From e902c36cdf5bf2b2c05a41de6f30b9b7c84071b8 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Thu, 21 Dec 2017 12:42:48 +0800 Subject: [PATCH] add conv2d_python doc --- python/paddle/v2/fluid/layers/nn.py | 66 ++++++++++++++++++++++++++--- 1 file changed, 61 insertions(+), 5 deletions(-) diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index 1db63fbfe80..f49a958a0fb 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -481,11 +481,67 @@ def conv2d(input, act=None, name=None): """ - This function creates the op for a 2-dimensional Convolution. - This is performed using the parameters of filters(size, dimensionality etc) - , stride and other configurations for a Convolution operation. - This funciton can also append an activation on top of the - conv-2d output, if mentioned in the input parameters. + **Convlution2D Layer** + + The convolution2D layer calculates the output based on the input, filter + and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output) + are in NCHW format. Where N is batch size, C is the number of channels, H is the height + of the feature, and W is the width of the feature. + The details of convolution layer, please refer UFLDL's `convolution, + `_ . + If bias_attr and activation type are provided, bias is added to the output of the convolution, + and the corresponding activation function is applied to the final result. + For each input :math:`X`, the equation is: + + .. math:: + + Out = \sigma (W\ast X + b) + + In the above equation: + + * :math:`X`: Input value, a tensor with NCHW format. + * :math:`W`: Filter value, a tensor with MCHW format. + * :math:`b`: Bias, . + * :math:\sigma : Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. + + Example: + + Input: + Input shape: $(N, C_{in}, H_{in}, W_{in})$ + Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ + Output: + Output shape: $(N, C_{out}, H_{out}, W_{out})$ + Where + $$ + H_{out}= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\ + W_{out}= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1 + $$ + + All the input variables are passed in as local variables to the LayerHelper + constructor. + + Args: + input(Variable): Input tensors. The format of input tensor is NCHW. + num_filters(int): Number of filters + filter_size(list/int): Filter size of Conv2d Layer + stride(list/int, optional): Strides(h_s, w_s) of Conv2d Layer. Default: 1 + padding(list/int, optional): Paddings(h_pad, w_pad) of Conv2d Layer. Default: 0 + groups(int, optional): The groups number of the Conv2d Layer. Default: 1 + param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None + bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None + act(str): Activation type. Default: None + name(str): Name/alias of the function + + Returns: + Variable: The tensor variable storing the convolution and \ + non-linearity activation result. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='data', shape=[3,32, 32], dtype='float32') + conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu") """ if stride is None: -- GitLab