Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ea8655db
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ea8655db
编写于
4月 05, 2019
作者:
C
chengduo
提交者:
GitHub
4月 05, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add unit test for fuse_opt_ops (#16550)
* add unit test for fuse_opt_ops test=develop
上级
ad45a083
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
152 addition
and
283 deletion
+152
-283
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/simple_nets.py
python/paddle/fluid/tests/unittests/simple_nets.py
+66
-0
python/paddle/fluid/tests/unittests/test_fuse_all_reduce_pass.py
...paddle/fluid/tests/unittests/test_fuse_all_reduce_pass.py
+3
-42
python/paddle/fluid/tests/unittests/test_fuse_elewise_add_act_pass.py
...e/fluid/tests/unittests/test_fuse_elewise_add_act_pass.py
+3
-88
python/paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py
.../paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py
+3
-55
python/paddle/fluid/tests/unittests/test_parallel_executor_pg.py
...paddle/fluid/tests/unittests/test_parallel_executor_pg.py
+3
-28
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
...fluid/tests/unittests/test_parallel_executor_seresnext.py
+71
-35
python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py
...ests/unittests/test_parallel_executor_test_while_train.py
+1
-18
python/paddle/fluid/tests/unittests/test_pass_builder.py
python/paddle/fluid/tests/unittests/test_pass_builder.py
+1
-17
未找到文件。
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
ea8655db
...
...
@@ -118,6 +118,7 @@ endif()
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL
)
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
set_tests_properties
(
test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 450
)
set_tests_properties
(
test_parallel_executor_seresnext PROPERTIES TIMEOUT 740
)
py_test_modules
(
test_parallel_executor_transformer MODULES test_parallel_executor_transformer SERIAL
)
py_test_modules
(
test_layers MODULES test_layers ENVS FLAGS_cudnn_deterministic=1
)
if
(
NOT WIN32
)
...
...
python/paddle/fluid/tests/unittests/simple_nets.py
0 → 100644
浏览文件 @
ea8655db
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
numpy
as
np
def
simple_fc_net
(
use_feed
=
None
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
fc_with_batchnorm
(
use_feed
=
None
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
2
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
hidden
=
fluid
.
layers
.
batch_norm
(
input
=
hidden
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
init_data
(
batch_size
=
32
,
img_shape
=
[
784
],
label_range
=
9
):
np
.
random
.
seed
(
5
)
assert
isinstance
(
img_shape
,
list
)
input_shape
=
[
batch_size
]
+
img_shape
img
=
np
.
random
.
random
(
size
=
input_shape
).
astype
(
np
.
float32
)
label
=
np
.
array
(
[
np
.
random
.
randint
(
0
,
label_range
)
for
_
in
range
(
batch_size
)]).
reshape
(
(
-
1
,
1
)).
astype
(
"int64"
)
return
img
,
label
python/paddle/fluid/tests/unittests/test_fuse_all_reduce_pass.py
浏览文件 @
ea8655db
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
simple_nets
import
simple_fc_net
,
fc_with_batchnorm
,
init_data
from
parallel_executor_test_base
import
TestParallelExecutorBase
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -22,45 +22,6 @@ import unittest
import
os
def
simple_fc_net
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
fc_with_batchnorm
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
2
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
hidden
=
fluid
.
layers
.
batch_norm
(
input
=
hidden
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestMNIST
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
...
...
@@ -75,10 +36,10 @@ class TestMNIST(TestParallelExecutorBase):
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
def
_compare_fuse_all_reduce_ops
(
self
,
model
,
use_cuda
,
random_data
=
True
):
def
_compare_fuse_all_reduce_ops
(
self
,
model
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
(
random_data
)
img
,
label
=
init_data
(
)
def
_optimizer
(
learning_rate
=
1e-6
):
optimizer
=
fluid
.
optimizer
.
SGD
(
...
...
python/paddle/fluid/tests/unittests/test_fuse_elewise_add_act_pass.py
浏览文件 @
ea8655db
...
...
@@ -12,108 +12,23 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
simple_nets
import
simple_fc_net
,
fc_with_batchnorm
,
init_data
from
parallel_executor_test_base
import
TestParallelExecutorBase
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
as
np
import
paddle
import
paddle.dataset.mnist
as
mnist
import
unittest
import
os
MNIST_RECORDIO_FILE
=
"./mnist_test_pe.recordio"
def
simple_fc_net
(
use_feed
):
if
use_feed
:
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
else
:
reader
=
fluid
.
layers
.
open_files
(
filenames
=
[
MNIST_RECORDIO_FILE
],
shapes
=
[[
-
1
,
784
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
reader
=
fluid
.
layers
.
io
.
double_buffer
(
reader
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
fc_with_batchnorm
(
use_feed
):
if
use_feed
:
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
else
:
reader
=
fluid
.
layers
.
open_files
(
filenames
=
[
MNIST_RECORDIO_FILE
],
shapes
=
[[
-
1
,
784
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
reader
=
fluid
.
layers
.
io
.
double_buffer
(
reader
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
img
for
_
in
range
(
2
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
hidden
=
fluid
.
layers
.
batch_norm
(
input
=
hidden
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestMNIST
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
# Convert mnist to recordio file
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
reader
=
paddle
.
batch
(
mnist
.
train
(),
batch_size
=
4
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
# order is image and label
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
]),
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
),
],
place
=
fluid
.
CPUPlace
())
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
MNIST_RECORDIO_FILE
,
reader
,
feeder
)
def
_init_data
(
self
,
random
=
True
):
np
.
random
.
seed
(
5
)
if
random
:
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
else
:
img
=
np
.
ones
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
def
_compare_fuse_elewise_add_act_ops
(
self
,
model
,
use_cuda
,
random_data
=
True
):
def
_compare_fuse_elewise_add_act_ops
(
self
,
model
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
(
random_data
)
img
,
label
=
init_data
(
)
def
_optimizer
(
learning_rate
=
1e-6
):
optimizer
=
fluid
.
optimizer
.
SGD
(
...
...
python/paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py
浏览文件 @
ea8655db
...
...
@@ -11,78 +11,26 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
simple_nets
import
simple_fc_net
,
fc_with_batchnorm
,
init_data
from
parallel_executor_test_base
import
TestParallelExecutorBase
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
as
np
import
paddle
import
paddle.dataset.mnist
as
mnist
import
unittest
import
os
def
simple_fc_net
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
fc_with_batchnorm
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
2
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
hidden
=
fluid
.
layers
.
batch_norm
(
input
=
hidden
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestFuseAdamOps
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
_init_data
(
self
,
random
=
True
):
np
.
random
.
seed
(
5
)
if
random
:
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
else
:
img
=
np
.
ones
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
def
_compare_fused_optimizer_ops
(
self
,
model
,
use_cuda
,
random_data
=
True
,
optimizer
=
fluid
.
optimizer
.
Adam
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
(
random_data
)
img
,
label
=
init_data
(
)
not_fuse_op_first_loss
,
not_fuse_op_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
...
...
@@ -111,7 +59,7 @@ class TestFuseAdamOps(TestParallelExecutorBase):
def
test_batchnorm_fc_with_fuse_op
(
self
):
self
.
_compare_fused_optimizer_ops
(
fc_with_batchnorm
,
True
)
#
self._compare_fused_optimizer_ops(fc_with_batchnorm, False)
self
.
_compare_fused_optimizer_ops
(
fc_with_batchnorm
,
False
)
class
TestFuseSGDOps
(
TestFuseAdamOps
):
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_pg.py
浏览文件 @
ea8655db
...
...
@@ -21,25 +21,8 @@ import os
os
.
environ
[
'FLAGS_enable_parallel_graph'
]
=
str
(
1
)
import
paddle.fluid.core
as
core
import
os
import
paddle.fluid
as
fluid
from
parallel_executor_test_base
import
TestParallelExecutorBase
def
simple_fc_net
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'tanh'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
from
simple_nets
import
simple_fc_net
,
init_data
class
TestMNIST
(
TestParallelExecutorBase
):
...
...
@@ -47,19 +30,12 @@ class TestMNIST(TestParallelExecutorBase):
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
_init_data
(
self
):
np
.
random
.
seed
(
5
)
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
# simple_fc
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
()
img
,
label
=
init_data
()
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
...
...
@@ -75,8 +51,7 @@ class TestMNIST(TestParallelExecutorBase):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
()
img
,
label
=
init_data
()
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1
,
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
浏览文件 @
ea8655db
...
...
@@ -23,9 +23,11 @@ from paddle.fluid.initializer import init_on_cpu
from
paddle.fluid.layers.learning_rate_scheduler
import
_decay_step_counter
import
paddle.fluid.core
as
core
from
parallel_executor_test_base
import
TestParallelExecutorBase
from
simple_nets
import
init_data
import
unittest
import
math
import
numpy
as
np
from
functools
import
partial
# FIXME(zcd): If the neural net has dropout_op, the output of ParallelExecutor
# and Executor is different. Because, for ParallelExecutor, the dropout_op of
...
...
@@ -187,17 +189,6 @@ class TestResnet(TestParallelExecutorBase):
remove_dropout
=
False
remove_bn
=
False
def
_init_data
(
self
,
batch_size
=
2
,
random
=
True
):
np
.
random
.
seed
(
5
)
if
random
:
img
=
np
.
random
.
random
(
size
=
[
batch_size
]
+
img_shape
).
astype
(
np
.
float32
)
else
:
img
=
np
.
ones
(
shape
=
[
batch_size
]
+
img_shape
,
dtype
=
'float32'
)
label
=
[
np
.
random
.
randint
(
0
,
999
)
for
_
in
range
(
batch_size
)]
label
=
np
.
array
(
label
).
astype
(
np
.
int64
).
reshape
(
-
1
,
1
)
return
img
,
label
def
_compare_reduce_and_allreduce
(
self
,
model
,
use_cuda
,
...
...
@@ -209,7 +200,8 @@ class TestResnet(TestParallelExecutorBase):
global
remove_bn
remove_bn
=
True
img
,
label
=
self
.
_init_data
(
batch_size
=
batch_size
)
img
,
label
=
init_data
(
batch_size
=
batch_size
,
img_shape
=
img_shape
,
label_range
=
999
)
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
...
...
@@ -276,10 +268,12 @@ class TestResnet(TestParallelExecutorBase):
def
_check_resnet_convergence
(
self
,
model
,
use_cuda
=
True
,
use_reduce
=
False
,
check_func_1
,
check_func_2
,
use_cuda
,
iter
=
20
,
delta2
=
1e-5
):
delta2
=
1e-5
,
compare_seperately
=
True
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
...
...
@@ -288,31 +282,33 @@ class TestResnet(TestParallelExecutorBase):
remove_dropout
=
True
remove_bn
=
True
img
,
label
=
self
.
_init_data
(
batch_size
=
batch_size
)
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
img
,
label
=
init_data
(
batch_size
=
batch_size
,
img_shape
=
img_shape
,
label_range
=
999
)
func_1_first_loss
,
func_1_last_loss
=
check_func_1
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
,
optimizer
=
optimizer
,
use_parallel_executor
=
False
)
parallel_first_loss
,
parallel_last_loss
=
self
.
check_network_convergence
(
use_cuda
=
use_cuda
)
func_2_first_loss
,
func_2_last_loss
=
check_func_2
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
,
optimizer
=
optimizer
)
use_cuda
=
use_cuda
)
if
compare_seperately
:
for
loss
in
zip
(
func_1_first_loss
,
func_2_first_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-5
)
for
loss
in
zip
(
func_1_last_loss
,
func_2_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
delta2
)
else
:
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_first_loss
),
single
_first_loss
[
0
],
delta
=
1e-5
)
np
.
mean
(
func_1_first_loss
),
func_2
_first_loss
[
0
],
delta
=
1e-5
)
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_last_loss
),
single
_last_loss
[
0
],
delta
=
delta2
)
np
.
mean
(
func_1_last_loss
),
func_2
_last_loss
[
0
],
delta
=
delta2
)
def
_compare_with_fused_all_reduce
(
self
,
model
,
...
...
@@ -325,7 +321,8 @@ class TestResnet(TestParallelExecutorBase):
global
remove_bn
remove_bn
=
True
img
,
label
=
self
.
_init_data
(
batch_size
=
batch_size
)
img
,
label
=
init_data
(
batch_size
=
batch_size
,
img_shape
=
img_shape
,
label_range
=
999
)
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
...
...
@@ -350,11 +347,6 @@ class TestResnet(TestParallelExecutorBase):
for
loss
in
zip
(
all_reduce_last_loss
,
reduce_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
delta2
)
def
test_seresnext_with_learning_rate_decay
(
self
):
self
.
_check_resnet_convergence
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
True
)
self
.
_check_resnet_convergence
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
2
,
delta2
=
1e-3
)
def
test_seresnext_with_reduce
(
self
):
self
.
_compare_reduce_and_allreduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
True
,
delta2
=
1e-2
)
...
...
@@ -367,6 +359,50 @@ class TestResnet(TestParallelExecutorBase):
self
.
_compare_with_fused_all_reduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
2
,
delta2
=
1e-3
)
def
test_seresnext_with_learning_rate_decay
(
self
):
check_func_1
=
partial
(
self
.
check_network_convergence
,
optimizer
=
optimizer
,
use_parallel_executor
=
True
)
check_func_2
=
partial
(
self
.
check_network_convergence
,
optimizer
=
optimizer
,
use_parallel_executor
=
False
)
self
.
_check_resnet_convergence
(
SE_ResNeXt50Small
,
check_func_1
,
check_func_2
,
use_cuda
=
True
,
compare_seperately
=
False
)
self
.
_check_resnet_convergence
(
SE_ResNeXt50Small
,
check_func_1
,
check_func_2
,
use_cuda
=
False
,
compare_seperately
=
False
,
iter
=
2
,
delta2
=
1e-3
)
def
test_seresnext_with_fused_optimizer_ops
(
self
):
check_func_1
=
partial
(
self
.
check_network_convergence
,
fuse_all_optimizer_ops
=
False
)
check_func_2
=
partial
(
self
.
check_network_convergence
,
fuse_all_optimizer_ops
=
True
)
# TODO(zcd): this test failed random, I will fix it in next PR.
# self._check_resnet_convergence(
# SE_ResNeXt50Small,
# check_func_1,
# check_func_2,
# use_cuda=True,
# delta2=1e-3)
self
.
_check_resnet_convergence
(
SE_ResNeXt50Small
,
check_func_1
,
check_func_2
,
use_cuda
=
False
,
iter
=
2
,
delta2
=
1e-3
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_executor_test_while_train.py
浏览文件 @
ea8655db
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
from
__future__
import
print_function
from
simple_nets
import
simple_fc_net
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
import
paddle.fluid.core
as
core
...
...
@@ -24,23 +24,6 @@ import sys
import
math
def
simple_fc_net
():
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'tanh'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
ParallelExecutorTestingDuringTraining
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
use_cuda
,
build_strategy
=
None
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
...
...
python/paddle/fluid/tests/unittests/test_pass_builder.py
浏览文件 @
ea8655db
...
...
@@ -14,6 +14,7 @@
from
__future__
import
print_function
from
simple_nets
import
simple_fc_net
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
compiler
...
...
@@ -24,23 +25,6 @@ import sys
import
math
def
simple_fc_net
():
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'tanh'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestPassBuilder
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
use_cuda
,
build_strategy
=
None
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录