualShape(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.out_size = np.array([66, 40]).astype("int32")
class TestBilinearInterpBigScale(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 4, 64, 32]
self.out_h = 100
self.out_w = 50
self.out_size = np.array([101, 51]).astype('int32')
class TestInterpolateOpUint8(OpTest):
def setUp(self): def setUp(self):
self.out_size = None self.out_size = None
self.actual_shape = None
self.init_test_case() self.init_test_case()
self.op_type = "bilinear_interp" self.op_type = "interpolate"
input_np = np.random.randint( input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8") low=0, high=256, size=self.input_shape).astype("uint8")
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w, output_np = INTERPOLATE_FUNCS[self.interp_method](
self.out_size) input_np, self.out_h, self.out_w, self.out_size, self.actual_shape)
self.inputs = {'X': input_np} self.inputs = {'X': input_np}
if self.out_size is not None: if self.out_size is not None:
self.inputs['OutSize'] = self.out_size self.inputs['OutSize'] = self.out_size
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w} self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method
}
self.outputs = {'Out': output_np} self.outputs = {'Out': output_np}
def test_check_output(self): def test_check_output(self):
self.check_output_with_place(place=core.CPUPlace(), atol=1) self.check_output_with_place(place=core.CPUPlace(), atol=1)
def init_test_case(self): def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 3, 9, 6] self.input_shape = [1, 3, 9, 6]
self.out_h = 10 self.out_h = 10
self.out_w = 9 self.out_w = 9
class TestCase1Uint8(TestBilinearInterpOpUint8): class TestBilinearInterpCase1Uint8(TestInterpolateOpUint8):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 128, 64]
self.out_h = 120
self.out_w = 50
class TestBilinearInterpCase2Uint8(TestInterpolateOpUint8):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
self.out_h = 5
self.out_w = 13
self.out_size = np.array([6, 15]).astype("int32")
class TestNearestNeighborInterpCase1(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
class TestNearestNeighborInterpCase2(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
class TestNearestNeighborInterpCase3(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
class TestNearestNeighborInterpCase4(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32")
class TestNearestNeighborInterpCase5(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32")
class TestNearestNeighborInterpCase6(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32")
class TestNearestNeighborInterpActualShape(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.out_size = np.array([66, 40]).astype("int32")
class TestNearestNeighborInterpBigScale(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 4, 64, 32]
self.out_h = 100
self.out_w = 50
self.out_size = np.array([101, 51]).astype('int32')
class TestNearestNeighborInterpCase1Uint8(TestInterpolateOpUint8):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [2, 3, 128, 64] self.input_shape = [2, 3, 128, 64]
self.out_h = 120 self.out_h = 120
self.out_w = 50 self.out_w = 50
class TestCase2Uint8(TestBilinearInterpOpUint8): class TestNearestNeighborInterpCase2Uint8(TestInterpolateOpUint8):
def init_test_case(self): def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 5 self.out_h = 5
self.out_w = 13 self.out_w = 13
......
...@@ -496,6 +496,16 @@ class TestBook(unittest.TestCase): ...@@ -496,6 +496,16 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(output) self.assertIsNotNone(output)
print(str(program)) print(str(program))
def test_resize_nearest(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
output = layers.resize_nearest(x, out_shape=[12, 12])
self.assertIsNotNone(output)
output = layers.resize_nearest(x, scale=3)
self.assertIsNotNone(output)
print(str(program))
def test_polygon_box_transform(self): def test_polygon_box_transform(self):
program = Program() program = Program()
with program_guard(program): with program_guard(program):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册