Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ed55f1b9
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ed55f1b9
编写于
1月 05, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
transpiler_split_tensor
上级
59116442
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
148 addition
and
93 deletion
+148
-93
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+148
-93
未找到文件。
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
ed55f1b9
from
__future__
import
print_function
import
framework
from
framework
import
Program
,
default_main_program
,
Parameter
,
Variable
import
optimizer
from
layer_helper
import
LayerHelper
from
distributed_spliter
import
*
def
hash_name_to_server
(
params_grads
,
pserver_endpoints
):
"""
:param param_grads:
:return: a map of pserver endpoint ->
params -> [param list]
grads -> [grad list]
"""
def
_hash_param
(
param_name
,
total
):
return
hash
(
param_name
)
%
total
param_grad_map
=
dict
()
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
and
grad
is
not
None
:
server_id
=
_hash_param
(
param
.
name
,
len
(
pserver_endpoints
))
server_for_param
=
pserver_endpoints
[
server_id
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
return
param_grad_map
def
round_robin
(
params_grads
,
pserver_endpoints
):
assert
(
len
(
params_grads
)
>
len
(
pserver_endpoints
))
class
VarBlock
:
def
__init__
(
self
,
varname
,
offset
,
size
):
self
.
varname
=
varname
# NOTE: real offset is offset * size
self
.
offset
=
offset
self
.
size
=
size
param_grad_map
=
dict
()
pserver_idx
=
0
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
:
server_for_param
=
pserver_endpoints
[
pserver_idx
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
pserver_idx
+=
1
if
pserver_idx
>=
len
(
pserver_endpoints
):
pserver_idx
=
0
return
param_grad_map
def
__str__
(
self
):
return
"%s:%d:%d"
%
(
self
.
varname
,
self
.
offset
,
self
.
size
)
class
DistributeTranspiler
:
...
...
@@ -58,7 +27,6 @@ class DistributeTranspiler:
split_method
=
round_robin
):
"""
Transpile the program to a distributed data-parallelism programs.
The main_program will be transform to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
in to a parameter server program.
...
...
@@ -66,45 +34,84 @@ class DistributeTranspiler:
Use different methods to split trainable varialbles to different
parameter servers.
Example to run:
exe = fluid.Executor(place)
t = fluid.DistributeTranspiler()
t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1)
pserver_endpoint = os.getenv("PSERVER")
if pserver_endpoint:
pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
else:
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
...
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param program: program to optimize, default default_main_program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:return: return a list of programs
"""
assert
(
callable
(
split_method
))
if
program
is
None
:
program
=
default_main_program
()
self
.
program
=
program
self
.
trainers
=
trainers
self
.
optimize_ops
=
optimize_ops
self
.
_optimize_distributed
(
optimize_ops
,
program
,
params_grads
,
pservers
=
pservers
,
trainers
=
trainers
,
split_method
=
split_method
)
# steps to transpile:
# 1. split variable to multiple blocks, align by product(dim[1:]) (width).
# 2. modify trainer program add split_op to each Grad.
# 3. append send_op to trainer.
# 4. append concat_op to trainer to update local weights.
# 5. create new program as parameter server.
# 5. create parameter server program by split_method generated endpoint->VarBlock
# 6. run compile time infershape for parameter server program
if
kwargs
.
has_key
(
"split_method"
):
split_method
=
kwargs
[
"split_method"
]
else
:
split_method
=
round_robin
pserver_endpoints
=
kwargs
[
"pservers"
].
split
(
","
)
grad2param
=
dict
()
for
param
,
grad
in
params_and_grads
:
grad2param
[
grad
.
name
()]
=
param
.
name
()
# step1
param_list
=
[
pg
[
0
]
for
pg
in
params_and_grads
]
grad_list
=
[
pg
[
1
]
for
pg
in
params_and_grads
]
# TODO: add split selected rows support
grad_blocks
=
_split_dense_variable
(
grad_list
,
len
(
pserver_endpoints
))
param_blocks
=
_split_dense_variable
(
param_list
,
len
(
pserver_endpoints
))
ep2gradblock
=
split_method
(
grad_blocks
,
pserver_endpoints
)
# self.param_grad_map
# step2
var2splited
=
self
.
_split_trainer_vars
(
program
,
grad_blocks
)
# step3
send_inputs
=
[]
send_outputs
=
[]
for
_
,
splited
in
var2splited
.
iteritems
():
send_inputs
.
extend
(
splited
)
send_outputs
=
self
.
_create_vars_from_blocklist
(
program
,
param_blocks
)
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_inputs
},
outputs
=
{
"Out"
:
send_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
epmap
})
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
block_map
=
dict
()
ret_vars
=
[]
for
block_str
in
block_list
:
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
if
not
block_map
.
has_key
(
varname
):
block_map
[
varname
]
=
[]
block_map
[
varname
].
append
((
long
(
offset
),
long
(
size
)))
for
varname
,
splited
in
block_map
.
iteritems
():
orig_var
=
program
.
global_block
().
vars
[
varname
]
for
block
in
splited
:
size
=
block
[
1
]
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
psersistable
=
False
,
dtype
=
orig_var
.
dtype
,
shape
=
[
1
,
size
])
# flattend splited var
ret_vars
.
append
(
var
)
return
ret_vars
def
_clone_param
(
self
,
block
,
v
):
assert
isinstance
(
v
,
Parameter
)
...
...
@@ -131,32 +138,80 @@ class DistributeTranspiler:
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
def
_optimize_distributed
(
self
,
optimize_ops
,
program
,
params_and_grads
,
**
kwargs
):
if
kwargs
.
has_key
(
"split_method"
):
split_method
=
kwargs
[
"split_method"
]
else
:
split_method
=
round_robin
def
_split_dense_variable
(
self
,
var_list
,
pserver_count
,
min_block_size
=
1024
,
max_block_size
=
1048576
):
"""
We may need to split dense tensor to one or several blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
assert
(
callable
(
split_method
))
pserver_endpoints
=
kwargs
[
"pservers"
].
split
(
","
)
self
.
param_grad_map
=
split_method
(
params_and_grads
,
pserver_endpoints
)
send_op_ordered_inputs
=
[]
send_op_ordered_outputs
=
[]
epmap
=
[]
for
ep
,
v
in
self
.
param_grad_map
.
iteritems
():
send_op_ordered_inputs
.
extend
(
v
[
"grads"
])
send_op_ordered_outputs
.
extend
(
v
[
"params"
])
for
i
in
v
[
"grads"
]:
epmap
.
append
(
ep
)
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_op_ordered_inputs
},
# inputs is a list of tensors to be send
outputs
=
{
"Out"
:
send_op_ordered_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
epmap
})
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
mininum block size is 1024. The max block size is used to prevent
too large block that may causing send error.
"""
block_sizes
=
[]
blocks
=
[]
for
grad
in
var_list
:
dim1
=
reduce
(
lambda
x
,
y
:
x
*
y
,
grad
.
shape
[
1
:])
grad_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
grad
.
shape
)
if
grad_numel
<
min_block_size
:
block_sizes
.
append
(
grad_numel
)
block_size
=
grad_numel
/
min_block_size
if
block_size
<
min_block_size
:
block_size
=
min_block_size
# align by dim1(width)
remains
=
block_size
%
dim1
if
remains
!=
0
:
block_size
+=
dim1
-
remains
block_sizes
.
append
(
block_size
)
num_blocks
=
grad_numel
/
block_size
print
(
"grad numel :%d, blocksize: %d"
%
grad_numel
,
block_size
)
for
block_id
in
xrange
(
num_blocks
):
block
=
VarBlock
(
grad
.
name
(),
block_id
,
block_size
)
blocks
.
append
(
str
(
block
))
return
blocks
def
_split_trainer_vars
(
self
,
program
,
gradblocks
,
params_and_grads
):
var2blocks
=
dict
()
splited
=
dict
()
for
block_str
in
gradblocks
:
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
if
not
var2blocks
.
has_key
(
varname
):
var2blocks
[
varname
]
=
[]
var2blocks
[
varname
].
append
((
long
(
offset
),
long
(
size
)))
for
varname
,
blocks
in
var2blocks
.
iteritems
():
orig_var
=
program
.
global_block
().
vars
[
varname
]
split_outs
=
[]
for
i
in
xrange
(
len
(
blocks
)):
size
=
blocks
[
i
][
1
]
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
psersistable
=
False
,
dtype
=
orig_var
.
dtype
,
shape
=
[
1
,
size
])
# flattend splited var
split_outs
.
append
(
var
)
splited
[
varname
]
=
split_outs
program
.
global_block
().
append_op
(
type
=
"split"
,
inputs
=
{
"X"
:
orig_var
},
outputs
=
{
"Out"
:
split_outs
},
attrs
=
{
"num"
:
len
(
blocks
)}
# assume split evenly
)
return
splited
def
_concat_trainer_vars
(
self
,
program
,
splited
):
for
varname
,
to_merge_list
in
splited
.
iteritems
():
orig_var
=
program
.
global_block
().
vars
[
varname
]
program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
to_merge_list
},
outputs
=
{
"Out"
:
orig_var
},
attrs
=
{})
def
get_trainer_program
(
self
):
# remove optimize ops and add a send op to main_program
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录