提交 e834eb87 编写于 作者: T typhoonzero

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into grpc_benchmark

...@@ -170,6 +170,18 @@ sequence_pool ...@@ -170,6 +170,18 @@ sequence_pool
:noindex: :noindex:
sequence_first_step
-------------------
.. autofunction:: paddle.v2.fluid.layers.sequence_first_step
:noindex:
sequence_last_step
------------------
.. autofunction:: paddle.v2.fluid.layers.sequence_last_step
:noindex:
pool2d pool2d
------ ------
.. autofunction:: paddle.v2.fluid.layers.pool2d .. autofunction:: paddle.v2.fluid.layers.pool2d
......
...@@ -291,10 +291,10 @@ public: ...@@ -291,10 +291,10 @@ public:
} }
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::Place& place) const override {
PADDLE_ENFORCE(symbols_ready_, "operators and variables should be created first."); PADDLE_ENFORCE(symbols_ready_, "operators and variables should be created first.");
for (auto& op : runtime_table_.ops()) { for (auto& op : runtime_table_.ops()) {
op->Run(scope, dev_ctx); op->Run(scope, place);
} }
} }
......
...@@ -30,7 +30,7 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) ...@@ -30,7 +30,7 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute) cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog shape_inference) cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog shape_inference)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry init)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog) cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc) cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc)
...@@ -59,5 +59,8 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry ...@@ -59,5 +59,8 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
cc_library(selected_rows SRCS selected_rows.cc DEPS tensor) cc_library(selected_rows SRCS selected_rows.cc DEPS tensor)
cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)
cc_library(init SRCS init.cc DEPS gflags executor place stringpiece) cc_test(threadpool_test SRCS threadpool_test.cc)
cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece)
cc_test(init_test SRCS init_test.cc DEPS init) cc_test(init_test SRCS init_test.cc DEPS init)
cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context)
...@@ -14,6 +14,9 @@ limitations under the License. */ ...@@ -14,6 +14,9 @@ limitations under the License. */
#pragma once #pragma once
#include <iostream>
#include "paddle/platform/enforce.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -33,5 +36,23 @@ inline DataLayout StringToDataLayout(const std::string& str) { ...@@ -33,5 +36,23 @@ inline DataLayout StringToDataLayout(const std::string& str) {
} }
} }
inline std::string DataLayoutToString(const DataLayout& data_layout) {
switch (data_layout) {
case kNHWC:
return "NHWC";
case kNCHW:
return "NCHW";
case kAnyLayout:
return "ANY_LAYOUT";
default:
PADDLE_THROW("unknown DataLayou %d", data_layout);
}
}
inline std::ostream& operator<<(std::ostream& out, DataLayout l) {
out << DataLayoutToString(l);
return out;
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -33,13 +33,7 @@ namespace framework { ...@@ -33,13 +33,7 @@ namespace framework {
const std::string kFeedOpType = "feed"; const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch"; const std::string kFetchOpType = "fetch";
DeviceContextPool* DeviceContextPool::pool = nullptr; Executor::Executor(const platform::Place& place) : place_(place) {}
Executor::Executor(const std::vector<platform::Place>& places) {
DeviceContextPool& pool = DeviceContextPool::Get();
auto borrowed_contexts = pool.Borrow(places);
device_contexts_.swap(borrowed_contexts);
}
static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) { static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) {
if (var_type == proto::VarDesc::LOD_TENSOR) { if (var_type == proto::VarDesc::LOD_TENSOR) {
...@@ -71,7 +65,6 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, ...@@ -71,7 +65,6 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
// - will change to use multiple blocks for RNN op and Cond Op // - will change to use multiple blocks for RNN op and Cond Op
PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), pdesc.Size()); PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), pdesc.Size());
auto& block = pdesc.Block(block_id); auto& block = pdesc.Block(block_id);
auto& device = device_contexts_[0];
Scope* local_scope = scope; Scope* local_scope = scope;
if (create_vars) { if (create_vars) {
...@@ -107,7 +100,7 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, ...@@ -107,7 +100,7 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
for (auto& op_desc : block.AllOps()) { for (auto& op_desc : block.AllOps()) {
auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); auto op = paddle::framework::OpRegistry::CreateOp(*op_desc);
VLOG(3) << op->DebugString(); VLOG(3) << op->DebugString();
op->Run(*local_scope, *device); op->Run(*local_scope, place_);
} }
if (create_local_scope) { if (create_local_scope) {
scope->DeleteScope(local_scope); scope->DeleteScope(local_scope);
......
...@@ -14,9 +14,6 @@ limitations under the License. */ ...@@ -14,9 +14,6 @@ limitations under the License. */
#pragma once #pragma once
#include <map>
#include <unordered_map>
#include "paddle/framework/op_info.h" #include "paddle/framework/op_info.h"
#include "paddle/framework/program_desc.h" #include "paddle/framework/program_desc.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
...@@ -26,96 +23,13 @@ limitations under the License. */ ...@@ -26,96 +23,13 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class DeviceContextPool {
public:
static DeviceContextPool& Get() {
PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
return *pool;
}
static DeviceContextPool& Create(const std::vector<platform::Place>& places) {
if (pool == nullptr) {
pool = new DeviceContextPool(places);
}
return *pool;
}
const platform::DeviceContext* Borrow(const platform::Place& place) {
auto range = device_contexts_.equal_range(place);
if (range.first == range.second) {
PADDLE_THROW(
"'Place' is not supported, Please re-compile with WITH_GPU "
"option");
}
return range.first->second;
}
std::vector<const platform::DeviceContext*> Borrow(
const std::vector<platform::Place>& places) {
PADDLE_ENFORCE_GT(places.size(), 0);
PADDLE_ENFORCE_LE(places.size(), device_contexts_.size());
std::vector<const platform::DeviceContext*> borrowed_contexts;
for (auto& place : places) {
auto range = device_contexts_.equal_range(place);
if (range.first == range.second) {
PADDLE_THROW(
"'Place' is not supported, Please re-compile with WITH_GPU "
"option");
}
// TODO(dzhwinter) : assign the first found device. Will enhanced later.
// device load balancer maybe useful here.
borrowed_contexts.emplace_back(range.first->second);
}
return borrowed_contexts;
}
explicit DeviceContextPool(const std::vector<platform::Place>& places) {
PADDLE_ENFORCE_GT(places.size(), 0);
for (size_t i = 0; i < places.size(); i++) {
if (platform::is_cpu_place(places[i])) {
device_contexts_.emplace(
places[i], new platform::CPUDeviceContext(
boost::get<platform::CPUPlace>(places[i])));
} else if (platform::is_gpu_place(places[i])) {
#ifdef PADDLE_WITH_CUDA
device_contexts_.emplace(
places[i], new platform::CUDADeviceContext(
boost::get<platform::GPUPlace>(places[i])));
#else
PADDLE_THROW(
"'GPUPlace' is not supported, Please re-compile with WITH_GPU "
"option");
#endif
}
}
}
~DeviceContextPool() {}
private:
static DeviceContextPool* pool;
struct Hash {
std::hash<int> hash_;
size_t operator()(const platform::Place& place) const {
return hash_(place.which());
}
};
std::unordered_multimap<const platform::Place, const platform::DeviceContext*,
Hash>
device_contexts_;
DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};
class Executor { class Executor {
public: public:
// TODO(dzhwinter) : Do not rely on this function, it will be removed // TODO(dzhwinter) : Do not rely on this function, it will be removed
explicit Executor(const platform::DeviceContext& device) explicit Executor(const platform::DeviceContext& device)
: Executor(std::vector<platform::Place>({device.GetPlace()})) {} : Executor(device.GetPlace()) {}
explicit Executor(const platform::Place& place)
: Executor(std::vector<platform::Place>({place})) {}
explicit Executor(const std::vector<platform::Place>& places); explicit Executor(const platform::Place& place);
/* @Brief /* @Brief
* Runtime evaluation of the given ProgramDesc under certain Scope * Runtime evaluation of the given ProgramDesc under certain Scope
...@@ -128,7 +42,7 @@ class Executor { ...@@ -128,7 +42,7 @@ class Executor {
bool create_vars = true); bool create_vars = true);
private: private:
std::vector<const platform::DeviceContext*> device_contexts_; const platform::Place place_;
}; };
} // namespace framework } // namespace framework
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
#include <algorithm> #include <algorithm>
#include <string> #include <string>
#include "paddle/framework/executor.h"
#include "paddle/framework/init.h" #include "paddle/framework/init.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/string/piece.h" #include "paddle/string/piece.h"
...@@ -48,7 +48,7 @@ bool InitDevices(const std::vector<std::string> &devices) { ...@@ -48,7 +48,7 @@ bool InitDevices(const std::vector<std::string> &devices) {
std::vector<platform::Place> places; std::vector<platform::Place> places;
for (auto &device : devices) { for (auto &device : devices) {
auto p = string::Piece(device); auto p = string::Piece(device);
if (string::Find(p, ':', 0) == string::Piece::npos) { if (string::HasPrefix(p, "CPU")) {
places.emplace_back(platform::CPUPlace()); places.emplace_back(platform::CPUPlace());
} else if (string::HasPrefix(p, "GPU")) { } else if (string::HasPrefix(p, "GPU")) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -69,10 +69,9 @@ bool InitDevices(const std::vector<std::string> &devices) { ...@@ -69,10 +69,9 @@ bool InitDevices(const std::vector<std::string> &devices) {
return platform::is_cpu_place(place); return platform::is_cpu_place(place);
}) == places.end()) { }) == places.end()) {
places.emplace_back(platform::CPUPlace()); places.emplace_back(platform::CPUPlace());
LOG(WARNING) << "Not specified any device, use CPU by Default."; LOG(WARNING) << "Not specified CPU device, create CPU by Default.";
} }
DeviceContextPool::Create(places); platform::DeviceContextPool::Create(places);
return true;
return true; return true;
} }
......
...@@ -23,5 +23,9 @@ TEST(Init, InitDevices) { ...@@ -23,5 +23,9 @@ TEST(Init, InitDevices) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
std::vector<std::string> ds2 = {"CPU", "GPU:0", "GPU:1"}; std::vector<std::string> ds2 = {"CPU", "GPU:0", "GPU:1"};
ASSERT_EQ(InitDevices(ds2), true); ASSERT_EQ(InitDevices(ds2), true);
// test re-init
std::vector<std::string> ds3 = {"GPU:0", "GPU:1"};
ASSERT_EQ(InitDevices(ds3), true);
#endif #endif
} }
...@@ -20,7 +20,25 @@ namespace framework { ...@@ -20,7 +20,25 @@ namespace framework {
// For more details about the design of LibraryType, Please refer to // For more details about the design of LibraryType, Please refer to
// https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md#library // https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md#library
enum LibraryType { kPlain = 0; kMKLDNN = 1; kCUDNN = 2; } enum LibraryType { kPlain = 0, kMKLDNN = 1, kCUDNN = 2 };
inline std::string LibraryTypeToString(const LibraryType& library_type) {
switch (library_type) {
case kPlain:
return "PLAIN";
case kMKLDNN:
return "MKLDNN";
case kCUDNN:
return "CUDNN";
default:
PADDLE_THROW("unknown LibraryType %d", library_type);
}
}
inline std::ostream& operator<<(std::ostream& out, LibraryType l) {
out << LibraryTypeToString(l);
return out;
}
} // namespace } // namespace
} // framework } // framework
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/data_layout.h"
#include "paddle/framework/data_type.h"
#include "paddle/framework/library_type.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
namespace paddle {
namespace framework {
struct OpKernelType {
struct Hash {
size_t operator()(const OpKernelType& key) const {
int place = key.place_.which() + (1 << LEFT_SHIFT);
int data_type =
static_cast<int>(key.data_type_) + (1 << (LEFT_SHIFT + 1));
int data_layout =
static_cast<int>(key.data_layout_) + (1 << (LEFT_SHIFT + 2));
int library_type =
static_cast<int>(key.library_type_) + (1 << (LEFT_SHIFT + 3));
std::hash<int> hasher;
return hasher(place + data_type + data_layout + library_type);
}
};
// place, data_type, library_type kinds less than 2^8
constexpr static int LEFT_SHIFT = 8;
proto::DataType data_type_;
DataLayout data_layout_;
platform::Place place_;
LibraryType library_type_;
OpKernelType(proto::DataType data_type, platform::Place place,
DataLayout data_layout = DataLayout::kAnyLayout,
LibraryType library_type = LibraryType::kPlain)
: data_type_(data_type),
data_layout_(data_layout),
place_(place),
library_type_(library_type) {}
OpKernelType(proto::DataType data_type,
const platform::DeviceContext& dev_ctx,
DataLayout data_layout = DataLayout::kAnyLayout,
LibraryType library_type = LibraryType::kPlain)
: data_type_(data_type),
data_layout_(data_layout),
place_(dev_ctx.GetPlace()),
library_type_(library_type) {}
bool operator==(const OpKernelType& o) const {
return platform::places_are_same_class(place_, o.place_) &&
data_type_ == o.data_type_ && data_layout_ == o.data_layout_ &&
library_type_ == o.library_type_;
}
};
inline std::ostream& operator<<(std::ostream& os,
const OpKernelType& kernel_key) {
os << "data_type[" << kernel_key.data_type_ << "]:data_layout["
<< kernel_key.data_layout_ << "]:place[" << kernel_key.place_
<< "]:library_type[" << kernel_key.library_type_ << "]";
return os;
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_kernel_type.h"
#include <gtest/gtest.h>
#include <iostream>
TEST(OpKernelType, ToString) {
using OpKernelType = paddle::framework::OpKernelType;
using DataType = paddle::framework::proto::DataType;
using CPUPlace = paddle::platform::CPUPlace;
using DataLayout = paddle::framework::DataLayout;
using LibraryType = paddle::framework::LibraryType;
OpKernelType op_kernel_type(DataType::FP32, CPUPlace(), DataLayout::kNCHW,
LibraryType::kCUDNN);
std::ostringstream stream;
stream << op_kernel_type;
ASSERT_EQ(
stream.str(),
"data_type[5]:data_layout[NCHW]:place[CPUPlace]:library_type[CUDNN]");
}
TEST(OpKernelType, Hash) {
using OpKernelType = paddle::framework::OpKernelType;
using DataType = paddle::framework::proto::DataType;
using CPUPlace = paddle::platform::CPUPlace;
using GPUPlace = paddle::platform::GPUPlace;
using DataLayout = paddle::framework::DataLayout;
using LibraryType = paddle::framework::LibraryType;
OpKernelType op_kernel_type_1(DataType::FP32, CPUPlace(), DataLayout::kNCHW,
LibraryType::kCUDNN);
OpKernelType op_kernel_type_2(DataType::FP32, GPUPlace(0), DataLayout::kNCHW,
LibraryType::kCUDNN);
OpKernelType::Hash hasher;
ASSERT_NE(hasher(op_kernel_type_1), hasher(op_kernel_type_2));
}
\ No newline at end of file
...@@ -61,17 +61,6 @@ struct OperatorRegistrar : public Registrar { ...@@ -61,17 +61,6 @@ struct OperatorRegistrar : public Registrar {
class OpRegistry { class OpRegistry {
public: public:
template <typename OpType, typename ProtoMakerType, typename GradOpType>
static void RegisterOp(const std::string& op_type,
const std::string& grad_op_type) {
OperatorRegistrar<OpType, ProtoMakerType> reg(op_type.c_str());
reg.info.grad_op_type_ = grad_op_type;
// register gradient op
if (!grad_op_type.empty()) {
OperatorRegistrar<GradOpType> grad_reg(grad_op_type.c_str());
}
}
static std::unique_ptr<OperatorBase> CreateOp(const std::string& type, static std::unique_ptr<OperatorBase> CreateOp(const std::string& type,
const VariableNameMap& inputs, const VariableNameMap& inputs,
const VariableNameMap& outputs, const VariableNameMap& outputs,
......
...@@ -8,8 +8,7 @@ namespace framework { ...@@ -8,8 +8,7 @@ namespace framework {
class CosineOp : public OperatorBase { class CosineOp : public OperatorBase {
public: public:
using OperatorBase::OperatorBase; using OperatorBase::OperatorBase;
void Run(const Scope& scope, void Run(const Scope& scope, const platform::Place& place) const override {}
const platform::DeviceContext& dev_ctx) const override {}
}; };
class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
...@@ -28,8 +27,7 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -28,8 +27,7 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class MyTestOp : public OperatorBase { class MyTestOp : public OperatorBase {
public: public:
using OperatorBase::OperatorBase; using OperatorBase::OperatorBase;
void Run(const Scope& scope, void Run(const Scope& scope, const platform::Place& place) const override {}
const platform::DeviceContext& dev_ctx) const override {}
}; };
class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
...@@ -76,8 +74,8 @@ TEST(OpRegistry, CreateOp) { ...@@ -76,8 +74,8 @@ TEST(OpRegistry, CreateOp) {
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
paddle::framework::Scope scope; paddle::framework::Scope scope;
paddle::platform::CPUDeviceContext dev_ctx; paddle::platform::CPUPlace cpu_place;
op->Run(scope, dev_ctx); op->Run(scope, cpu_place);
float scale_get = op->Attr<float>("scale"); float scale_get = op->Attr<float>("scale");
ASSERT_EQ(scale_get, scale); ASSERT_EQ(scale_get, scale);
} }
...@@ -117,8 +115,8 @@ TEST(OpRegistry, DefaultValue) { ...@@ -117,8 +115,8 @@ TEST(OpRegistry, DefaultValue) {
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
paddle::framework::Scope scope; paddle::framework::Scope scope;
paddle::platform::CPUDeviceContext dev_ctx; paddle::platform::CPUPlace cpu_place;
op->Run(scope, dev_ctx); op->Run(scope, cpu_place);
ASSERT_EQ(op->Attr<float>("scale"), 1.0); ASSERT_EQ(op->Attr<float>("scale"), 1.0);
} }
...@@ -167,9 +165,9 @@ TEST(OpRegistry, CustomChecker) { ...@@ -167,9 +165,9 @@ TEST(OpRegistry, CustomChecker) {
attr->set_type(paddle::framework::proto::AttrType::INT); attr->set_type(paddle::framework::proto::AttrType::INT);
attr->set_i(4); attr->set_i(4);
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
paddle::platform::CPUDeviceContext dev_ctx; paddle::platform::CPUPlace cpu_place;
paddle::framework::Scope scope; paddle::framework::Scope scope;
op->Run(scope, dev_ctx); op->Run(scope, cpu_place);
int test_attr = op->Attr<int>("test_attr"); int test_attr = op->Attr<int>("test_attr");
ASSERT_EQ(test_attr, 4); ASSERT_EQ(test_attr, 4);
} }
......
...@@ -12,10 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,10 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/framework/operator.h"
#include <algorithm> #include <algorithm>
#include <atomic> #include <atomic>
#include "paddle/framework/executor.h"
#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/shape_inference.h" #include "paddle/framework/shape_inference.h"
#include "paddle/framework/var_type.h" #include "paddle/framework/var_type.h"
...@@ -240,12 +242,6 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>( ...@@ -240,12 +242,6 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
return res; return res;
} }
std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key) {
os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_
<< "]";
return os;
}
bool OpSupportGPU(const std::string& op_type) { bool OpSupportGPU(const std::string& op_type) {
auto& all_kernels = OperatorWithKernel::AllOpKernels(); auto& all_kernels = OperatorWithKernel::AllOpKernels();
auto it = all_kernels.find(op_type); auto it = all_kernels.find(op_type);
...@@ -388,11 +384,11 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -388,11 +384,11 @@ class RuntimeInferShapeContext : public InferShapeContext {
}; };
void OperatorWithKernel::Run(const Scope& scope, void OperatorWithKernel::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const { const platform::Place& place) const {
RuntimeInferShapeContext infer_shape_ctx(*this, scope); RuntimeInferShapeContext infer_shape_ctx(*this, scope);
this->InferShape(&infer_shape_ctx); this->InferShape(&infer_shape_ctx);
platform::DeviceContextPool& pool = platform::DeviceContextPool::Get();
ExecutionContext ctx(*this, scope, dev_ctx); auto dev_ctx = pool.Borrow(place);
// check if op[type] has kernel registered. // check if op[type] has kernel registered.
auto& all_op_kernels = AllOpKernels(); auto& all_op_kernels = AllOpKernels();
...@@ -404,6 +400,8 @@ void OperatorWithKernel::Run(const Scope& scope, ...@@ -404,6 +400,8 @@ void OperatorWithKernel::Run(const Scope& scope,
// check if op[type] have kernel for kernel_key // check if op[type] have kernel for kernel_key
OpKernelMap& kernels = kernels_iter->second; OpKernelMap& kernels = kernels_iter->second;
ExecutionContext ctx(*this, scope, *dev_ctx);
auto kernel_key = GetKernelType(ctx); auto kernel_key = GetKernelType(ctx);
auto kernel_iter = kernels.find(kernel_key); auto kernel_iter = kernels.find(kernel_key);
......
...@@ -23,15 +23,14 @@ limitations under the License. */ ...@@ -23,15 +23,14 @@ limitations under the License. */
#include "glog/logging.h" // For VLOG #include "glog/logging.h" // For VLOG
#include "paddle/framework/attribute.h" #include "paddle/framework/attribute.h"
#include "paddle/framework/block_desc.h" #include "paddle/framework/block_desc.h"
#include "paddle/framework/data_type.h"
#include "paddle/framework/framework.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_info.h" #include "paddle/framework/op_info.h"
#include "paddle/framework/op_kernel_type.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/framework/selected_rows.h" #include "paddle/framework/selected_rows.h"
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/platform/variant.h" #include "paddle/platform/variant.h"
#include "paddle/utils/Error.h" #include "paddle/utils/Error.h"
...@@ -83,8 +82,7 @@ class OperatorBase { ...@@ -83,8 +82,7 @@ class OperatorBase {
virtual std::string DebugString() const; virtual std::string DebugString() const;
/// Net will call this function to Run an op. /// Net will call this function to Run an op.
virtual void Run(const Scope& scope, virtual void Run(const Scope& scope, const platform::Place& place) const = 0;
const platform::DeviceContext& dev_ctx) const = 0;
virtual bool IsNetOp() const { return false; } virtual bool IsNetOp() const { return false; }
...@@ -159,8 +157,7 @@ class OperatorBase { ...@@ -159,8 +157,7 @@ class OperatorBase {
class NOP : public OperatorBase { class NOP : public OperatorBase {
public: public:
using OperatorBase::OperatorBase; using OperatorBase::OperatorBase;
void Run(const Scope& scope, void Run(const Scope& scope, const platform::Place& place) const override {}
const platform::DeviceContext& dev_ctx) const override {}
std::unique_ptr<OperatorBase> Clone() const override { std::unique_ptr<OperatorBase> Clone() const override {
return std::unique_ptr<OperatorBase>(new NOP(*this)); return std::unique_ptr<OperatorBase>(new NOP(*this));
} }
...@@ -345,34 +342,6 @@ class OpKernel : public OpKernelBase { ...@@ -345,34 +342,6 @@ class OpKernel : public OpKernelBase {
using ELEMENT_TYPE = T; using ELEMENT_TYPE = T;
}; };
struct OpKernelType {
struct Hash {
std::hash<int> hash_;
size_t operator()(const OpKernelType& key) const {
int place = key.place_.which();
int data_type = static_cast<int>(key.data_type_);
int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT |
(place & ((1 << NUM_PLACE_TYPE_LIMIT_IN_BIT) - 1));
return hash_(pre_hash);
}
};
platform::Place place_;
proto::DataType data_type_;
OpKernelType(proto::DataType data_type, platform::Place place)
: place_(place), data_type_(data_type) {}
OpKernelType(proto::DataType data_type,
const platform::DeviceContext& dev_ctx)
: place_(dev_ctx.GetPlace()), data_type_(data_type) {}
bool operator==(const OpKernelType& o) const {
return platform::places_are_same_class(place_, o.place_) &&
data_type_ == o.data_type_;
}
};
class OperatorWithKernel : public OperatorBase { class OperatorWithKernel : public OperatorBase {
public: public:
using OpKernelMap = using OpKernelMap =
...@@ -383,8 +352,7 @@ class OperatorWithKernel : public OperatorBase { ...@@ -383,8 +352,7 @@ class OperatorWithKernel : public OperatorBase {
const VariableNameMap& outputs, const AttributeMap& attrs) const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const Scope& scope, void Run(const Scope& scope, const platform::Place& place) const final;
const platform::DeviceContext& dev_ctx) const final;
static std::unordered_map<std::string /* op_type */, OpKernelMap>& static std::unordered_map<std::string /* op_type */, OpKernelMap>&
AllOpKernels() { AllOpKernels() {
...@@ -413,8 +381,6 @@ class OperatorWithKernel : public OperatorBase { ...@@ -413,8 +381,6 @@ class OperatorWithKernel : public OperatorBase {
proto::DataType IndicateDataType(const ExecutionContext& ctx) const; proto::DataType IndicateDataType(const ExecutionContext& ctx) const;
}; };
std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key);
extern bool OpSupportGPU(const std::string& op_type); extern bool OpSupportGPU(const std::string& op_type);
} // namespace framework } // namespace framework
......
...@@ -11,11 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,11 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/framework/operator.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/framework/init.h"
#include "paddle/framework/op_info.h" #include "paddle/framework/op_info.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -27,8 +28,7 @@ class OpWithoutKernelTest : public OperatorBase { ...@@ -27,8 +28,7 @@ class OpWithoutKernelTest : public OperatorBase {
OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs, OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs) const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs), x(1) {} : OperatorBase(type, inputs, outputs, attrs), x(1) {}
void Run(const Scope& scope, void Run(const Scope& scope, const platform::Place& place) const override {
const platform::DeviceContext& dev_ctx) const override {
++op_run_num; ++op_run_num;
ASSERT_EQ(static_cast<int>(inputs_.size()), 1); ASSERT_EQ(static_cast<int>(inputs_.size()), 1);
ASSERT_EQ(static_cast<int>(outputs_.size()), 1); ASSERT_EQ(static_cast<int>(outputs_.size()), 1);
...@@ -41,10 +41,9 @@ class OpWithoutKernelTest : public OperatorBase { ...@@ -41,10 +41,9 @@ class OpWithoutKernelTest : public OperatorBase {
int x{0}; int x{0};
}; };
class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class OpWithoutKernelCheckerMaker : public OpProtoAndCheckerMaker {
public: public:
OpeWithoutKernelTestProtoAndCheckerMaker(OpProto* proto, OpWithoutKernelCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op"); AddInput("input", "input of test op");
AddOutput("output", "output of test op"); AddOutput("output", "output of test op");
...@@ -65,11 +64,12 @@ static void BuildVar(const std::string& param_name, ...@@ -65,11 +64,12 @@ static void BuildVar(const std::string& param_name,
} }
} }
REGISTER_OP_WITHOUT_GRADIENT( REGISTER_OP_WITHOUT_GRADIENT(test_operator,
test_operator, paddle::framework::OpWithoutKernelTest, paddle::framework::OpWithoutKernelTest,
paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker); paddle::framework::OpWithoutKernelCheckerMaker);
TEST(OperatorBase, all) { TEST(OperatorBase, all) {
paddle::framework::InitDevices({"CPU"});
paddle::framework::proto::OpDesc op_desc; paddle::framework::proto::OpDesc op_desc;
op_desc.set_type("test_operator"); op_desc.set_type("test_operator");
BuildVar("input", {"IN1"}, op_desc.add_inputs()); BuildVar("input", {"IN1"}, op_desc.add_inputs());
...@@ -80,13 +80,13 @@ TEST(OperatorBase, all) { ...@@ -80,13 +80,13 @@ TEST(OperatorBase, all) {
attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_type(paddle::framework::proto::AttrType::FLOAT);
attr->set_f(3.14); attr->set_f(3.14);
paddle::platform::CPUDeviceContext device_context; paddle::platform::CPUPlace cpu_place;
paddle::framework::Scope scope; paddle::framework::Scope scope;
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
scope.Var("OUT1"); scope.Var("OUT1");
ASSERT_EQ(paddle::framework::op_run_num, 0); ASSERT_EQ(paddle::framework::op_run_num, 0);
op->Run(scope, device_context); op->Run(scope, cpu_place);
ASSERT_EQ(paddle::framework::op_run_num, 1); ASSERT_EQ(paddle::framework::op_run_num, 1);
} }
...@@ -123,7 +123,6 @@ template <typename T1, typename T2> ...@@ -123,7 +123,6 @@ template <typename T1, typename T2>
class CPUKernelTest : public OpKernel<float> { class CPUKernelTest : public OpKernel<float> {
public: public:
void Compute(const ExecutionContext& ctx) const { void Compute(const ExecutionContext& ctx) const {
std::cout << "this is cpu kernel" << std::endl;
std::cout << ctx.op().DebugString() << std::endl; std::cout << ctx.op().DebugString() << std::endl;
cpu_kernel_run_num++; cpu_kernel_run_num++;
ASSERT_EQ(ctx.op().Input("x"), "IN1"); ASSERT_EQ(ctx.op().Input("x"), "IN1");
...@@ -195,6 +194,7 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, ...@@ -195,6 +194,7 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel,
// test with single input // test with single input
TEST(OpKernel, all) { TEST(OpKernel, all) {
paddle::framework::InitDevices({"CPU"});
paddle::framework::proto::OpDesc op_desc; paddle::framework::proto::OpDesc op_desc;
op_desc.set_type("op_with_kernel"); op_desc.set_type("op_with_kernel");
BuildVar("x", {"IN1"}, op_desc.add_inputs()); BuildVar("x", {"IN1"}, op_desc.add_inputs());
...@@ -205,12 +205,12 @@ TEST(OpKernel, all) { ...@@ -205,12 +205,12 @@ TEST(OpKernel, all) {
attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_type(paddle::framework::proto::AttrType::FLOAT);
attr->set_f(3.14); attr->set_f(3.14);
paddle::platform::CPUDeviceContext cpu_device_context; paddle::platform::CPUPlace cpu_place;
paddle::framework::Scope scope; paddle::framework::Scope scope;
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0);
op->Run(scope, cpu_device_context); op->Run(scope, cpu_place);
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1);
} }
...@@ -224,7 +224,9 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, ...@@ -224,7 +224,9 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel,
TEST(OpKernel, multi_inputs) { TEST(OpKernel, multi_inputs) {
using namespace paddle::framework; using namespace paddle::framework;
paddle::framework::InitDevices({"CPU"});
proto::OpDesc op_desc; proto::OpDesc op_desc;
op_desc.set_type("op_multi_inputs_with_kernel"); op_desc.set_type("op_multi_inputs_with_kernel");
BuildVar("xs", {"x0", "x1", "x2"}, op_desc.add_inputs()); BuildVar("xs", {"x0", "x1", "x2"}, op_desc.add_inputs());
BuildVar("k", {"k0"}, op_desc.add_inputs()); BuildVar("k", {"k0"}, op_desc.add_inputs());
...@@ -235,7 +237,7 @@ TEST(OpKernel, multi_inputs) { ...@@ -235,7 +237,7 @@ TEST(OpKernel, multi_inputs) {
attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_type(paddle::framework::proto::AttrType::FLOAT);
attr->set_f(3.14); attr->set_f(3.14);
paddle::platform::CPUDeviceContext cpu_device_context; paddle::platform::CPUPlace cpu_place;
paddle::framework::Scope scope; paddle::framework::Scope scope;
scope.Var("x0")->GetMutable<LoDTensor>(); scope.Var("x0")->GetMutable<LoDTensor>();
scope.Var("x1")->GetMutable<LoDTensor>(); scope.Var("x1")->GetMutable<LoDTensor>();
...@@ -245,7 +247,7 @@ TEST(OpKernel, multi_inputs) { ...@@ -245,7 +247,7 @@ TEST(OpKernel, multi_inputs) {
scope.Var("y1")->GetMutable<LoDTensor>(); scope.Var("y1")->GetMutable<LoDTensor>();
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
op->Run(scope, cpu_device_context); op->Run(scope, cpu_place);
} }
class OperatorClone : public paddle::framework::OperatorBase { class OperatorClone : public paddle::framework::OperatorBase {
...@@ -257,10 +259,11 @@ class OperatorClone : public paddle::framework::OperatorBase { ...@@ -257,10 +259,11 @@ class OperatorClone : public paddle::framework::OperatorBase {
const paddle::framework::AttributeMap& attrs) const paddle::framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const paddle::framework::Scope& scope, void Run(const paddle::framework::Scope& scope,
const paddle::platform::DeviceContext& dev_ctx) const override {} const paddle::platform::Place& place) const override {}
}; };
TEST(Operator, Clone) { TEST(Operator, Clone) {
paddle::framework::InitDevices({"CPU"});
OperatorClone a("ABC", paddle::framework::VariableNameMap{}, OperatorClone a("ABC", paddle::framework::VariableNameMap{},
paddle::framework::VariableNameMap{}, paddle::framework::VariableNameMap{},
paddle::framework::AttributeMap{}); paddle::framework::AttributeMap{});
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <condition_variable>
#include <cstdio>
#include <functional>
#include <iostream>
#include <mutex>
#include <queue>
#include <thread>
#include "paddle/platform/call_once.h"
#include "paddle/platform/enforce.h"
namespace paddle {
namespace framework {
typedef std::function<void()> Task;
class ThreadPool {
public:
/**
* @brief Get a instance of threadpool, the thread number will
* be specified as the number of hardware thread contexts
*/
static ThreadPool* GetInstance() {
std::call_once(init_flag, &ThreadPool::Init);
return threadpool.get();
}
~ThreadPool() {
{
// notify all threads to stop running
running_ = false;
scheduled_.notify_all();
}
for (auto& t : threads_) {
t->join();
t.reset(nullptr);
}
}
int GetNumThreads() const { return num_threads_; }
int GetAvailable() {
std::unique_lock<std::mutex> lock(mutex_);
return available_;
}
/**
* @brief Push a function to the queue, and will be scheduled and
* executed if a thread is available.
* @param[in] Task will be pushed to the task queue.
*/
void Run(const Task& fn) {
std::unique_lock<std::mutex> lock(mutex_);
tasks_.push(fn);
lock.unlock();
scheduled_.notify_one();
}
/**
* @brief Wait until all the tasks are completed.
*/
void Wait() {
std::unique_lock<std::mutex> lock(mutex_);
completed_.wait(lock, [=] { return Done() == true; });
}
private:
ThreadPool& operator=(const ThreadPool&) = delete;
ThreadPool(const ThreadPool&) = delete;
ThreadPool(int num_threads)
: num_threads_(num_threads), available_(num_threads), running_(true) {
threads_.resize(num_threads);
for (auto& thread : threads_) {
// TODO(Yancey1989): binding the thread on the specify CPU number
thread.reset(new std::thread(std::bind(&ThreadPool::TaskLoop, this)));
}
}
/**
* @brief If the task queue is empty and avaialbe
* is equal to the number of threads, means that
* all tasks are completed.
*
* Note: this function is not thread-safe.
*
* @return true if all tasks are completed.
*/
bool Done() { return tasks_.empty() && available_ == num_threads_; }
void TaskLoop() {
while (running_) {
std::unique_lock<std::mutex> lock(mutex_);
scheduled_.wait(lock, [=] { return !tasks_.empty() || !running_; });
if (!running_) {
break;
}
// pop a task from the task queue
auto task = tasks_.front();
tasks_.pop();
--available_;
lock.unlock();
// run the task
task();
{
std::unique_lock<std::mutex> lock(mutex_);
++available_;
if (Done()) {
completed_.notify_all();
}
}
}
}
static void Init() {
if (threadpool.get() == nullptr) {
// TODO(Yancey1989): specify the max threads number
int num_threads = std::thread::hardware_concurrency();
PADDLE_ENFORCE_GT(num_threads, 0);
threadpool.reset(new ThreadPool(num_threads));
}
}
private:
static std::unique_ptr<ThreadPool> threadpool;
static std::once_flag init_flag;
int num_threads_;
int available_;
bool running_;
std::queue<Task> tasks_;
std::vector<std::unique_ptr<std::thread>> threads_;
std::mutex mutex_;
std::condition_variable scheduled_;
std::condition_variable completed_;
};
std::unique_ptr<ThreadPool> ThreadPool::threadpool(nullptr);
std::once_flag ThreadPool::init_flag;
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "threadpool.h"
#include <gtest/gtest.h>
#include <atomic>
#include <chrono>
#include <map>
#include <thread>
namespace framework = paddle::framework;
void do_sum(framework::ThreadPool* pool, std::atomic<int>& sum, int cnt) {
for (int i = 0; i < cnt; ++i) {
pool->Run([&sum]() { sum.fetch_add(1); });
}
}
TEST(ThreadPool, ConcurrentInit) {
framework::ThreadPool* pool;
int concurrent_cnt = 50;
std::vector<std::thread> threads;
for (int i = 0; i < concurrent_cnt; ++i) {
std::thread t([&pool]() { pool = framework::ThreadPool::GetInstance(); });
threads.push_back(std::move(t));
}
for (auto& t : threads) {
t.join();
}
}
TEST(ThreadPool, ConcurrentStart) {
framework::ThreadPool* pool = framework::ThreadPool::GetInstance();
std::atomic<int> sum(0);
std::vector<std::thread> threads;
int concurrent_cnt = 50;
// sum = (n * (n + 1)) / 2
for (int i = 1; i <= concurrent_cnt; ++i) {
std::thread t(do_sum, pool, std::ref(sum), i);
threads.push_back(std::move(t));
}
for (auto& t : threads) {
t.join();
}
pool->Wait();
EXPECT_EQ(sum, ((concurrent_cnt + 1) * concurrent_cnt) / 2);
}
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#pragma once #pragma once
#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -27,11 +28,16 @@ class ArrayOp : public framework::OperatorBase { ...@@ -27,11 +28,16 @@ class ArrayOp : public framework::OperatorBase {
protected: protected:
size_t GetOffset(const framework::Scope &scope, size_t GetOffset(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const { const platform::Place &place) const {
auto *i = scope.FindVar(Input("I")); auto *i = scope.FindVar(Input("I"));
PADDLE_ENFORCE(i != nullptr, "I must be set"); PADDLE_ENFORCE(i != nullptr, "I must be set");
auto &i_tensor = i->Get<framework::LoDTensor>(); auto &i_tensor = i->Get<framework::LoDTensor>();
PADDLE_ENFORCE_EQ(i_tensor.numel(), 1); PADDLE_ENFORCE_EQ(i_tensor.numel(), 1);
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
size_t offset; size_t offset;
if (platform::is_gpu_place(i_tensor.place())) { if (platform::is_gpu_place(i_tensor.place())) {
// FIXME: Avoid copy from GPU to CPU // FIXME: Avoid copy from GPU to CPU
......
...@@ -12,10 +12,12 @@ ...@@ -12,10 +12,12 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <numeric> #include <numeric>
#include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h" #include "paddle/memory/memcpy.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -30,7 +32,7 @@ class ArrayToLoDTensorOp : public framework::OperatorBase { ...@@ -30,7 +32,7 @@ class ArrayToLoDTensorOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>(); auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>();
auto &rank_table = auto &rank_table =
scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>(); scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>();
...@@ -103,6 +105,10 @@ class ArrayToLoDTensorOp : public framework::OperatorBase { ...@@ -103,6 +105,10 @@ class ArrayToLoDTensorOp : public framework::OperatorBase {
continue; continue;
} }
auto slice = out->Slice(out_offset, out_offset + len); auto slice = out->Slice(out_offset, out_offset + len);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::CopyFrom(x[x_idx].Slice(start_offset, end_offset), place, framework::CopyFrom(x[x_idx].Slice(start_offset, end_offset), place,
dev_ctx, &slice); dev_ctx, &slice);
out_offset += len; out_offset += len;
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/framework/data_type.h" #include "paddle/framework/data_type.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/var_type.h" #include "paddle/framework/var_type.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -71,7 +72,7 @@ class AssignOp : public framework::OperatorBase { ...@@ -71,7 +72,7 @@ class AssignOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto *x = scope.FindVar(Input("X")); auto *x = scope.FindVar(Input("X"));
if (x == nullptr) { if (x == nullptr) {
return; return;
...@@ -80,6 +81,10 @@ class AssignOp : public framework::OperatorBase { ...@@ -80,6 +81,10 @@ class AssignOp : public framework::OperatorBase {
PADDLE_ENFORCE( PADDLE_ENFORCE(
out != nullptr, out != nullptr,
"The Output(Out) should not be null if the Input(X) is set."); "The Output(Out) should not be null if the Input(X) is set.");
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::VisitVarType(*x, AssignFunctor(out, dev_ctx)); framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
} }
}; };
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/beam_search_decode_op.h" #include "paddle/operators/beam_search_decode_op.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -55,7 +56,10 @@ class BeamSearchDecodeOp : public framework::OperatorBase { ...@@ -55,7 +56,10 @@ class BeamSearchDecodeOp : public framework::OperatorBase {
const framework::AttributeMap& attrs) const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::Place& dev_place) const override {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Get();
auto& dev_ctx = *pool.Borrow(dev_place);
framework::ExecutionContext ctx(*this, scope, dev_ctx); framework::ExecutionContext ctx(*this, scope, dev_ctx);
const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids"); const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
......
...@@ -189,7 +189,7 @@ class BeamSearchOp : public framework::OperatorBase { ...@@ -189,7 +189,7 @@ class BeamSearchOp : public framework::OperatorBase {
} }
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::Place& dev_place) const override {
LOG(INFO) << "run beam search op"; LOG(INFO) << "run beam search op";
auto ids_var = scope.FindVar(Input("ids")); auto ids_var = scope.FindVar(Input("ids"));
auto scores_var = scope.FindVar(Input("scores")); auto scores_var = scope.FindVar(Input("scores"));
......
...@@ -13,9 +13,9 @@ See the License for the specific language governing permissions and ...@@ -13,9 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/cond_op.h" #include "paddle/operators/cond_op.h"
#include "paddle/operators/gather.h" #include "paddle/operators/gather.h"
#include "paddle/operators/scatter.h" #include "paddle/operators/scatter.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -193,12 +193,15 @@ void CondOp::MergeDataFromSubnet(const framework::Scope& scope, ...@@ -193,12 +193,15 @@ void CondOp::MergeDataFromSubnet(const framework::Scope& scope,
} }
} }
void CondOp::Run(const Scope& scope, void CondOp::Run(const Scope& scope, const platform::Place& place) const {
const platform::DeviceContext& dev_ctx) const { // get device context from pool
platform::DeviceContextPool& pool = platform::DeviceContextPool::Get();
auto& dev_ctx = *pool.Borrow(place);
PrepareDataForSubnet(scope, dev_ctx); PrepareDataForSubnet(scope, dev_ctx);
std::vector<framework::Scope*>& sub_scopes = GetSubScopes(scope); std::vector<framework::Scope*>& sub_scopes = GetSubScopes(scope);
for (int i = 0; i < BRANCH_NUM; ++i) { for (int i = 0; i < BRANCH_NUM; ++i) {
sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx); sub_net_op_[i]->Run(*sub_scopes[i], place);
} }
MergeDataFromSubnet(scope, dev_ctx); MergeDataFromSubnet(scope, dev_ctx);
} }
......
...@@ -78,7 +78,7 @@ class CondOp : public framework::OperatorBase { ...@@ -78,7 +78,7 @@ class CondOp : public framework::OperatorBase {
} }
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override; const platform::Place& place) const override;
private: private:
const int TRUE_BRANCH = 0; const int TRUE_BRANCH = 0;
......
...@@ -51,7 +51,7 @@ class ConditionalBlockOp : public ConditionalOp { ...@@ -51,7 +51,7 @@ class ConditionalBlockOp : public ConditionalOp {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: ConditionalOp(type, inputs, outputs, attrs) {} : ConditionalOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto xs = InputTensors(scope); auto xs = InputTensors(scope);
bool need_run = std::all_of( bool need_run = std::all_of(
xs.begin(), xs.end(), xs.begin(), xs.end(),
...@@ -65,8 +65,8 @@ class ConditionalBlockOp : public ConditionalOp { ...@@ -65,8 +65,8 @@ class ConditionalBlockOp : public ConditionalOp {
scopes->front() = &scope.NewScope(); scopes->front() = &scope.NewScope();
auto &cur_scope = *scopes->front(); auto &cur_scope = *scopes->front();
framework::Executor exec(dev_place);
auto *block = Attr<framework::BlockDesc *>("sub_block"); auto *block = Attr<framework::BlockDesc *>("sub_block");
framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false); exec.Run(*block->Program(), &cur_scope, block->ID(), false);
} }
} }
...@@ -104,7 +104,7 @@ class ConditionalBlockGradOp : public ConditionalOp { ...@@ -104,7 +104,7 @@ class ConditionalBlockGradOp : public ConditionalOp {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: ConditionalOp(type, inputs, outputs, attrs) {} : ConditionalOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto xs = this->InputTensors(scope); auto xs = this->InputTensors(scope);
bool need_run = std::all_of( bool need_run = std::all_of(
xs.begin(), xs.end(), xs.begin(), xs.end(),
...@@ -116,21 +116,21 @@ class ConditionalBlockGradOp : public ConditionalOp { ...@@ -116,21 +116,21 @@ class ConditionalBlockGradOp : public ConditionalOp {
auto &scopes = scope_var->Get<std::vector<framework::Scope *>>(); auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
framework::Scope &cur_scope = *scopes[0]; framework::Scope &cur_scope = *scopes[0];
framework::Executor exec(dev_place);
auto *block = Attr<framework::BlockDesc *>("sub_block"); auto *block = Attr<framework::BlockDesc *>("sub_block");
framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false); exec.Run(*block->Program(), &cur_scope, block->ID(), false);
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("Params"), AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("Params"),
Outputs(framework::GradVarName("Params"))); Outputs(framework::GradVarName("Params")));
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("X"), AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("X"),
Outputs(framework::GradVarName("X"))); Outputs(framework::GradVarName("X")));
} }
} }
private: private:
void AssignLocalGradientToGlobal( void AssignLocalGradientToGlobal(
const platform::DeviceContext &dev_ctx, const framework::Scope &cur_scope, const platform::Place &place, const framework::Scope &cur_scope,
const std::vector<std::string> &p_names, const std::vector<std::string> &p_names,
const std::vector<std::string> &pg_names) const { const std::vector<std::string> &pg_names) const {
for (size_t i = 0; i < p_names.size(); ++i) { for (size_t i = 0; i < p_names.size(); ++i) {
...@@ -144,7 +144,7 @@ class ConditionalBlockGradOp : public ConditionalOp { ...@@ -144,7 +144,7 @@ class ConditionalBlockGradOp : public ConditionalOp {
auto assign = framework::OpRegistry::CreateOp( auto assign = framework::OpRegistry::CreateOp(
"assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}}, "assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}},
framework::AttributeMap{}); framework::AttributeMap{});
assign->Run(cur_scope, dev_ctx); assign->Run(cur_scope, place);
cur_scope.Rename(new_in_grad_name, in_grad_name); cur_scope.Rename(new_in_grad_name, in_grad_name);
} }
} }
......
...@@ -25,7 +25,7 @@ class FeedOp : public framework::OperatorBase { ...@@ -25,7 +25,7 @@ class FeedOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto feed_var_name = Input("X"); auto feed_var_name = Input("X");
auto *feed_var = scope.FindVar(feed_var_name); auto *feed_var = scope.FindVar(feed_var_name);
...@@ -47,7 +47,12 @@ class FeedOp : public framework::OperatorBase { ...@@ -47,7 +47,12 @@ class FeedOp : public framework::OperatorBase {
auto &feed_list = feed_var->Get<framework::FeedFetchList>(); auto &feed_list = feed_var->Get<framework::FeedFetchList>();
auto &feed_item = feed_list.at(static_cast<size_t>(col)); auto &feed_item = feed_list.at(static_cast<size_t>(col));
auto *out_item = out_var->GetMutable<framework::FeedFetchType>(); auto *out_item = out_var->GetMutable<framework::FeedFetchType>();
framework::CopyFrom(feed_item, dev_ctx.GetPlace(), dev_ctx, out_item);
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::CopyFrom(feed_item, place, dev_ctx, out_item);
out_item->set_lod(feed_item.lod()); out_item->set_lod(feed_item.lod());
} }
}; };
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include "paddle/framework/feed_fetch_type.h" #include "paddle/framework/feed_fetch_type.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -26,7 +27,7 @@ class FetchOp : public framework::OperatorBase { ...@@ -26,7 +27,7 @@ class FetchOp : public framework::OperatorBase {
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto fetch_var_name = Input("X"); auto fetch_var_name = Input("X");
auto *fetch_var = scope.FindVar(fetch_var_name); auto *fetch_var = scope.FindVar(fetch_var_name);
PADDLE_ENFORCE(fetch_var != nullptr, PADDLE_ENFORCE(fetch_var != nullptr,
...@@ -51,6 +52,9 @@ class FetchOp : public framework::OperatorBase { ...@@ -51,6 +52,9 @@ class FetchOp : public framework::OperatorBase {
// FIXME(yuyang18): Should we assume the fetch operator always generate // FIXME(yuyang18): Should we assume the fetch operator always generate
// CPU outputs? // CPU outputs?
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
CopyFrom(src_item, platform::CPUPlace(), dev_ctx, &dst_item); CopyFrom(src_item, platform::CPUPlace(), dev_ctx, &dst_item);
dev_ctx.Wait(); dev_ctx.Wait();
dst_item.set_lod(src_item.lod()); dst_item.set_lod(src_item.lod());
......
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/framework/data_type.h" #include "paddle/framework/data_type.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h" #include "paddle/operators/math/math_function.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -33,7 +34,7 @@ class FillConstantOp : public framework::OperatorBase { ...@@ -33,7 +34,7 @@ class FillConstantOp : public framework::OperatorBase {
public: public:
using framework::OperatorBase::OperatorBase; using framework::OperatorBase::OperatorBase;
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto data_type = auto data_type =
static_cast<framework::proto::DataType>(Attr<int>("dtype")); static_cast<framework::proto::DataType>(Attr<int>("dtype"));
auto value = Attr<float>("value"); auto value = Attr<float>("value");
...@@ -45,8 +46,11 @@ class FillConstantOp : public framework::OperatorBase { ...@@ -45,8 +46,11 @@ class FillConstantOp : public framework::OperatorBase {
auto cpu = platform::CPUPlace(); auto cpu = platform::CPUPlace();
out.mutable_data(cpu, framework::ToTypeIndex(data_type)); out.mutable_data(cpu, framework::ToTypeIndex(data_type));
} else { } else {
out.mutable_data(dev_ctx.GetPlace(), framework::ToTypeIndex(data_type)); out.mutable_data(dev_place, framework::ToTypeIndex(data_type));
} }
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(dev_place);
math::set_constant(dev_ctx, &out, value); math::set_constant(dev_ctx, &out, value);
} }
}; };
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/framework/data_type.h" #include "paddle/framework/data_type.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/detail/safe_ref.h" #include "paddle/operators/detail/safe_ref.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -42,7 +43,7 @@ class FillOp : public framework::OperatorBase { ...@@ -42,7 +43,7 @@ class FillOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto &out = auto &out =
detail::Ref(detail::Ref(scope.FindVar(Output("Out")), detail::Ref(detail::Ref(scope.FindVar(Output("Out")),
"Cannot find variable %s", Output("Out")) "Cannot find variable %s", Output("Out"))
...@@ -51,12 +52,11 @@ class FillOp : public framework::OperatorBase { ...@@ -51,12 +52,11 @@ class FillOp : public framework::OperatorBase {
auto dtype = static_cast<framework::proto::DataType>(Attr<int>("dtype")); auto dtype = static_cast<framework::proto::DataType>(Attr<int>("dtype"));
platform::CPUPlace cpu; platform::CPUPlace cpu;
auto force_cpu = Attr<bool>("force_cpu"); auto force_cpu = Attr<bool>("force_cpu");
out.mutable_data(force_cpu ? cpu : dev_ctx.GetPlace(), out.mutable_data(force_cpu ? cpu : place, framework::ToTypeIndex(dtype));
framework::ToTypeIndex(dtype));
framework::LoDTensor tensor; framework::LoDTensor tensor;
if (force_cpu || platform::is_cpu_place(dev_ctx.GetPlace())) { if (force_cpu || platform::is_cpu_place(place)) {
tensor.ShareDataWith(out); tensor.ShareDataWith(out);
} else { } else {
// Always make tensor in CPU memory. // Always make tensor in CPU memory.
...@@ -67,9 +67,11 @@ class FillOp : public framework::OperatorBase { ...@@ -67,9 +67,11 @@ class FillOp : public framework::OperatorBase {
framework::VisitDataType( framework::VisitDataType(
dtype, FillOpVisitor(&tensor, Attr<std::vector<float>>("value"))); dtype, FillOpVisitor(&tensor, Attr<std::vector<float>>("value")));
if (!force_cpu && platform::is_gpu_place(dev_ctx.GetPlace())) { if (!force_cpu && platform::is_gpu_place(place)) {
// Copy tensor to out // Copy tensor to out
framework::CopyFrom(tensor, dev_ctx.GetPlace(), dev_ctx, &out); platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::CopyFrom(tensor, place, dev_ctx, &out);
} }
} }
}; };
......
...@@ -52,7 +52,7 @@ class IncrementOp : public framework::OperatorBase { ...@@ -52,7 +52,7 @@ class IncrementOp : public framework::OperatorBase {
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>(); auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto &out = auto &out =
*scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>(); *scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
......
...@@ -29,7 +29,7 @@ class IsEmptyOp : public framework::OperatorBase { ...@@ -29,7 +29,7 @@ class IsEmptyOp : public framework::OperatorBase {
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
// get input // get input
auto *var = scope.FindVar(Input(kInput)); auto *var = scope.FindVar(Input(kInput));
PADDLE_ENFORCE_NOT_NULL(var); PADDLE_ENFORCE_NOT_NULL(var);
......
...@@ -11,10 +11,10 @@ ...@@ -11,10 +11,10 @@
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <fstream>
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/platform/device_context.h"
#include <fstream>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -26,7 +26,7 @@ class LoadOp : public framework::OperatorBase { ...@@ -26,7 +26,7 @@ class LoadOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto filename = Attr<std::string>("file_path"); auto filename = Attr<std::string>("file_path");
std::ifstream fin(filename); std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s for load op", PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s for load op",
...@@ -40,7 +40,9 @@ class LoadOp : public framework::OperatorBase { ...@@ -40,7 +40,9 @@ class LoadOp : public framework::OperatorBase {
auto *tensor = out_var->GetMutable<framework::LoDTensor>(); auto *tensor = out_var->GetMutable<framework::LoDTensor>();
framework::DeserializeFromStream(fin, tensor); framework::DeserializeFromStream(fin, tensor);
auto place = dev_ctx.GetPlace(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
if (platform::is_gpu_place(place)) { if (platform::is_gpu_place(place)) {
// copy CPU to GPU // copy CPU to GPU
framework::LoDTensor cpu_tensor; framework::LoDTensor cpu_tensor;
......
...@@ -26,7 +26,7 @@ class LoDArrayLengthOp : public framework::OperatorBase { ...@@ -26,7 +26,7 @@ class LoDArrayLengthOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>(); auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>();
auto &out = auto &out =
*scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>(); *scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
......
...@@ -24,7 +24,7 @@ class LoDRankTableOp : public framework::OperatorBase { ...@@ -24,7 +24,7 @@ class LoDRankTableOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>(); auto x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto *out = auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDRankTable>(); scope.FindVar(Output("Out"))->GetMutable<framework::LoDRankTable>();
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/detail/safe_ref.h" #include "paddle/operators/detail/safe_ref.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -32,7 +33,7 @@ class LoDTensorToArrayOp : public framework::OperatorBase { ...@@ -32,7 +33,7 @@ class LoDTensorToArrayOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto &x = detail::Ref(scope.FindVar(Input("X")), "Cannot find input %s", auto &x = detail::Ref(scope.FindVar(Input("X")), "Cannot find input %s",
Input("X")) Input("X"))
.Get<framework::LoDTensor>(); .Get<framework::LoDTensor>();
...@@ -86,6 +87,10 @@ class LoDTensorToArrayOp : public framework::OperatorBase { ...@@ -86,6 +87,10 @@ class LoDTensorToArrayOp : public framework::OperatorBase {
// out[i][offset: offset+len] = x[each_range.begin: each_range.end] // out[i][offset: offset+len] = x[each_range.begin: each_range.end]
auto slice = out[i].Slice(static_cast<int>(offset), auto slice = out[i].Slice(static_cast<int>(offset),
static_cast<int>(offset + len)); static_cast<int>(offset + len));
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::CopyFrom(x.Slice(static_cast<int>(each_range.begin), framework::CopyFrom(x.Slice(static_cast<int>(each_range.begin),
static_cast<int>(each_range.end)), static_cast<int>(each_range.end)),
x.place(), dev_ctx, &slice); x.place(), dev_ctx, &slice);
......
...@@ -94,8 +94,8 @@ class ColwiseSum<platform::CPUDeviceContext, T> { ...@@ -94,8 +94,8 @@ class ColwiseSum<platform::CPUDeviceContext, T> {
T* out_buf = out->mutable_data<T>(out->place()); T* out_buf = out->mutable_data<T>(out->place());
const T* in_buf = input.data<T>(); const T* in_buf = input.data<T>();
for (size_t i = 0; i < height; ++i) { for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
for (size_t j = 0; j < size; ++j) { for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
if (i == 0) { if (i == 0) {
out_buf[j] = in_buf[i * size + j]; out_buf[j] = in_buf[i * size + j];
} else { } else {
......
...@@ -28,7 +28,7 @@ class MaxSeqenceLenOp : public framework::OperatorBase { ...@@ -28,7 +28,7 @@ class MaxSeqenceLenOp : public framework::OperatorBase {
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto &rank_table = auto &rank_table =
scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>(); scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>();
auto *out = auto *out =
......
...@@ -28,7 +28,11 @@ class MergeLoDTensorOp : public framework::OperatorBase { ...@@ -28,7 +28,11 @@ class MergeLoDTensorOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(dev_place);
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>(); auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>(); auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
auto &in_true = scope.FindVar(Input("InTrue"))->Get<framework::LoDTensor>(); auto &in_true = scope.FindVar(Input("InTrue"))->Get<framework::LoDTensor>();
......
...@@ -113,7 +113,7 @@ This operator is used to perform matrix multiplication for input $X$ and $Y$. ...@@ -113,7 +113,7 @@ This operator is used to perform matrix multiplication for input $X$ and $Y$.
The equation is: The equation is:
$$Out = X * Y$$ $$Out = X * Y$$
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$. or not. But the output only shares the LoD information with input $X$.
......
...@@ -24,7 +24,7 @@ class NCCLInitOp : public framework::OperatorBase { ...@@ -24,7 +24,7 @@ class NCCLInitOp : public framework::OperatorBase {
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
const auto &name = Output("Communicator"); const auto &name = Output("Communicator");
PADDLE_ENFORCE_NOT_NULL(scope.FindVar(name), PADDLE_ENFORCE_NOT_NULL(scope.FindVar(name),
"Can not find variable '%s' in the scope.", name); "Can not find variable '%s' in the scope.", name);
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include <vector> #include <vector>
#include "paddle/framework/block_desc.h" #include "paddle/framework/block_desc.h"
#include "paddle/framework/init.h"
#include "paddle/framework/op_desc.h" #include "paddle/framework/op_desc.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/program_desc.h" #include "paddle/framework/program_desc.h"
...@@ -49,7 +50,7 @@ const f::DDim kDims = {100, 100}; ...@@ -49,7 +50,7 @@ const f::DDim kDims = {100, 100};
class NCCLTester : public ::testing::Test { class NCCLTester : public ::testing::Test {
public: public:
virtual void SetUp() override { virtual void SetUp() override {
cpu_ctx = new p::CPUDeviceContext(p::CPUPlace()); paddle::platform::CPUPlace cpu_place;
for (size_t i = 0; i < gpu_list.size(); ++i) { for (size_t i = 0; i < gpu_list.size(); ++i) {
p::GPUPlace place(i); p::GPUPlace place(i);
dev_ctxs.emplace_back(new p::CUDADeviceContext(place)); dev_ctxs.emplace_back(new p::CUDADeviceContext(place));
...@@ -65,6 +66,7 @@ class NCCLTester : public ::testing::Test { ...@@ -65,6 +66,7 @@ class NCCLTester : public ::testing::Test {
} }
void NCCLInitOp() { void NCCLInitOp() {
paddle::platform::CPUPlace cpu_place;
std::unique_ptr<f::OpDesc> op1(new f::OpDesc); std::unique_ptr<f::OpDesc> op1(new f::OpDesc);
op1->SetType("ncclInit"); op1->SetType("ncclInit");
...@@ -76,7 +78,7 @@ class NCCLTester : public ::testing::Test { ...@@ -76,7 +78,7 @@ class NCCLTester : public ::testing::Test {
auto op = f::OpRegistry::CreateOp(*op1); auto op = f::OpRegistry::CreateOp(*op1);
VLOG(1) << "invoke NCCLInitOp."; VLOG(1) << "invoke NCCLInitOp.";
op->Run(g_scope, *cpu_ctx); op->Run(g_scope, cpu_place);
VLOG(1) << "NCCLInitOp finished."; VLOG(1) << "NCCLInitOp finished.";
} }
...@@ -111,13 +113,12 @@ class NCCLTester : public ::testing::Test { ...@@ -111,13 +113,12 @@ class NCCLTester : public ::testing::Test {
VLOG(1) << "Device : " << gpu_id << " invoke " << op_desc.Type(); VLOG(1) << "Device : " << gpu_id << " invoke " << op_desc.Type();
VLOG(1) << " send_tensor : " << send_tensor->numel() VLOG(1) << " send_tensor : " << send_tensor->numel()
<< " recv_tensor : " << recv_tensor->numel(); << " recv_tensor : " << recv_tensor->numel();
op->Run(*scope, *ctx); op->Run(*scope, place);
VLOG(1) << "Device : " << gpu_id << " finished " << op_desc.Type(); VLOG(1) << "Device : " << gpu_id << " finished " << op_desc.Type();
} }
public: public:
std::vector<p::DeviceContext *> dev_ctxs; std::vector<p::DeviceContext *> dev_ctxs;
p::DeviceContext *cpu_ctx;
f::Scope g_scope; f::Scope g_scope;
std::mutex mu; std::mutex mu;
}; };
...@@ -131,14 +132,14 @@ TEST(NCCL, ncclInitOp) { ...@@ -131,14 +132,14 @@ TEST(NCCL, ncclInitOp) {
op_desc->SetAttr("gpus", {gpu_list}); op_desc->SetAttr("gpus", {gpu_list});
f::Scope g_scope; f::Scope g_scope;
std::unique_ptr<p::DeviceContext> ctx(new p::CPUDeviceContext(p::CPUPlace())); paddle::platform::CPUPlace cpu_place;
auto *var = g_scope.Var("x1"); auto *var = g_scope.Var("x1");
var->GetMutable<p::Communicator>(); var->GetMutable<p::Communicator>();
auto op = f::OpRegistry::CreateOp(*op_desc); auto op = f::OpRegistry::CreateOp(*op_desc);
VLOG(1) << "invoke NCCLInitOp."; VLOG(1) << "invoke NCCLInitOp.";
op->Run(g_scope, *ctx.get()); op->Run(g_scope, cpu_place);
VLOG(1) << "NCCLInitOp finished."; VLOG(1) << "NCCLInitOp finished.";
} }
...@@ -294,9 +295,18 @@ int main(int argc, char **argv) { ...@@ -294,9 +295,18 @@ int main(int argc, char **argv) {
return 0; return 0;
} }
for (int i = 0; i < dev_count; ++i) { std::vector<paddle::platform::Place> places;
places.emplace_back(paddle::platform::CPUPlace());
int count = paddle::platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
places.emplace_back(paddle::platform::GPUPlace(i));
gpu_list.emplace_back(i); gpu_list.emplace_back(i);
} }
VLOG(0) << " DeviceCount " << count;
paddle::platform::DeviceContextPool::Create(places);
testing::InitGoogleTest(&argc, argv); testing::InitGoogleTest(&argc, argv);
// device context should be release before scope. // device context should be release before scope.
......
...@@ -65,9 +65,9 @@ class NetOp : public framework::OperatorBase { ...@@ -65,9 +65,9 @@ class NetOp : public framework::OperatorBase {
* will be used. * will be used.
*/ */
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::Place& place) const override {
for (auto& op : ops_) { for (auto& op : ops_) {
op->Run(scope, dev_ctx); op->Run(scope, place);
} }
} }
......
...@@ -13,8 +13,7 @@ class TestOp : public framework::OperatorBase { ...@@ -13,8 +13,7 @@ class TestOp : public framework::OperatorBase {
public: public:
using framework::OperatorBase::OperatorBase; using framework::OperatorBase::OperatorBase;
DEFINE_OP_CLONE_METHOD(TestOp); DEFINE_OP_CLONE_METHOD(TestOp);
void Run(const Scope& scope, void Run(const Scope& scope, const platform::Place& place) const override {
const platform::DeviceContext& dev_ctx) const override {
++run_cnt; ++run_cnt;
} }
}; };
......
...@@ -154,13 +154,14 @@ class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -154,13 +154,14 @@ class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker {
"Noting that reducing on the first dim will make the LoD info lost.") "Noting that reducing on the first dim will make the LoD info lost.")
.SetDefault(0); .SetDefault(0);
AddComment(R"DOC( AddComment(R"DOC(
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model's
model performance. performance.
Within some context, e.g. the "query", a LTR model generates scores
for a list of items, which gives a partial order of the items. Within some context, e.g. the "query", a LTR model generates scores for a list
PositiveNegativePairOp takes a list of reference rank order of items, which gives a partial order of the items. PositiveNegativePairOp
(Input("Label")) and the model generated scores (Input(Score)) as takes a list of reference rank order (Input("Label")) and the model generated
inputs and counts the pairs that ranked correctly and incorrectly. scores (Input(Score)) as inputs and counts the pairs that ranked correctly
and incorrectly.
)DOC"); )DOC");
} }
}; };
......
...@@ -227,14 +227,15 @@ class RecurrentOp : public RecurrentBase { ...@@ -227,14 +227,15 @@ class RecurrentOp : public RecurrentBase {
: RecurrentBase(type, inputs, outputs, attrs) {} : RecurrentBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope)); auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
VLOG(3) << "Static RNN input sequence length = " << seq_len; VLOG(3) << "Static RNN input sequence length = " << seq_len;
StepScopes scopes = CreateStepScopes(scope, seq_len); StepScopes scopes = CreateStepScopes(scope, seq_len);
auto reverse = Attr<bool>(kReverse); auto reverse = Attr<bool>(kReverse);
framework::Executor executor(dev_ctx); framework::Executor executor(place);
auto *block = Attr<framework::BlockDesc *>(kStepBlock); auto *block = Attr<framework::BlockDesc *>(kStepBlock);
auto *program = block->Program(); auto *program = block->Program();
for (size_t i = 0; i < seq_len; ++i) { for (size_t i = 0; i < seq_len; ++i) {
...@@ -270,6 +271,10 @@ class RecurrentOp : public RecurrentBase { ...@@ -270,6 +271,10 @@ class RecurrentOp : public RecurrentBase {
executor.Run(*program, &cur_scope, block->ID(), executor.Run(*program, &cur_scope, block->ID(),
false /*create_local_scope*/); false /*create_local_scope*/);
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
// Copy inside::output -> outside::output // Copy inside::output -> outside::output
// outside::output[seq_offset: seq_offset + 1] = inside::output // outside::output[seq_offset: seq_offset + 1] = inside::output
this->LinkTensorWithCallback( this->LinkTensorWithCallback(
...@@ -278,14 +283,13 @@ class RecurrentOp : public RecurrentBase { ...@@ -278,14 +283,13 @@ class RecurrentOp : public RecurrentBase {
framework::LoDTensor *dst_tensor) { framework::LoDTensor *dst_tensor) {
if (i == 0) { // create output tensor at begin if (i == 0) { // create output tensor at begin
dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims())); dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
dst_tensor->mutable_data(dev_ctx.GetPlace(), src_tensor.type()); dst_tensor->mutable_data(place, src_tensor.type());
} }
auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1); auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
// Explicit copy output since the local RNN scope can be destroyed // Explicit copy output since the local RNN scope can be destroyed
// early. // early.
framework::CopyFrom(src_tensor, dev_ctx.GetPlace(), dev_ctx, framework::CopyFrom(src_tensor, place, dev_ctx, &dst_out);
&dst_out);
}); });
scopes.Next(); scopes.Next();
...@@ -311,15 +315,20 @@ class RecurrentGradOp : public RecurrentBase { ...@@ -311,15 +315,20 @@ class RecurrentGradOp : public RecurrentBase {
: RecurrentBase(type, inputs, outputs, attrs) {} : RecurrentBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto seq_len = static_cast<size_t>(GetSequenceLength(scope)); auto seq_len = static_cast<size_t>(GetSequenceLength(scope));
StepScopes scopes = CreateStepScopes(scope, seq_len); StepScopes scopes = CreateStepScopes(scope, seq_len);
auto reverse = Attr<bool>(kReverse); auto reverse = Attr<bool>(kReverse);
framework::Executor executor(dev_ctx); framework::Executor executor(place);
auto *block = Attr<framework::BlockDesc *>(kStepBlock); auto *block = Attr<framework::BlockDesc *>(kStepBlock);
auto *program = block->Program(); auto *program = block->Program();
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
for (size_t step_id = 0; step_id < seq_len; ++step_id) { for (size_t step_id = 0; step_id < seq_len; ++step_id) {
size_t seq_offset = reverse ? step_id : seq_len - step_id - 1; size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
VLOG(3) << "Recurrent backward operate at the time step " << seq_offset; VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
...@@ -366,8 +375,7 @@ class RecurrentGradOp : public RecurrentBase { ...@@ -366,8 +375,7 @@ class RecurrentGradOp : public RecurrentBase {
auto *cur_grad_var = cur_scope.Var(cur_grad); auto *cur_grad_var = cur_scope.Var(cur_grad);
auto cur_grad_tensor = auto cur_grad_tensor =
cur_grad_var->GetMutable<framework::LoDTensor>(); cur_grad_var->GetMutable<framework::LoDTensor>();
framework::CopyFrom(ex_tensor, dev_ctx.GetPlace(), dev_ctx, framework::CopyFrom(ex_tensor, place, dev_ctx, cur_grad_tensor);
cur_grad_tensor);
} }
} }
...@@ -410,7 +418,7 @@ class RecurrentGradOp : public RecurrentBase { ...@@ -410,7 +418,7 @@ class RecurrentGradOp : public RecurrentBase {
auto zero_op = framework::OpRegistry::CreateOp( auto zero_op = framework::OpRegistry::CreateOp(
"fill_constant", framework::VariableNameMap{}, "fill_constant", framework::VariableNameMap{},
{{"Out", {pg_names[param_id]}}}, attrs); {{"Out", {pg_names[param_id]}}}, attrs);
zero_op->Run(scope, dev_ctx); zero_op->Run(scope, place);
} }
auto new_inside_name = cur_scope.Rename(inside_grad_name); auto new_inside_name = cur_scope.Rename(inside_grad_name);
...@@ -419,7 +427,7 @@ class RecurrentGradOp : public RecurrentBase { ...@@ -419,7 +427,7 @@ class RecurrentGradOp : public RecurrentBase {
auto sum_op = framework::OpRegistry::CreateOp( auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {pg_names[param_id], new_inside_name}}}, "sum", {{"X", {pg_names[param_id], new_inside_name}}},
{{"Out", {pg_names[param_id]}}}, framework::AttributeMap{}); {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
sum_op->Run(cur_scope, dev_ctx); sum_op->Run(cur_scope, place);
cur_scope.Rename(new_inside_name, inside_grad_name); cur_scope.Rename(new_inside_name, inside_grad_name);
} }
...@@ -437,11 +445,11 @@ class RecurrentGradOp : public RecurrentBase { ...@@ -437,11 +445,11 @@ class RecurrentGradOp : public RecurrentBase {
} }
if (step_id == 0) { // alloc memory if (step_id == 0) { // alloc memory
outside->Resize(PrependDims(seq_len, inside.dims())); outside->Resize(PrependDims(seq_len, inside.dims()));
outside->mutable_data(dev_ctx.GetPlace(), inside.type()); outside->mutable_data(place, inside.type());
} }
auto dst = outside->Slice(seq_offset, seq_offset + 1); auto dst = outside->Slice(seq_offset, seq_offset + 1);
framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, &dst); framework::CopyFrom(inside, place, dev_ctx, &dst);
}); });
VLOG(5) << "Link outside gradient finished "; VLOG(5) << "Link outside gradient finished ";
...@@ -453,8 +461,8 @@ class RecurrentGradOp : public RecurrentBase { ...@@ -453,8 +461,8 @@ class RecurrentGradOp : public RecurrentBase {
[&](const framework::LoDTensor &inside, [&](const framework::LoDTensor &inside,
framework::LoDTensor *outside) { framework::LoDTensor *outside) {
outside->Resize(inside.dims()); outside->Resize(inside.dims());
outside->mutable_data(dev_ctx.GetPlace(), inside.type()); outside->mutable_data(place, inside.type());
framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, outside); framework::CopyFrom(inside, place, dev_ctx, outside);
}); });
VLOG(5) << "Link initialize state gradient finished "; VLOG(5) << "Link initialize state gradient finished ";
} }
......
...@@ -73,7 +73,7 @@ class RecvOp : public framework::OperatorBase { ...@@ -73,7 +73,7 @@ class RecvOp : public framework::OperatorBase {
} }
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
// FIXME(typhoonzero): no new scopes for every run. // FIXME(typhoonzero): no new scopes for every run.
framework::Scope &recv_scope = scope.NewScope(); framework::Scope &recv_scope = scope.NewScope();
rpc_service_->SetScope(&recv_scope); rpc_service_->SetScope(&recv_scope);
...@@ -113,7 +113,9 @@ class RecvOp : public framework::OperatorBase { ...@@ -113,7 +113,9 @@ class RecvOp : public framework::OperatorBase {
auto *var = recv_scope.Var(grad_var_name); auto *var = recv_scope.Var(grad_var_name);
auto *tensor = var->GetMutable<framework::LoDTensor>(); auto *tensor = var->GetMutable<framework::LoDTensor>();
// FIXME(typhoonzero): do not copy // FIXME(typhoonzero): do not copy
framework::CopyFrom(v.second, dev_ctx.GetPlace(), dev_ctx, tensor); platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::CopyFrom(v.second, place, dev_ctx, tensor);
} }
rpc_service_->Reset(); rpc_service_->Reset();
...@@ -121,7 +123,7 @@ class RecvOp : public framework::OperatorBase { ...@@ -121,7 +123,7 @@ class RecvOp : public framework::OperatorBase {
framework::proto::ProgramDesc program_desc; framework::proto::ProgramDesc program_desc;
program_desc.ParseFromString(program_str); program_desc.ParseFromString(program_str);
framework::ProgramDesc program(program_desc); framework::ProgramDesc program(program_desc);
framework::Executor executor(dev_ctx); framework::Executor executor(place);
// Run sub graph to get optimized tensor // Run sub graph to get optimized tensor
try { try {
executor.Run(program, &recv_scope, 0, /*global_block*/ executor.Run(program, &recv_scope, 0, /*global_block*/
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/detail/safe_ref.h"
#include "paddle/platform/device_context.h"
namespace paddle {
namespace operators {
class ReorderLoDTensorByRankTableOpProtoMaker
: public framework::OpProtoAndCheckerMaker {
public:
ReorderLoDTensorByRankTableOpProtoMaker(OpProto *proto,
OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(LoDTensor) the input lod tensor need to be reordered.");
AddInput("RankTable",
"(LoDRankTable) the rank table that input need follow");
AddOutput("Out", "(LoDTensor) reordered lod tensor");
AddComment(R"DOC(ReorderLoDTensorByRankTable
Reorder the input X by the rank of `RankTable`. If `RankTable` is ordered by
index [3, 0, 2, 1]. Input X will reorder its sequence, the third sequence of
X will be the first sequence of Output.
NOTE: The RankTable does not need to be calculated by X.
For example:
The X = [Seq0, Seq1, Seq2, Seq3]. The indices of RankTable are [3, 0, 2, 1].
The Out = [Seq3, Seq0, Seq2, Seq1] with correct LoD information.
)DOC");
}
};
class ReorderLoDTensorByRankTableBase : public framework::OperatorBase {
public:
ReorderLoDTensorByRankTableBase(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::Place &place) const override {
auto &x =
detail::Ref(scope.FindVar(Input("X")),
"Cannot find input lod tensor variable %s", Input("X"))
.Get<framework::LoDTensor>();
auto &rank_table = detail::Ref(scope.FindVar(Input("RankTable")),
"Cannot find input rank table variable %s",
Input("RankTable"))
.Get<framework::LoDRankTable>();
auto &out =
*detail::Ref(scope.FindVar(Output("Out")),
"Cannot find output lod tensor variable %s", Output("Out"))
.GetMutable<framework::LoDTensor>();
out.Resize(x.dims());
out.mutable_data(x.place(), x.type());
this->process(place, x, rank_table, &out);
}
protected:
virtual void process(const platform::Place &place,
const framework::LoDTensor &x,
const framework::LoDRankTable &rank_table,
framework::LoDTensor *out) const = 0;
struct AbsoluteRankTableItem {
size_t offset; // the absolute/accumulated offset.
size_t length; // the length
framework::LoD lod;
};
std::vector<AbsoluteRankTableItem> GetAbsoluteOffsetAndLengthByLoDRankTable(
const framework::LoDTensor &x) const {
std::vector<AbsoluteRankTableItem> absolute_table;
size_t level = 0;
size_t size = x.lod()[level].size();
for (size_t i = 0; i < size - 1; ++i) {
auto lod_offset =
framework::GetSubLoDAndAbsoluteOffset(x.lod(), i, i + 1, level);
auto &offset = lod_offset.second;
absolute_table.emplace_back();
absolute_table.back().length = offset.second - offset.first;
absolute_table.back().offset = offset.first;
absolute_table.back().lod = lod_offset.first;
}
return absolute_table;
}
size_t CopyTensorAndLod(const platform::Place &place,
const AbsoluteRankTableItem &item,
const framework::LoDTensor &x,
framework::LoDTensor *out, size_t out_offset) const {
auto &out_lod = *out->mutable_lod();
auto len = item.length;
auto x_offset = item.offset;
if (out_lod.empty()) {
for (size_t i = 0; i < item.lod.size(); ++i) {
out_lod.push_back(std::vector<size_t>({0}));
}
}
for (size_t i = 0; i < out_lod.size(); ++i) {
auto &out_v = out_lod[i];
auto &new_lod_v = item.lod[i];
for (auto &detail : new_lod_v) {
out_v.push_back(out_v.back() + detail);
}
}
auto x_sliced = x.Slice(x_offset, x_offset + len);
auto out_sliced = out->Slice(out_offset, out_offset + len);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::CopyFrom(x_sliced, out_sliced.place(), dev_ctx, &out_sliced);
out_offset += len;
return out_offset;
}
};
class ReorderLoDTensorByRankTableOp : public ReorderLoDTensorByRankTableBase {
public:
ReorderLoDTensorByRankTableOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ReorderLoDTensorByRankTableBase(type, inputs, outputs, attrs) {}
protected:
void process(const platform::Place &place, const framework::LoDTensor &x,
const framework::LoDRankTable &rank_table,
framework::LoDTensor *out) const override {
auto absolute_table = GetAbsoluteOffsetAndLengthByLoDRankTable(x);
size_t out_offset = 0;
out->mutable_lod()->clear();
for (auto &item : rank_table.items()) {
PADDLE_ENFORCE_LT(item.index, absolute_table.size());
out_offset = CopyTensorAndLod(place, absolute_table[item.index], x, out,
out_offset);
}
}
};
class IdentityInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
context->SetOutputDim("Out", context->GetInputDim("X"));
}
};
class ReorderLodTensorByRankGradOpMaker
: public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto *grad_op = new framework::OpDesc();
grad_op->SetType("reorder_lod_tensor_by_rank_grad");
grad_op->SetInput("X", OutputGrad("Out"));
grad_op->SetOutput("Out", InputGrad("X"));
grad_op->SetInput("RankTable", Input("RankTable"));
return std::unique_ptr<framework::OpDesc>(grad_op);
}
};
class ReorderLoDTensorByRankGradOp : public ReorderLoDTensorByRankTableBase {
public:
ReorderLoDTensorByRankGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ReorderLoDTensorByRankTableBase(type, inputs, outputs, attrs) {}
protected:
void process(const platform::Place &place, const framework::LoDTensor &x,
const framework::LoDRankTable &rank_table,
framework::LoDTensor *out) const override {
auto absolute_table = GetAbsoluteOffsetAndLengthByLoDRankTable(x);
// offsets = enumerate([item.index for item in rank_table.items()])
std::vector<std::pair<size_t, size_t>> offsets;
offsets.reserve(rank_table.items().size());
for (size_t i = 0; i < rank_table.items().size(); ++i) {
offsets.push_back({i, rank_table.items()[i].index});
}
// offsets.sort(key=lambda x: x[1])
std::sort(
offsets.begin(), offsets.end(),
[](const std::pair<size_t, size_t> &a,
const std::pair<size_t, size_t> &b) { return a.second < b.second; });
// Copy TensorAndLod
size_t out_offset = 0;
for (auto &offset : offsets) {
out_offset = this->CopyTensorAndLod(place, absolute_table[offset.first],
x, out, out_offset);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(reorder_lod_tensor_by_rank,
ops::ReorderLoDTensorByRankTableOp,
ops::ReorderLodTensorByRankGradOpMaker,
ops::ReorderLoDTensorByRankTableOpProtoMaker,
ops::IdentityInferShape);
REGISTER_OPERATOR(reorder_lod_tensor_by_rank_grad,
ops::ReorderLoDTensorByRankGradOp, ops::IdentityInferShape);
...@@ -25,7 +25,7 @@ class RNNMemoryHelperOp : public framework::OperatorBase { ...@@ -25,7 +25,7 @@ class RNNMemoryHelperOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto mem_var_name = Input("X"); auto mem_var_name = Input("X");
auto *mem_var = scope.FindVar(mem_var_name); auto *mem_var = scope.FindVar(mem_var_name);
PADDLE_ENFORCE(mem_var != nullptr, PADDLE_ENFORCE(mem_var != nullptr,
...@@ -77,7 +77,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase { ...@@ -77,7 +77,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto out_grad_var_name = Input(framework::GradVarName("Out")); auto out_grad_var_name = Input(framework::GradVarName("Out"));
auto *out_grad_var = scope.FindVar(out_grad_var_name); auto *out_grad_var = scope.FindVar(out_grad_var_name);
...@@ -100,7 +100,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase { ...@@ -100,7 +100,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase {
auto zero_op = framework::OpRegistry::CreateOp( auto zero_op = framework::OpRegistry::CreateOp(
"fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs); "fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs);
zero_op->Run(scope, dev_ctx); zero_op->Run(scope, dev_place);
} else { } else {
auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>(); auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>(); auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
......
...@@ -21,7 +21,7 @@ USE_NO_KERNEL_OP(load); ...@@ -21,7 +21,7 @@ USE_NO_KERNEL_OP(load);
TEST(SaveLoadOp, CPU) { TEST(SaveLoadOp, CPU) {
paddle::framework::Scope scope; paddle::framework::Scope scope;
paddle::platform::CPUPlace place; paddle::platform::CPUPlace place;
paddle::platform::CPUDeviceContext ctx(place);
auto var = scope.Var("test_var"); auto var = scope.Var("test_var");
auto tensor = var->GetMutable<paddle::framework::LoDTensor>(); auto tensor = var->GetMutable<paddle::framework::LoDTensor>();
tensor->Resize({10, 10}); tensor->Resize({10, 10});
...@@ -42,13 +42,13 @@ TEST(SaveLoadOp, CPU) { ...@@ -42,13 +42,13 @@ TEST(SaveLoadOp, CPU) {
auto save_op = paddle::framework::OpRegistry::CreateOp( auto save_op = paddle::framework::OpRegistry::CreateOp(
"save", {{"X", {"test_var"}}}, {}, attrs); "save", {{"X", {"test_var"}}}, {}, attrs);
save_op->Run(scope, ctx); save_op->Run(scope, place);
auto load_var = scope.Var("out_var"); auto load_var = scope.Var("out_var");
auto target = load_var->GetMutable<paddle::framework::LoDTensor>(); auto target = load_var->GetMutable<paddle::framework::LoDTensor>();
auto load_op = paddle::framework::OpRegistry::CreateOp( auto load_op = paddle::framework::OpRegistry::CreateOp(
"load", {}, {{"Out", {"out_var"}}}, attrs); "load", {}, {{"Out", {"out_var"}}}, attrs);
load_op->Run(scope, ctx); load_op->Run(scope, place);
int* actual = target->data<int>(); int* actual = target->data<int>();
for (int64_t i = 0; i < tensor->numel(); ++i) { for (int64_t i = 0; i < tensor->numel(); ++i) {
EXPECT_EQ(expect[i], actual[i]); EXPECT_EQ(expect[i], actual[i]);
......
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
#include "paddle/framework/framework.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -62,7 +63,7 @@ class SaveOp : public framework::OperatorBase { ...@@ -62,7 +63,7 @@ class SaveOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto filename = Attr<std::string>("file_path"); auto filename = Attr<std::string>("file_path");
auto overwrite = Attr<bool>("overwrite"); auto overwrite = Attr<bool>("overwrite");
...@@ -88,6 +89,11 @@ class SaveOp : public framework::OperatorBase { ...@@ -88,6 +89,11 @@ class SaveOp : public framework::OperatorBase {
"SaveOp only support LoDTensor, %s has wrong type", iname); "SaveOp only support LoDTensor, %s has wrong type", iname);
auto &tensor = var->Get<framework::LoDTensor>(); auto &tensor = var->Get<framework::LoDTensor>();
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
framework::SerializeToStream(fout, tensor, dev_ctx); framework::SerializeToStream(fout, tensor, dev_ctx);
} }
}; };
......
...@@ -27,11 +27,11 @@ class ShrinkRNNMemoryOp : public ArrayOp { ...@@ -27,11 +27,11 @@ class ShrinkRNNMemoryOp : public ArrayOp {
: ArrayOp(type, inputs, outputs, attrs) {} : ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto *x_var = scope.FindVar(Input("X")); auto *x_var = scope.FindVar(Input("X"));
PADDLE_ENFORCE(x_var != nullptr, "Input X must be set"); PADDLE_ENFORCE(x_var != nullptr, "Input X must be set");
auto &x_tensor = x_var->Get<framework::LoDTensor>(); auto &x_tensor = x_var->Get<framework::LoDTensor>();
size_t offset = this->GetOffset(scope, dev_ctx); size_t offset = this->GetOffset(scope, place);
auto *rank_table_var = scope.FindVar(Input("RankTable")); auto *rank_table_var = scope.FindVar(Input("RankTable"));
PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set"); PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set");
auto &rank_table = rank_table_var->Get<framework::LoDRankTable>(); auto &rank_table = rank_table_var->Get<framework::LoDRankTable>();
...@@ -93,7 +93,7 @@ class ShrinkRNNMemoryGradOp : public ArrayOp { ...@@ -93,7 +93,7 @@ class ShrinkRNNMemoryGradOp : public ArrayOp {
: ArrayOp(type, inputs, outputs, attrs) {} : ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out"))); auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out")));
auto *dx_var = scope.FindVar(Output(framework::GradVarName("X"))); auto *dx_var = scope.FindVar(Output(framework::GradVarName("X")));
PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr"); PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr");
...@@ -105,6 +105,10 @@ class ShrinkRNNMemoryGradOp : public ArrayOp { ...@@ -105,6 +105,10 @@ class ShrinkRNNMemoryGradOp : public ArrayOp {
dx_tensor.Resize(x_tensor.dims()); dx_tensor.Resize(x_tensor.dims());
dx_tensor.mutable_data(x_tensor.place(), x_tensor.type()); dx_tensor.mutable_data(x_tensor.place(), x_tensor.type());
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
if (dout_var == nullptr) { // dx_tensor fill zero if (dout_var == nullptr) { // dx_tensor fill zero
math::set_constant(dev_ctx, &dx_tensor, 0.0f); math::set_constant(dev_ctx, &dx_tensor, 0.0f);
} else { } else {
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h" #include "paddle/memory/memcpy.h"
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -33,7 +34,7 @@ class SplitLoDTensorOp : public framework::OperatorBase { ...@@ -33,7 +34,7 @@ class SplitLoDTensorOp : public framework::OperatorBase {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>(); auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>(); auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
auto *out_true = auto *out_true =
...@@ -44,6 +45,9 @@ class SplitLoDTensorOp : public framework::OperatorBase { ...@@ -44,6 +45,9 @@ class SplitLoDTensorOp : public framework::OperatorBase {
auto &x_lod = x.lod(); auto &x_lod = x.lod();
auto &mask_dim = mask.dims(); auto &mask_dim = mask.dims();
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(dev_place);
std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()}; std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
if (platform::is_cpu_place(mask.place())) { if (platform::is_cpu_place(mask.place())) {
cpu_mask->ShareDataWith(mask); cpu_mask->ShareDataWith(mask);
......
...@@ -25,11 +25,11 @@ class WriteToArrayOp : public ArrayOp { ...@@ -25,11 +25,11 @@ class WriteToArrayOp : public ArrayOp {
: ArrayOp(type, inputs, outputs, attrs) {} : ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto *x = scope.FindVar(Input("X")); auto *x = scope.FindVar(Input("X"));
if (x == nullptr) return; if (x == nullptr) return;
auto &x_tensor = x->Get<framework::LoDTensor>(); auto &x_tensor = x->Get<framework::LoDTensor>();
size_t offset = GetOffset(scope, dev_ctx); size_t offset = GetOffset(scope, place);
auto *out = auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>(); scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
if (offset >= out->size()) { if (offset >= out->size()) {
...@@ -39,7 +39,11 @@ class WriteToArrayOp : public ArrayOp { ...@@ -39,7 +39,11 @@ class WriteToArrayOp : public ArrayOp {
} }
if (x_tensor.memory_size() > 0) { if (x_tensor.memory_size() > 0) {
auto *out_tensor = &out->at(offset); auto *out_tensor = &out->at(offset);
CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx, out_tensor);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(place);
CopyFrom(x_tensor, place, dev_ctx, out_tensor);
out_tensor->set_lod(x_tensor.lod()); out_tensor->set_lod(x_tensor.lod());
} else { } else {
VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so " VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so "
...@@ -119,17 +123,18 @@ class ReadFromArrayOp : public ArrayOp { ...@@ -119,17 +123,18 @@ class ReadFromArrayOp : public ArrayOp {
const framework::AttributeMap &attrs) const framework::AttributeMap &attrs)
: ArrayOp(type, inputs, outputs, attrs) {} : ArrayOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &place) const override {
auto *x = scope.FindVar(Input("X")); auto *x = scope.FindVar(Input("X"));
PADDLE_ENFORCE(x != nullptr, "X must be set"); PADDLE_ENFORCE(x != nullptr, "X must be set");
auto &x_array = x->Get<framework::LoDTensorArray>(); auto &x_array = x->Get<framework::LoDTensorArray>();
auto *out = scope.FindVar(Output("Out")); auto *out = scope.FindVar(Output("Out"));
PADDLE_ENFORCE(out != nullptr, "Out must be set"); PADDLE_ENFORCE(out != nullptr, "Out must be set");
auto *out_tensor = out->GetMutable<framework::LoDTensor>(); auto *out_tensor = out->GetMutable<framework::LoDTensor>();
size_t offset = GetOffset(scope, dev_ctx); size_t offset = GetOffset(scope, place);
if (offset < x_array.size()) { if (offset < x_array.size()) {
framework::CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx, platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
out_tensor); auto &dev_ctx = *pool.Borrow(place);
framework::CopyFrom(x_array[offset], place, dev_ctx, out_tensor);
out_tensor->set_lod(x_array[offset].lod()); out_tensor->set_lod(x_array[offset].lod());
} else { } else {
VLOG(10) << "offset " << offset << " >= " << x_array.size(); VLOG(10) << "offset " << offset << " >= " << x_array.size();
......
...@@ -70,16 +70,17 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -70,16 +70,17 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
Transpose Operator. Transpose Operator.
The input tensor will be permuted according to the axis values given. The input tensor will be permuted according to the axis values given.
The op functions similar to how numpy.transpose works in python. The op functions is similar to how numpy.transpose works in python.
For example:
>> input = numpy.arange(6).reshape((2,3)) For example: input = numpy.arange(6).reshape((2,3))
>> input the input is:
array([[0, 1, 2], array([[0, 1, 2],
[3, 4, 5]]) [3, 4, 5]])
>> axis = [1, 0] given axis is: [1, 0]
>> output = input.transpose(axis)
>> output output = input.transpose(axis)
array([[0, 3], then the output is:
array([[0, 3],
[1, 4], [1, 4],
[2, 5]]) [2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
......
...@@ -53,16 +53,14 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -53,16 +53,14 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
"(string), unpooling type, can be \"max\" for max-unpooling ") "(string), unpooling type, can be \"max\" for max-unpooling ")
.InEnum({"max"}); .InEnum({"max"});
AddComment(R"DOC( AddComment(R"DOC(
"Input shape: $(N, C_{in}, H_{in}, W_{in})$ Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
Output shape: $(N, C_{out}, H_{out}, W_{out})$ $(N, C_{out}, H_{out}, W_{out})$, where
Where $$
$$ H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\ W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1] $$
$$ Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017 )DOC");
/07/iccv2011.pdf
)DOC");
} }
}; };
......
...@@ -40,13 +40,14 @@ class WhileOp : public framework::OperatorBase { ...@@ -40,13 +40,14 @@ class WhileOp : public framework::OperatorBase {
: framework::OperatorBase(type, inputs, outputs, attrs) {} : framework::OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition))); PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>(); auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1})); PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));
framework::Executor executor(dev_ctx); framework::Executor executor(dev_place);
auto *block = Attr<framework::BlockDesc *>(kStepBlock); auto *block = Attr<framework::BlockDesc *>(kStepBlock);
auto *program = block->Program(); auto *program = block->Program();
auto step_scopes = auto step_scopes =
...@@ -97,8 +98,8 @@ class WhileGradOp : public framework::OperatorBase { ...@@ -97,8 +98,8 @@ class WhileGradOp : public framework::OperatorBase {
: framework::OperatorBase(type, inputs, outputs, attrs) {} : framework::OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope, void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override { const platform::Place &dev_place) const override {
framework::Executor executor(dev_ctx); framework::Executor executor(dev_place);
auto *block = Attr<framework::BlockDesc *>(kStepBlock); auto *block = Attr<framework::BlockDesc *>(kStepBlock);
auto *program = block->Program(); auto *program = block->Program();
...@@ -189,7 +190,7 @@ class WhileGradOp : public framework::OperatorBase { ...@@ -189,7 +190,7 @@ class WhileGradOp : public framework::OperatorBase {
auto zero_op = framework::OpRegistry::CreateOp( auto zero_op = framework::OpRegistry::CreateOp(
"fill_constant", framework::VariableNameMap{}, "fill_constant", framework::VariableNameMap{},
{{"Out", {pg_names[param_id]}}}, attrs); {{"Out", {pg_names[param_id]}}}, attrs);
zero_op->Run(scope, dev_ctx); zero_op->Run(scope, dev_place);
} }
} }
...@@ -197,7 +198,7 @@ class WhileGradOp : public framework::OperatorBase { ...@@ -197,7 +198,7 @@ class WhileGradOp : public framework::OperatorBase {
auto sum_op = framework::OpRegistry::CreateOp( auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {pg_names[param_id], new_inside_name}}}, "sum", {{"X", {pg_names[param_id], new_inside_name}}},
{{"Out", {pg_names[param_id]}}}, framework::AttributeMap{}); {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
sum_op->Run(cur_scope, dev_ctx); sum_op->Run(cur_scope, dev_place);
cur_scope.Rename(new_inside_name, inside_grad_name); cur_scope.Rename(new_inside_name, inside_grad_name);
} }
} }
......
...@@ -25,7 +25,7 @@ ENDIF() ...@@ -25,7 +25,7 @@ ENDIF()
# avoiding cycle dependencies # avoiding cycle dependencies
cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator
system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS}) system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS})
nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info) nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info)
nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda)
nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context) nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context)
......
...@@ -15,6 +15,59 @@ limitations under the License. */ ...@@ -15,6 +15,59 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace platform { namespace platform {
DeviceContextPool* DeviceContextPool::pool = nullptr;
const platform::DeviceContext* DeviceContextPool::Borrow(
const platform::Place& place) {
auto it = device_contexts_.find(place);
if (it == device_contexts_.end()) {
PADDLE_THROW(
"'Place' is not supported, Please re-compile with WITH_GPU "
"option");
}
return it->second;
}
std::vector<const platform::DeviceContext*> DeviceContextPool::Borrow(
const std::vector<platform::Place>& places) {
PADDLE_ENFORCE_GT(places.size(), 0);
PADDLE_ENFORCE_LE(places.size(), device_contexts_.size());
std::vector<const platform::DeviceContext*> borrowed_contexts;
for (auto& place : places) {
auto it = device_contexts_.find(place);
if (it != device_contexts_.end()) {
borrowed_contexts.emplace_back(it->second);
} else {
PADDLE_THROW(
"'Place' is not supported, Please re-compile with WITH_GPU "
"option");
}
}
return borrowed_contexts;
}
DeviceContextPool::DeviceContextPool(
const std::vector<platform::Place>& places) {
PADDLE_ENFORCE_GT(places.size(), 0);
for (size_t i = 0; i < places.size(); i++) {
if (platform::is_cpu_place(places[i])) {
device_contexts_.emplace(places[i],
new platform::CPUDeviceContext(
boost::get<platform::CPUPlace>(places[i])));
} else if (platform::is_gpu_place(places[i])) {
#ifdef PADDLE_WITH_CUDA
device_contexts_.emplace(places[i],
new platform::CUDADeviceContext(
boost::get<platform::GPUPlace>(places[i])));
#else
PADDLE_THROW(
"'GPUPlace' is not supported, Please re-compile with WITH_GPU "
"option");
#endif
}
}
}
CPUDeviceContext::CPUDeviceContext() { CPUDeviceContext::CPUDeviceContext() {
eigen_device_.reset(new Eigen::DefaultDevice()); eigen_device_.reset(new Eigen::DefaultDevice());
} }
......
...@@ -11,8 +11,8 @@ limitations under the License. */ ...@@ -11,8 +11,8 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/platform/enforce.h" #include <memory>
#include "paddle/platform/place.h" #include <unordered_map>
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include "paddle/platform/dynload/cublas.h" #include "paddle/platform/dynload/cublas.h"
...@@ -20,10 +20,13 @@ limitations under the License. */ ...@@ -20,10 +20,13 @@ limitations under the License. */
#include "paddle/platform/gpu_info.h" #include "paddle/platform/gpu_info.h"
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#endif #endif
#include <memory>
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "unsupported/Eigen/CXX11/Tensor" #include "unsupported/Eigen/CXX11/Tensor"
#include "glog/logging.h"
namespace paddle { namespace paddle {
namespace platform { namespace platform {
...@@ -105,5 +108,51 @@ class CUDNNDeviceContext : public CUDADeviceContext { ...@@ -105,5 +108,51 @@ class CUDNNDeviceContext : public CUDADeviceContext {
#endif #endif
/*! \brief device context pool singleton */
class DeviceContextPool {
public:
explicit DeviceContextPool(const std::vector<platform::Place>& places);
static DeviceContextPool& Get() {
PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
return *pool;
}
/*! \brief Create should only called by Init function */
static DeviceContextPool& Create(const std::vector<platform::Place>& places) {
if (pool == nullptr) {
pool = new DeviceContextPool(places);
}
return *pool;
}
/*! \brief Return handle of single device context. */
const platform::DeviceContext* Borrow(const platform::Place& place);
/*! \brief Return handle of multi-device context. */
std::vector<const platform::DeviceContext*> Borrow(
const std::vector<platform::Place>& places);
~DeviceContextPool() {}
private:
static DeviceContextPool* pool;
constexpr static int LEFT_SHIFT = 8;
struct Hash {
std::hash<int> hash_;
size_t operator()(const platform::Place& place) const {
int pre_hash = place.which() + (1 << LEFT_SHIFT);
if (platform::is_gpu_place(place)) {
pre_hash += boost::get<platform::GPUPlace>(place).GetDeviceId();
}
return hash_(pre_hash);
}
};
std::unordered_map<const platform::Place, const platform::DeviceContext*,
Hash>
device_contexts_;
DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};
} // namespace platform } // namespace platform
} // namespace paddle } // namespace paddle
...@@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/platform/device_context.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/platform/device_context.h"
#include "glog/logging.h"
TEST(Device, Init) { TEST(Device, Init) {
using paddle::platform::DeviceContext; using paddle::platform::DeviceContext;
...@@ -62,3 +64,54 @@ TEST(Device, CUDNNDeviceContext) { ...@@ -62,3 +64,54 @@ TEST(Device, CUDNNDeviceContext) {
} }
} }
} }
TEST(Device, DeviceContextPool) {
using paddle::platform::DeviceContextPool;
using paddle::platform::CUDADeviceContext;
using paddle::platform::Place;
using paddle::platform::CPUPlace;
using paddle::platform::GPUPlace;
DeviceContextPool& pool = DeviceContextPool::Get();
auto cpu_dev_ctx1 = pool.Borrow(CPUPlace());
auto cpu_dev_ctx2 = pool.Borrow(CPUPlace());
EXPECT_TRUE(cpu_dev_ctx2 == cpu_dev_ctx1);
std::vector<Place> gpu_places;
int count = paddle::platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
gpu_places.emplace_back(GPUPlace(i));
}
auto dev_ctxs = pool.Borrow(gpu_places);
for (size_t i = 0; i < dev_ctxs.size(); ++i) {
auto* dev_ctx = static_cast<const CUDADeviceContext*>(dev_ctxs[i]);
// check same as GPUPlace(i)
GPUPlace place = boost::get<GPUPlace>(dev_ctx->GetPlace());
EXPECT_EQ(place.GetDeviceId(), static_cast<int>(i));
}
}
int main(int argc, char** argv) {
int dev_count = paddle::platform::GetCUDADeviceCount();
if (dev_count <= 1) {
LOG(WARNING) << "Cannot test multi-gpu DeviceContextPool, because the CUDA "
"device count is "
<< dev_count;
return 0;
}
std::vector<paddle::platform::Place> places;
places.emplace_back(paddle::platform::CPUPlace());
int count = paddle::platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
places.emplace_back(paddle::platform::GPUPlace(i));
}
VLOG(0) << " DeviceCount " << count;
paddle::platform::DeviceContextPool::Create(places);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
...@@ -63,6 +63,8 @@ extern void LoadNCCLDSO(); ...@@ -63,6 +63,8 @@ extern void LoadNCCLDSO();
__macro(ncclAllReduce); \ __macro(ncclAllReduce); \
__macro(ncclBcast); \ __macro(ncclBcast); \
__macro(ncclAllGather); \ __macro(ncclAllGather); \
__macro(ncclGroupStart); \
__macro(ncclGroupEnd); \
__macro(ncclReduce); \ __macro(ncclReduce); \
__macro(ncclGetErrorString); __macro(ncclGetErrorString);
......
...@@ -22,6 +22,7 @@ limitations under the License. */ ...@@ -22,6 +22,7 @@ limitations under the License. */
#include <stdexcept> #include <stdexcept>
#include <string> #include <string>
#include "paddle/platform/macros.h"
#include "paddle/string/printf.h" #include "paddle/string/printf.h"
#include "paddle/string/to_string.h" #include "paddle/string/to_string.h"
......
...@@ -12,17 +12,19 @@ ...@@ -12,17 +12,19 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <thrust/device_vector.h>
#include <memory>
#include <vector>
#include "glog/logging.h" #include "glog/logging.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/framework/init.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
#include "paddle/platform/dynload/nccl.h" #include "paddle/platform/dynload/nccl.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/gpu_info.h" #include "paddle/platform/gpu_info.h"
#include <thrust/device_vector.h>
#include <memory>
#include <vector>
static int dev_count = 0; static int dev_count = 0;
namespace paddle { namespace paddle {
...@@ -31,7 +33,8 @@ namespace platform { ...@@ -31,7 +33,8 @@ namespace platform {
TEST(NCCL, init) { TEST(NCCL, init) {
std::vector<ncclComm_t> comms; std::vector<ncclComm_t> comms;
comms.resize(dev_count); comms.resize(dev_count);
dynload::ncclCommInitAll(comms.data(), dev_count, nullptr); PADDLE_ENFORCE(dynload::ncclCommInitAll(comms.data(), dev_count, nullptr));
for (int i = 0; i < dev_count; ++i) { for (int i = 0; i < dev_count; ++i) {
dynload::ncclCommDestroy(comms[i]); dynload::ncclCommDestroy(comms[i]);
} }
...@@ -131,6 +134,18 @@ int main(int argc, char** argv) { ...@@ -131,6 +134,18 @@ int main(int argc, char** argv) {
<< dev_count; << dev_count;
return 0; return 0;
} }
std::vector<paddle::platform::Place> places;
places.emplace_back(paddle::platform::CPUPlace());
int count = paddle::platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
places.emplace_back(paddle::platform::GPUPlace(i));
}
VLOG(0) << " DeviceCount " << count;
paddle::platform::DeviceContextPool::Create(places);
testing::InitGoogleTest(&argc, argv); testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS(); return RUN_ALL_TESTS();
} }
...@@ -60,26 +60,18 @@ struct IsGPUPlace : public boost::static_visitor<bool> { ...@@ -60,26 +60,18 @@ struct IsGPUPlace : public boost::static_visitor<bool> {
bool operator()(const CPUPlace &) const { return false; } bool operator()(const CPUPlace &) const { return false; }
bool operator()(const MKLDNNPlace &) const { return false; } bool operator()(const MKLDNNPlace &) const { return false; }
bool operator()(const GPUPlace &gpu) const { return true; } bool operator()(const GPUPlace &gpu) const { return true; }
bool operator()(const CUDNNPlace &) const { return true; }
}; };
struct IsMKLDNNPlace : public boost::static_visitor<bool> { struct IsMKLDNNPlace : public boost::static_visitor<bool> {
bool operator()(const MKLDNNPlace &) const { return true; } bool operator()(const MKLDNNPlace &) const { return true; }
bool operator()(const CPUPlace &) const { return false; } bool operator()(const CPUPlace &) const { return false; }
bool operator()(const GPUPlace &) const { return false; } bool operator()(const GPUPlace &) const { return false; }
bool operator()(const CUDNNPlace &) const { return false; }
}; };
// Define the max number of Place in bit length. i.e., the max number of places
// should be less equal than 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT)
#define NUM_PLACE_TYPE_LIMIT_IN_BIT 4
typedef boost::variant<CUDNNPlace, GPUPlace, CPUPlace, MKLDNNPlace> Place; typedef boost::variant<CUDNNPlace, GPUPlace, CPUPlace, MKLDNNPlace> Place;
// static check number of place types is less equal than
// 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT)
BOOST_MPL_ASSERT((boost::mpl::less_equal<
Place::types::size,
boost::mpl::long_<1 << NUM_PLACE_TYPE_LIMIT_IN_BIT>>));
void set_place(const Place &); void set_place(const Place &);
const Place &get_place(); const Place &get_place();
......
...@@ -360,10 +360,10 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -360,10 +360,10 @@ All parameter, weight, gradient are variables in Paddle.
}) })
.def("run", .def("run",
[](OperatorBase &self, const Scope &scope, [](OperatorBase &self, const Scope &scope,
const platform::DeviceContext &dev_ctx) { const platform::CPUPlace &place) { self.Run(scope, place); })
self.Run(scope, dev_ctx); .def("run",
dev_ctx.Wait(); [](OperatorBase &self, const Scope &scope,
}) const platform::GPUPlace &place) { self.Run(scope, place); })
.def("type", .def("type",
[](const OperatorBase &op) -> std::string { return op.Type(); }) [](const OperatorBase &op) -> std::string { return op.Type(); })
.def("outputs", .def("outputs",
...@@ -417,7 +417,7 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -417,7 +417,7 @@ All parameter, weight, gradient are variables in Paddle.
}); });
py::class_<framework::Executor>(m, "Executor") py::class_<framework::Executor>(m, "Executor")
.def(py::init<std::vector<platform::Place> &>()) .def(py::init<const platform::Place &>())
.def("run", &Executor::Run); .def("run", &Executor::Run);
m.def("unique_integer", UniqueIntegerGenerator); m.def("unique_integer", UniqueIntegerGenerator);
......
...@@ -14,9 +14,9 @@ ...@@ -14,9 +14,9 @@
#pragma once #pragma once
#include <string> #include <string>
#include "paddle/framework/executor.h"
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/memory/memcpy.h" #include "paddle/memory/memcpy.h"
#include "paddle/platform/device_context.h"
#include "pybind11/numpy.h" #include "pybind11/numpy.h"
#include "pybind11/pybind11.h" #include "pybind11/pybind11.h"
...@@ -63,8 +63,7 @@ struct CastToPyBufferImpl<true, I, ARGS...> { ...@@ -63,8 +63,7 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>( auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>(
tensor.dims(), platform::CPUPlace())); tensor.dims(), platform::CPUPlace()));
framework::DeviceContextPool &pool = platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
framework::DeviceContextPool::Get();
auto dev_ctx = static_cast<const platform::CUDADeviceContext *>( auto dev_ctx = static_cast<const platform::CUDADeviceContext *>(
pool.Borrow(tensor.place())); pool.Borrow(tensor.place()));
...@@ -138,7 +137,7 @@ void PyCUDATensorSetFromArray( ...@@ -138,7 +137,7 @@ void PyCUDATensorSetFromArray(
self.Resize(framework::make_ddim(dims)); self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place); auto *dst = self.mutable_data<T>(place);
framework::DeviceContextPool &pool = framework::DeviceContextPool::Get(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto dev_ctx = auto dev_ctx =
static_cast<const platform::CUDADeviceContext *>(pool.Borrow(place)); static_cast<const platform::CUDADeviceContext *>(pool.Borrow(place));
paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(), paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(),
......
...@@ -5,11 +5,3 @@ configure_file(submit_local.sh.in ...@@ -5,11 +5,3 @@ configure_file(submit_local.sh.in
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/paddle DESTINATION bin install(FILES ${CMAKE_CURRENT_BINARY_DIR}/paddle DESTINATION bin
PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ
GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ) GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ)
configure_file(tools/usage_stat/usage.sh
paddle_usage
@ONLY)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/paddle_usage DESTINATION opt/paddle/bin
PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ
GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ)
...@@ -165,9 +165,6 @@ case "$1" in ...@@ -165,9 +165,6 @@ case "$1" in
"make_diagram") "make_diagram")
python -m paddle.utils.make_model_diagram ${@:2} python -m paddle.utils.make_model_diagram ${@:2}
;; ;;
"usage")
$PADDLE_BIN_PATH/paddle_usage ${@:2}
;;
"version") "version")
version version
;; ;;
......
#!/bin/bash
ARGPARSE=`getopt -o u:vin:l:e: --long git-user:,help,dry-run,task-name:,log-file:,exit-code: -- "$@"`
KEEP_ANONYMOUS="A_USER_DOES_NOT_TELL_US"
# paddle config home dir, same as paddle
PADDLE_CONF_HOME="$HOME/.config/paddle"
# api url, mirror url(s) will be append later
PD_URLS="http://api.paddlepaddle.org/version"
usage()
{
echo "Usage: `basename $0` [options]"
echo "Options:"
echo " -e, --exit-code=EXIT_CODE The train/predict process's exit code"
echo " -l, --log-file=LOG_FILE_PATH Read which log file to get the duration of process"
echo " -n, --task-name=TASK_NAME The name of demo or example"
echo " -u, --git-user=GITHUB_USER provide contact info, like username or email"
echo " -v, -i Verbose output and interact with user when necessary"
echo " --help display this help message"
}
eval set -- "${ARGPARSE}"
while true; do
case "$1" in
-l|--log-file)
log_file=$2
shift 2
;;
-e|--exit-code)
exit_code=$2
shift 2
;;
-u|--git-user)
github_user=$2
shift 2
;;
-n|--task-name)
task=$2
shift 2
;;
-v|-i)
v=1
shift
;;
--dry-run)
dry_run=1
shift
;;
--)
shift
break
;;
--help)
usage
exit 0
;;
*)
echo "Invalid option $1"
usage
exit 1
;;
esac
done
# parse the log_file to get the time costs
if [ -s "${log_file}" ]; then
duration=`awk 'BEGIN{day=0;last_sec=0;min_sec=0;max_sec=0;}
{if(index($2,":")==3){
t=substr($2,1,8);
sec=day*86400+substr(t,1,2)*3600+substr(t,4,2)*60+substr(t,7,2);
if(sec<last_sec-600){day+=1;sec+=86400;}
last_sec=sec;
if(min_sec==0 || min_sec>sec){min_sec=sec;}
if(max_sec==0 || max_sec<sec){max_sec=sec;}
}}
END{print max_sec-min_sec}' ${log_file}`
else
duration=-1
fi
if [ "${v}" = "1" ]; then echo "duration: ${duration}"; fi
# try find the user/email if not given
if [ -z "${github_user}" ]; then
# search for cached username
if [ -s "${PADDLE_CONF_HOME}/github_user" ]; then
if [ "${v}" = "1" ]; then echo "read github_user from cache..."; fi
github_user=`cat ${PADDLE_CONF_HOME}/github_user`
else
# search the github-user from git config
if [ "${v}" = "1" ]; then echo "read github_user from git..."; fi
git_username=`git config --get user.name 2>/dev/null`
git_url=`git config --get remote.origin.url 2>/dev/null`
if [ "`echo ${git_url} | cut -b 1-19`" = "https://github.com/" ]; then
# under a git url, like https://github.com/user_xxx/proj_yyy.git
if [ "${v}" = "1" ]; then echo " from github url..."; fi
github_user=`echo ${git_url} | cut -d "/" -f 4`
if [ "${github_user}" = "PaddlePaddle" ]; then
github_user=
fi
fi
if [ -n "${git_username}" -a -z "${github_user}" ]; then
if [ "${v}" = "1" ]; then echo " from global git username..."; fi
github_user=${git_username}
fi
fi
fi
# allow user to set the user name, if it's not found
if [ -z "${github_user}" -a "${v}" = "1" ]; then
read -p "Please input your github username or email, or just return to keep this feedback anonymous:"
github_user=${REPLY}
if [ -z "${github_user}" ]; then
# empty input, consider as one anonymous user
github_user="${KEEP_ANONYMOUS}"
fi
fi
if [ -n "${github_user}" -a -z "${dry_run}" ]; then
# valid user and not in dry-run mode, then save to cache
mkdir -p ${PADDLE_CONF_HOME}
echo "${github_user}" >${PADDLE_CONF_HOME}/github_user
fi
if [ "${v}" = "1" ]; then echo "username: ${github_user}"; fi
if [ "${github_user}" = "${KEEP_ANONYMOUS}" ]; then
# anonymous user should keep the var empty.
github_user=
fi
# read local paddle version
paddle_version=`paddle version | grep PaddlePaddle | head -n1 | cut -d " " -f 2 | cut -d "," -f 1`
if [ "${v}" = "1" ]; then echo "version:${paddle_version}"; fi
# read local system time
system_time=`date "+%Y%m%d%H%M%S"`
if [ "${v}" = "1" ]; then echo "system time:${system_time}"; fi
# make empty job_name as default value.
if [ -z "${task}" ]; then
task="(unknown_task)"
fi
if [ "${v}" = "1" ]; then echo "task: ${task}"; fi
# concat the curl command
params="content={\"data_type\":\"usage\",\
\"system_time\":${system_time},\"paddle_version\":\"${paddle_version}\",\
\"github_user\":\"${github_user}\",\"job_name\":\"${task}\",\
\"duration\":${duration},\"exit_code\":\"${exit_code}\"\
}&type=1"
curl_cmd_prefix="curl -m 5 -X POST -d ${params}\
-b ${PADDLE_CONF_HOME}/paddle.cookie -c ${PADDLE_CONF_HOME}/paddle.cookie "
if [ "${dry_run}" = "1" ]; then
first_url=`echo ${PD_URLS} | cut -d " " -f 1`
echo "(dry-run mode)curl command: ${curl_cmd_prefix} ${first_url}"
exit 0
else
for u in ${PD_URLS}; do
curl_cmd="${curl_cmd_prefix} ${u}"
if [ "${v}" = "1" ]; then echo "run: ${curl_cmd}"; fi
${curl_cmd} >/dev/null 2>&1
if [ $? -eq 0 ]; then
if [ "${v}" = "1" ]; then echo "upload OK!"; fi
exit 0
else
if [ "${v}" = "1" ]; then echo "upload failed...try next"; fi
fi
done
if [ "${v}" = "1" ]; then echo "all urls tried but all failed...exit"; fi
exit 1
fi
...@@ -6,7 +6,6 @@ if(WITH_TESTING) ...@@ -6,7 +6,6 @@ if(WITH_TESTING)
add_library(paddle_test_util STATIC TestUtil.cpp) add_library(paddle_test_util STATIC TestUtil.cpp)
add_dependencies(paddle_test_util paddle_proto ${external_project_dependencies}) add_dependencies(paddle_test_util paddle_proto ${external_project_dependencies})
if(NOT MOBILE_INFERENCE) if(NOT MOBILE_INFERENCE)
add_library(paddle_gtest_main STATIC paddle_gtest_main.cc) cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS init paddle_memory gtest gflags)
add_dependencies(paddle_gtest_main paddle_memory gtest gflags)
endif() endif()
endif() endif()
...@@ -13,8 +13,10 @@ See the License for the specific language governing permissions and ...@@ -13,8 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <cstring> #include <cstring>
#include "gflags/gflags.h" #include "gflags/gflags.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/framework/init.h"
#include "paddle/memory/memory.h" #include "paddle/memory/memory.h"
int main(int argc, char** argv) { int main(int argc, char** argv) {
...@@ -32,8 +34,11 @@ int main(int argc, char** argv) { ...@@ -32,8 +34,11 @@ int main(int argc, char** argv) {
google::ParseCommandLineFlags(&new_argc, &new_argv_address, false); google::ParseCommandLineFlags(&new_argc, &new_argv_address, false);
testing::InitGoogleTest(&argc, argv); testing::InitGoogleTest(&argc, argv);
paddle::memory::Used(paddle::platform::CPUPlace()); paddle::memory::Used(paddle::platform::CPUPlace());
std::vector<std::string> devs = {"CPU"};
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
paddle::memory::Used(paddle::platform::GPUPlace(0)); paddle::memory::Used(paddle::platform::GPUPlace(0));
devs.push_back("GPU:0");
#endif #endif
paddle::framework::InitDevices(devs);
return RUN_ALL_TESTS(); return RUN_ALL_TESTS();
} }
...@@ -270,7 +270,7 @@ class LayerType(object): ...@@ -270,7 +270,7 @@ class LayerType(object):
@staticmethod @staticmethod
def is_layer_type(type_name): def is_layer_type(type_name):
""" """
If type_name is a layer type. Whether type_name is a layer type.
:param type_name: layer type name. Because layer type enumerations are :param type_name: layer type name. Because layer type enumerations are
strings. strings.
...@@ -441,7 +441,7 @@ def full_matrix_projection(input, size=0, param_attr=None): ...@@ -441,7 +441,7 @@ def full_matrix_projection(input, size=0, param_attr=None):
with mixed_layer(size=100) as m: with mixed_layer(size=100) as m:
m += full_matrix_projection(input=layer) m += full_matrix_projection(input=layer)
2. When used as an independant object like this, you must set the size: 2. When used as an independent object like this, you must set the size:
.. code-block:: python .. code-block:: python
...@@ -451,11 +451,11 @@ def full_matrix_projection(input, size=0, param_attr=None): ...@@ -451,11 +451,11 @@ def full_matrix_projection(input, size=0, param_attr=None):
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput :type input: LayerOutput
:param size: The parameter size. Means the width of parameter. :param size: The dimension of this layer.
:type size: int :type size: int
:param param_attr: Parameter config, None if use default. :param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:return: A FullMatrixProjection Object. :return: FullMatrixProjection Object.
:rtype: FullMatrixProjection :rtype: FullMatrixProjection
""" """
proj = FullMatrixProjection( proj = FullMatrixProjection(
...@@ -468,12 +468,12 @@ def full_matrix_projection(input, size=0, param_attr=None): ...@@ -468,12 +468,12 @@ def full_matrix_projection(input, size=0, param_attr=None):
def trans_full_matrix_projection(input, size=0, param_attr=None): def trans_full_matrix_projection(input, size=0, param_attr=None):
""" """
Different from full_matrix_projection, this projection performs matrix Different from full_matrix_projection, this projection performs matrix
multiplication, using transpose of weight. multiplication, using the transpose of weight.
.. math:: .. math::
out.row[i] += in.row[i] * w^\mathrm{T} out.row[i] += in.row[i] * w^\mathrm{T}
:math:`w^\mathrm{T}` means transpose of weight. :math:`w^\mathrm{T}` means the transpose of weight.
The simply usage is: The simply usage is:
.. code-block:: python .. code-block:: python
...@@ -489,9 +489,9 @@ def trans_full_matrix_projection(input, size=0, param_attr=None): ...@@ -489,9 +489,9 @@ def trans_full_matrix_projection(input, size=0, param_attr=None):
:type input: LayerOutput :type input: LayerOutput
:param size: The parameter size. Means the width of parameter. :param size: The parameter size. Means the width of parameter.
:type size: int :type size: int
:param param_attr: Parameter config, None if use default. :param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:return: A TransposedFullMatrixProjection Object. :return: TransposedFullMatrixProjection Object.
:rtype: TransposedFullMatrixProjection :rtype: TransposedFullMatrixProjection
""" """
proj = TransposedFullMatrixProjection( proj = TransposedFullMatrixProjection(
...@@ -521,7 +521,7 @@ def table_projection(input, size=0, param_attr=None): ...@@ -521,7 +521,7 @@ def table_projection(input, size=0, param_attr=None):
with mixed_layer(size=100) as m: with mixed_layer(size=100) as m:
m += table_projection(input=layer) m += table_projection(input=layer)
2. When used as an independant object like this, you must set the size: 2. When used as an independent object like this, you must set the size:
.. code-block:: python .. code-block:: python
...@@ -532,11 +532,11 @@ def table_projection(input, size=0, param_attr=None): ...@@ -532,11 +532,11 @@ def table_projection(input, size=0, param_attr=None):
:param input: The input of this layer, which must contains id fields. :param input: The input of this layer, which must contains id fields.
:type input: LayerOutput :type input: LayerOutput
:param size: The parameter size. Means the width of parameter. :param size: The dimension of the output.
:type size: int :type size: int
:param param_attr: Parameter config, None if use default. :param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:return: A TableProjection Object. :return: TableProjection Object.
:rtype: TableProjection :rtype: TableProjection
""" """
proj = TableProjection( proj = TableProjection(
...@@ -547,7 +547,7 @@ def table_projection(input, size=0, param_attr=None): ...@@ -547,7 +547,7 @@ def table_projection(input, size=0, param_attr=None):
def identity_projection(input, offset=None, size=None): def identity_projection(input, offset=None, size=None):
""" """
1. IdentityProjection if offset=None. It performs: 1. If offset=None, it performs IdentityProjection as follows:
.. math:: .. math::
out.row[i] += in.row[i] out.row[i] += in.row[i]
...@@ -559,9 +559,8 @@ def identity_projection(input, offset=None, size=None): ...@@ -559,9 +559,8 @@ def identity_projection(input, offset=None, size=None):
proj = identity_projection(input=layer) proj = identity_projection(input=layer)
2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection, 2. If offset!=None, It executes IdentityOffsetProjection and takes the
but layer size may be smaller than input size. elements of the input in the range [offset, offset+size) as output.
It select dimesions [offset, offset+layer_size) from input:
.. math:: .. math::
out.row[i] += in.row[i + \\textrm{offset}] out.row[i] += in.row[i + \\textrm{offset}]
...@@ -573,14 +572,20 @@ def identity_projection(input, offset=None, size=None): ...@@ -573,14 +572,20 @@ def identity_projection(input, offset=None, size=None):
proj = identity_projection(input=layer, proj = identity_projection(input=layer,
offset=10) offset=10)
Note that both of two projections should not have any parameter. Note that neither of the projections have trainable parameter.
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput :type input: LayerOutput
:param offset: Offset, None if use default. :param offset: The offset from the start of the input. The input's
elements in the range [offset, offset+size) will be
taken as output. If this parameter is not set or set
to None, the output will be the same as the input.
:type offset: int :type offset: int
:return: A IdentityProjection or IdentityOffsetProjection object :param size: The dimension of this layer. It will be neglected
:rtype: IdentityProjection or IdentityOffsetProjection when offset is None or not set.
:type size: int
:return: IdentityProjection or IdentityOffsetProjection object
:rtype: IdentityProjection | IdentityOffsetProjection
""" """
if offset is None: if offset is None:
proj = IdentityProjection(input_layer_name=input.name) proj = IdentityProjection(input_layer_name=input.name)
...@@ -596,8 +601,8 @@ def identity_projection(input, offset=None, size=None): ...@@ -596,8 +601,8 @@ def identity_projection(input, offset=None, size=None):
def slice_projection(input, slices): def slice_projection(input, slices):
""" """
slice_projection can slice the input value into multiple parts, slice_projection slices the input value into multiple parts,
and then select some of them to merge into a new output. then selects and merges some of them into a new output.
.. math:: .. math::
output = [input.slices()] output = [input.slices()]
...@@ -608,15 +613,13 @@ def slice_projection(input, slices): ...@@ -608,15 +613,13 @@ def slice_projection(input, slices):
proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)]) proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])
Note that slice_projection should not have any parameter. Note that slice_projection has no trainable parameter.
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput :type input: LayerOutput
:param slices: An array of slice parameters. :param slices: A list of start and end offsets of each slice.
Each slice contains the start and end offsets based :type slices: list of tuple
on the input. :return: SliceProjection object.
:type slices: pair of int
:return: A SliceProjection object
:rtype: SliceProjection :rtype: SliceProjection
""" """
assert len(slices) >= 1 assert len(slices) >= 1
...@@ -636,8 +639,7 @@ def slice_projection(input, slices): ...@@ -636,8 +639,7 @@ def slice_projection(input, slices):
@wrap_param_attr_default() @wrap_param_attr_default()
def scaling_projection(input, param_attr=None): def scaling_projection(input, param_attr=None):
""" """
scaling_projection multiplies the input with a scalar parameter and add to scaling_projection multiplies the input with a scalar parameter.
the output.
.. math:: .. math::
out += w * in out += w * in
...@@ -650,9 +652,9 @@ def scaling_projection(input, param_attr=None): ...@@ -650,9 +652,9 @@ def scaling_projection(input, param_attr=None):
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput :type input: LayerOutput
:param param_attr: Parameter config, None if use default. :param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:return: A ScalingProjection object :return: ScalingProjection object.
:rtype: ScalingProjection :rtype: ScalingProjection
""" """
proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr) proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
...@@ -663,8 +665,8 @@ def scaling_projection(input, param_attr=None): ...@@ -663,8 +665,8 @@ def scaling_projection(input, param_attr=None):
@wrap_param_attr_default() @wrap_param_attr_default()
def dotmul_projection(input, param_attr=None): def dotmul_projection(input, param_attr=None):
""" """
DotMulProjection with a layer as input. DotMulProjection takes a layer as input and performs
It performs element-wise multiplication with weight. element-wise multiplication with weight.
.. math:: .. math::
out.row[i] += in.row[i] .* weight out.row[i] += in.row[i] .* weight
...@@ -679,9 +681,9 @@ def dotmul_projection(input, param_attr=None): ...@@ -679,9 +681,9 @@ def dotmul_projection(input, param_attr=None):
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput :type input: LayerOutput
:param param_attr: Parameter config, None if use default. :param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:return: A DotMulProjection Object. :return: DotMulProjection object.
:rtype: DotMulProjection :rtype: DotMulProjection
""" """
proj = DotMulProjection( proj = DotMulProjection(
...@@ -698,7 +700,7 @@ def dotmul_operator(a=None, b=None, scale=1, **kwargs): ...@@ -698,7 +700,7 @@ def dotmul_operator(a=None, b=None, scale=1, **kwargs):
out.row[i] += scale * (a.row[i] .* b.row[i]) out.row[i] += scale * (a.row[i] .* b.row[i])
where :math:`.*` means element-wise multiplication, and where :math:`.*` means element-wise multiplication, and
scale is a config scalar, its default value is one. scale is a config scalar, its default value is 1.
The example usage is: The example usage is:
...@@ -706,13 +708,13 @@ def dotmul_operator(a=None, b=None, scale=1, **kwargs): ...@@ -706,13 +708,13 @@ def dotmul_operator(a=None, b=None, scale=1, **kwargs):
op = dotmul_operator(a=layer1, b=layer2, scale=0.5) op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
:param a: Input layer1 :param a: The first input of this layer.
:type a: LayerOutput :type a: LayerOutput
:param b: Input layer2 :param b: The second input of this layer.
:type b: LayerOutput :type b: LayerOutput
:param scale: config scalar, default value is one. :param scale: A scalar to scale the product. Its default value is 1.
:type scale: float :type scale: float
:return: A DotMulOperator Object. :return: DotMulOperator object.
:rtype: DotMulOperator :rtype: DotMulOperator
""" """
if 'x' in kwargs or 'y' in kwargs: if 'x' in kwargs or 'y' in kwargs:
...@@ -738,28 +740,29 @@ def context_projection(input, ...@@ -738,28 +740,29 @@ def context_projection(input,
""" """
Context Projection. Context Projection.
It just simply reorganizes input sequence, combines "context_len" sequence It just reorganizes input sequence, combines "context_len" elements of the
to one context from context_start. "context_start" will be set to sequence to one context from context_start. "context_start" will be set to
-(context_len - 1) / 2 by default. If context position out of sequence -(context_len - 1) / 2 by default. When context position is out of sequence
length, padding will be filled as zero if padding_attr = False, otherwise length, padding will be filled as zero if padding_attr = False, otherwise
it is trainable. it is trainable.
For example, origin sequence is [A B C D E F G], context len is 3, then For example, origin sequence is [A B C D E F G], context len is 3, padding_attr
after context projection and not set padding_attr, sequence will is not set, then after context projection, sequence will
be [ 0AB ABC BCD CDE DEF EFG FG0 ]. be [ 0AB ABC BCD CDE DEF EFG FG0 ].
:param input: The input of this layer, which should be a sequence. :param input: The input of this layer, which should be a sequence.
:type input: LayerOutput :type input: LayerOutput
:param context_len: context length. :param context_len: The length of the context.
:type context_len: int :type context_len: int
:param context_start: context start position. Default is :param context_start: The start position of the context. The default value is
-(context_len - 1)/2 -(context_len - 1)/2
:type context_start: int :type context_start: int
:param padding_attr: Padding Parameter Attribute. If false, it means padding :param padding_attr: Parameter attribute of the padding. If the parameter is
always be zero. Otherwise Padding is learnable, and set to False, padding will be zero. In other cases, the
parameter attribute is set by this parameter. padding is trainable, and its parameter attribute is set
by this parameter.
:type padding_attr: bool | ParameterAttribute :type padding_attr: bool | ParameterAttribute
:return: Projection :return: Projection object.
:rtype: Projection :rtype: Projection
""" """
context_start = -( context_start = -(
...@@ -791,10 +794,9 @@ class MixedLayerType(LayerOutput): ...@@ -791,10 +794,9 @@ class MixedLayerType(LayerOutput):
def __init__(self, name, size, act, bias_attr, layer_attr, parents=None): def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
""" """
Ctor. :param name: The name of this layer.
:param name: layer name.
:type name: basestring :type name: basestring
:param size: layer size. :param size: The dimension of this layer.
:type size: int :type size: int
:param act: Activation type. :param act: Activation type.
:type act: BaseActivation :type act: BaseActivation
...@@ -802,8 +804,9 @@ class MixedLayerType(LayerOutput): ...@@ -802,8 +804,9 @@ class MixedLayerType(LayerOutput):
whose type is not ParameterAttribute, no bias is defined. If the whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero. parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any :type bias_attr: ParameterAttribute | None | bool | Any
:param layer_attr: Extra Layer Attribute. :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
:type layer_attr: ExtraLayerAttribute or None details.
:type layer_attr: ExtraLayerAttribute | None
""" """
LayerOutput.__init__( LayerOutput.__init__(
self, self,
...@@ -868,12 +871,12 @@ def mixed_layer(size=0, ...@@ -868,12 +871,12 @@ def mixed_layer(size=0,
bias_attr=False, bias_attr=False,
layer_attr=None): layer_attr=None):
""" """
Mixed Layer. A mixed layer will add all inputs together, then activate. Mixed Layer. A mixed layer will add all inputs together, then activate the sum.
Each inputs is a projection or operator. Each input is a projection or operator.
There are two styles of usages. There are two styles of usages.
1. When not set inputs parameter, use mixed_layer like this: 1. When the parameter input is not set, use mixed_layer like this:
.. code-block:: python .. code-block:: python
...@@ -889,21 +892,21 @@ def mixed_layer(size=0, ...@@ -889,21 +892,21 @@ def mixed_layer(size=0,
input=[full_matrix_projection(input=layer1), input=[full_matrix_projection(input=layer1),
full_matrix_projection(input=layer2)]) full_matrix_projection(input=layer2)])
:param name: mixed layer name. Can be referenced by other layer. :param name: The name of this layer. It is optional.
:type name: basestring :type name: basestring
:param size: layer size. :param size: The dimension of this layer.
:type size: int :type size: int
:param input: The input of this layer. It is an optional parameter. If set, :param input: The input of this layer. It is an optional parameter.
then this function will just return layer's name.
:param act: Activation Type. LinearActivation is the default activation. :param act: Activation Type. LinearActivation is the default activation.
:type act: BaseActivation :type act: BaseActivation
:param bias_attr: The bias attribute. If the parameter is set to False or an object :param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero. parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any :type bias_attr: ParameterAttribute | None | bool | Any
:param layer_attr: The extra layer config. Default is None. :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute :type layer_attr: ExtraLayerAttribute
:return: MixedLayerType object can add inputs or layer name. :return: MixedLayerType object.
:rtype: MixedLayerType :rtype: MixedLayerType
""" """
...@@ -938,14 +941,15 @@ def data_layer(name, size, depth=None, height=None, width=None, ...@@ -938,14 +941,15 @@ def data_layer(name, size, depth=None, height=None, width=None,
:param name: The name of this layer. :param name: The name of this layer.
:type name: basestring :type name: basestring
:param size: Size of this data layer. :param size: The dimension of this data layer.
:type size: int :type size: int
:param height: Height of this data layer, used for image :param height: The height of the input image data.
:type height: int | None :type height: int | None
:param width: Width of this data layer, used for image :param width: The width of the input image data.
:type width: int | None :type width: int | None
:param layer_attr: Extra Layer Attribute. :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
:type layer_attr: ExtraLayerAttribute. details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
""" """
...@@ -978,14 +982,15 @@ def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None): ...@@ -978,14 +982,15 @@ def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
:param name: The name of this layer. It is optional. :param name: The name of this layer. It is optional.
:type name: basestring :type name: basestring
:param input: The input of this layer, which must be Index Data. :param input: The input of this layer, whose type must be Index Data.
:type input: LayerOutput :type input: LayerOutput
:param size: The embedding dimension. :param size: The dimension of the embedding vector.
:type size: int :type size: int
:param param_attr: The embedding parameter attribute. See ParameterAttribute :param param_attr: The embedding parameter attribute. See ParameterAttribute
for details. for details.
:type param_attr: ParameterAttribute | None :type param_attr: ParameterAttribute
:param layer_attr: Extra layer Config. Default is None. :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute | None :type layer_attr: ExtraLayerAttribute | None
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
...@@ -1013,7 +1018,7 @@ def fc_layer(input, ...@@ -1013,7 +1018,7 @@ def fc_layer(input,
bias_attr=None, bias_attr=None,
layer_attr=None): layer_attr=None):
""" """
Helper for declare fully connected layer. The fully connected layer.
The example usage is: The example usage is:
...@@ -1035,17 +1040,18 @@ def fc_layer(input, ...@@ -1035,17 +1040,18 @@ def fc_layer(input,
:type name: basestring :type name: basestring
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput | list | tuple :type input: LayerOutput | list | tuple
:param size: The layer dimension. :param size: The dimension of this layer.
:type size: int :type size: int
:param act: Activation Type. TanhActivation is the default activation. :param act: Activation Type. TanhActivation is the default activation.
:type act: BaseActivation :type act: BaseActivation
:param param_attr: The Parameter Attribute|list. :param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:param bias_attr: The bias attribute. If the parameter is set to False or an object :param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero. parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any :type bias_attr: ParameterAttribute | None | bool | Any
:param layer_attr: Extra Layer config. :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute | None :type layer_attr: ExtraLayerAttribute | None
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
...@@ -1086,13 +1092,15 @@ def fc_layer(input, ...@@ -1086,13 +1092,15 @@ def fc_layer(input,
@wrap_name_default("print") @wrap_name_default("print")
def printer_layer(input, format=None, name=None): def printer_layer(input, format=None, name=None):
""" """
Print the output value of input layers. This layer is useful for debugging. Print the output value of the layers specified by the parameter input.
This layer is useful for debugging.
:param name: The name of this layer. It is optional. :param name: The name of this layer. It is optional.
:type name: basestring :type name: basestring
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput | list | tuple :type input: LayerOutput | list | tuple
:return: LayerOutput :return: LayerOutput object.
:rtype: LayerOutput
""" """
if isinstance(input, LayerOutput): if isinstance(input, LayerOutput):
input = [input] input = [input]
...@@ -1135,11 +1143,12 @@ def priorbox_layer(input, ...@@ -1135,11 +1143,12 @@ def priorbox_layer(input,
:param aspect_ratio: The aspect ratio. :param aspect_ratio: The aspect ratio.
:type aspect_ratio: list :type aspect_ratio: list
:param variance: The bounding box variance. :param variance: The bounding box variance.
:type min_size: The min size of the priorbox width/height. :type min_size: The minimum size of the priorbox width/height.
:param min_size: list :param min_size: list
:type max_size: The max size of the priorbox width/height. Could be NULL. :type max_size: The maximum size of the priorbox width/height. It could be NULL.
:param max_size: list :param max_size: list
:return: LayerOutput :return: LayerOutput object.
:rtype: LayerOutput
""" """
# plus one for ratio 1. # plus one for ratio 1.
num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4 num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
...@@ -1177,7 +1186,7 @@ def multibox_loss_layer(input_loc, ...@@ -1177,7 +1186,7 @@ def multibox_loss_layer(input_loc,
:param name: The name of this layer. It is optional. :param name: The name of this layer. It is optional.
:type name: basestring :type name: basestring
:param input_loc: The input predict locations. :param input_loc: The input predicted locations.
:type input_loc: LayerOutput | List of LayerOutput :type input_loc: LayerOutput | List of LayerOutput
:param input_conf: The input priorbox confidence. :param input_conf: The input priorbox confidence.
:type input_conf: LayerOutput | List of LayerOutput :type input_conf: LayerOutput | List of LayerOutput
...@@ -1189,13 +1198,15 @@ def multibox_loss_layer(input_loc, ...@@ -1189,13 +1198,15 @@ def multibox_loss_layer(input_loc,
:type num_classes: int :type num_classes: int
:param overlap_threshold: The threshold of the overlap. :param overlap_threshold: The threshold of the overlap.
:type overlap_threshold: float :type overlap_threshold: float
:param neg_pos_ratio: The ratio of the negative bbox to the positive bbox. :param neg_pos_ratio: The ratio of the negative bounding box to
the positive bounding box.
:type neg_pos_ratio: float :type neg_pos_ratio: float
:param neg_overlap: The negative bbox overlap threshold. :param neg_overlap: The negative bounding box overlap threshold.
:type neg_overlap: float :type neg_overlap: float
:param background_id: The background class index. :param background_id: The background class index.
:type background_id: int :type background_id: int
:return: LayerOutput :return: LayerOutput object.
:rtype: LayerOutput
""" """
if isinstance(input_loc, LayerOutput): if isinstance(input_loc, LayerOutput):
input_loc = [input_loc] input_loc = [input_loc]
...@@ -1258,19 +1269,20 @@ def detection_output_layer(input_loc, ...@@ -1258,19 +1269,20 @@ def detection_output_layer(input_loc,
:type input_conf: LayerOutput | List of LayerOutput. :type input_conf: LayerOutput | List of LayerOutput.
:param priorbox: The input priorbox location and the variance. :param priorbox: The input priorbox location and the variance.
:type priorbox: LayerOutput :type priorbox: LayerOutput
:param num_classes: The number of the classification. :param num_classes: The number of the classes.
:type num_classes: int :type num_classes: int
:param nms_threshold: The Non-maximum suppression threshold. :param nms_threshold: The Non-maximum suppression threshold.
:type nms_threshold: float :type nms_threshold: float
:param nms_top_k: The bbox number kept of the NMS's output :param nms_top_k: The bounding boxes number kept of the NMS's output.
:type nms_top_k: int :type nms_top_k: int
:param keep_top_k: The bbox number kept of the layer's output :param keep_top_k: The bounding boxes number kept of the layer's output.
:type keep_top_k: int :type keep_top_k: int
:param confidence_threshold: The classification confidence threshold :param confidence_threshold: The classification confidence threshold.
:type confidence_threshold: float :type confidence_threshold: float
:param background_id: The background class index. :param background_id: The background class index.
:type background_id: int :type background_id: int
:return: LayerOutput :return: LayerOutput object.
:rtype: LayerOutput
""" """
if isinstance(input_loc, LayerOutput): if isinstance(input_loc, LayerOutput):
input_loc = [input_loc] input_loc = [input_loc]
...@@ -1326,7 +1338,7 @@ def roi_pool_layer(input, ...@@ -1326,7 +1338,7 @@ def roi_pool_layer(input,
A layer used by Fast R-CNN to extract feature maps of ROIs from the last A layer used by Fast R-CNN to extract feature maps of ROIs from the last
feature map. feature map.
:param name: The Layer Name. :param name: The name of this layer. It is optional.
:type name: basestring :type name: basestring
:param input: The input layer. :param input: The input layer.
:type input: LayerOutput. :type input: LayerOutput.
...@@ -1338,9 +1350,10 @@ def roi_pool_layer(input, ...@@ -1338,9 +1350,10 @@ def roi_pool_layer(input,
:type pooled_height: int :type pooled_height: int
:param spatial_scale: The spatial scale between the image and feature map. :param spatial_scale: The spatial scale between the image and feature map.
:type spatial_scale: float :type spatial_scale: float
:param num_channels: number of input channel. :param num_channels: The number of the input channels.
:type num_channels: int :type num_channels: int
:return: LayerOutput :return: LayerOutput object.
:rtype: LayerOutput
""" """
if num_channels is None: if num_channels is None:
assert input.num_filters is not None assert input.num_filters is not None
...@@ -1361,18 +1374,19 @@ def roi_pool_layer(input, ...@@ -1361,18 +1374,19 @@ def roi_pool_layer(input,
@wrap_name_default("cross_channel_norm") @wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None): def cross_channel_norm_layer(input, name=None, param_attr=None):
""" """
Normalize a layer's output. This layer is necessary for ssd. Normalize a layer's output. This layer is necessary for ssd. This
This layer applys normalize across the channels of each sample to layer applys normalization across the channels of each sample to
a conv layer's output and scale the output by a group of trainable a convolutional layer's output and scales the output by a group of
factors which dimensions equal to the channel's number. trainable factors whose dimensions equal to the channel's number.
:param name: The name of this layer. It is optional. :param name: The name of this layer. It is optional.
:type name: basestring :type name: basestring
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput :type input: LayerOutput
:param param_attr: The Parameter Attribute|list. :param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:return: LayerOutput :return: LayerOutput object.
:rtype: LayerOutput
""" """
assert input.num_filters is not None assert input.num_filters is not None
Layer( Layer(
...@@ -1413,12 +1427,9 @@ def pooling_layer(input, ...@@ -1413,12 +1427,9 @@ def pooling_layer(input,
Pooling layer for sequence inputs, not used for Image. Pooling layer for sequence inputs, not used for Image.
If stride > 0, this layer slides a window whose size is determined by stride, If stride > 0, this layer slides a window whose size is determined by stride,
and return the pooling value of the window as the output. Thus, a long sequence and returns the pooling value of the sequence in the window as the output. Thus,
will be shorten. a long sequence will be shortened. Note that for sequence with sub-sequence, the
default value of stride is -1.
The parameter stride specifies the intervals at which to apply the pooling
operation. Note that for sequence with sub-sequence, the default value
of stride is -1.
The example usage is: The example usage is:
...@@ -1435,16 +1446,16 @@ def pooling_layer(input, ...@@ -1435,16 +1446,16 @@ def pooling_layer(input,
:type name: basestring :type name: basestring
:param input: The input of this layer. :param input: The input of this layer.
:type input: LayerOutput :type input: LayerOutput
:param pooling_type: Type of pooling, MaxPooling(default), AvgPooling, :param pooling_type: Type of pooling. MaxPooling is the default pooling.
SumPooling, SquareRootNPooling.
:type pooling_type: BasePoolingType | None :type pooling_type: BasePoolingType | None
:param stride: The step size between successive pooling regions. :param stride: The step size between successive pooling regions.
:type stride: Int :type stride: int
:param bias_attr: The bias attribute. If the parameter is set to False or an object :param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero. parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any :type bias_attr: ParameterAttribute | None | bool | Any
:param layer_attr: The Extra Attributes for layer, such as dropout. :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute | None :type layer_attr: ExtraLayerAttribute | None
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
...@@ -6618,7 +6629,7 @@ def row_conv_layer(input, ...@@ -6618,7 +6629,7 @@ def row_conv_layer(input,
.. math:: .. math::
r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}} r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
\quad \text{for} \quad (1 \leq i \leq d) \quad \\text{for} \quad (1 \leq i \leq d)
Note: Note:
The `context_len` is `k + 1`. That is to say, the lookahead step The `context_len` is `k + 1`. That is to say, the lookahead step
...@@ -6767,7 +6778,7 @@ def gated_unit_layer(input, ...@@ -6767,7 +6778,7 @@ def gated_unit_layer(input,
The gated unit layer implements a simple gating mechanism over the input. The gated unit layer implements a simple gating mechanism over the input.
The input :math:`X` is first projected into a new space :math:`X'`, and The input :math:`X` is first projected into a new space :math:`X'`, and
it is also used to produce a gate weight :math:`\sigma`. Element-wise it is also used to produce a gate weight :math:`\sigma`. Element-wise
product between :match:`X'` and :math:`\sigma` is finally returned. product between :math:`X'` and :math:`\sigma` is finally returned.
Reference: Reference:
`Language Modeling with Gated Convolutional Networks `Language Modeling with Gated Convolutional Networks
...@@ -7463,7 +7474,7 @@ def factorization_machine(input, ...@@ -7463,7 +7474,7 @@ def factorization_machine(input,
Factorization Machine with the formula: Factorization Machine with the formula:
.. math:: .. math::
y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \\rangle x_i x_j
Note: Note:
X is the input vector with size n. V is the factor matrix. Each row of V X is the input vector with size n. V is the factor matrix. Each row of V
......
...@@ -42,5 +42,10 @@ def __read_gflags_from_env__(): ...@@ -42,5 +42,10 @@ def __read_gflags_from_env__():
core.init_gflags([sys.argv[0]] + core.init_gflags([sys.argv[0]] +
["--tryfromenv=" + ",".join(read_env_flags)]) ["--tryfromenv=" + ",".join(read_env_flags)])
if core.is_compile_gpu():
core.init_devices(["CPU", "GPU:0"])
else:
core.init_devices(["CPU"])
__read_gflags_from_env__() __read_gflags_from_env__()
...@@ -47,13 +47,14 @@ class Executor(object): ...@@ -47,13 +47,14 @@ class Executor(object):
act_places.append(p) act_places.append(p)
# TODO(dzhwinter) : consider that our fluid tests all written in # TODO(dzhwinter) : consider that our fluid tests all written in
# GPUPlace(gpu_id), this will be changed in next PR. # GPUPlace(gpu_id), this will be changed in the future
if core.is_compile_gpu(): if core.is_compile_gpu():
core.init_devices(["CPU", "GPU:0"]) core.init_devices(["CPU", "GPU:0"])
else: else:
core.init_devices(["CPU"]) core.init_devices(["CPU"])
self.executor = core.Executor(act_places) # TODO(dzhwinter) : only use the first place
self.executor = core.Executor(act_places[0])
self.places = places self.places = places
def aslodtensor(self, data): def aslodtensor(self, data):
......
...@@ -393,6 +393,9 @@ class Operator(object): ...@@ -393,6 +393,9 @@ class Operator(object):
% (in_proto.name, len(in_args))) % (in_proto.name, len(in_args)))
in_arg_names = [] in_arg_names = []
for arg in in_args: for arg in in_args:
if isinstance(arg, basestring):
in_arg_names.append(arg)
else:
in_arg_names.append(arg.name) in_arg_names.append(arg.name)
self.desc.set_input(in_proto.name, in_arg_names) self.desc.set_input(in_proto.name, in_arg_names)
else: else:
......
...@@ -194,3 +194,9 @@ class LayerHelper(object): ...@@ -194,3 +194,9 @@ class LayerHelper(object):
else: else:
# For integer and boolean types, initialize with all zeros # For integer and boolean types, initialize with all zeros
return Constant() return Constant()
def is_instance(self, param_name, cls):
param = self.kwargs.get(param_name, None)
if not isinstance(param, cls):
raise TypeError("The input {0} parameter of method {1} must be {2}",
param_name, self.layer_type, cls.__name__)
...@@ -3,6 +3,7 @@ from ..framework import Program, Variable, Operator ...@@ -3,6 +3,7 @@ from ..framework import Program, Variable, Operator
from .. import core from .. import core
from tensor import assign, fill_constant from tensor import assign, fill_constant
import contextlib import contextlib
from ..registry import autodoc
__all__ = [ __all__ = [
'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'StaticRNNGuard', 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'StaticRNNGuard',
...@@ -10,7 +11,7 @@ __all__ = [ ...@@ -10,7 +11,7 @@ __all__ = [
'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor', 'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor',
'increment', 'array_write', 'create_array', 'less_than', 'array_read', 'increment', 'array_write', 'create_array', 'less_than', 'array_read',
'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock', 'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock',
'StaticRNN' 'StaticRNN', 'reorder_lod_tensor_by_rank'
] ]
...@@ -1082,3 +1083,18 @@ class DynamicRNN(object): ...@@ -1082,3 +1083,18 @@ class DynamicRNN(object):
if self.status != DynamicRNN.IN_RNN: if self.status != DynamicRNN.IN_RNN:
raise ValueError("{0} can only be invoked inside rnn block.".format( raise ValueError("{0} can only be invoked inside rnn block.".format(
method)) method))
@autodoc
def reorder_lod_tensor_by_rank(x, rank_table):
helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
helper.is_instance('x', Variable)
helper.is_instance('rank_table', Variable)
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(
type='reorder_lod_tensor_by_rank',
inputs={'X': [x],
'RankTable': [rank_table]},
outputs={'Out': [out]})
return out
...@@ -13,7 +13,8 @@ __all__ = [ ...@@ -13,7 +13,8 @@ __all__ = [
'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy', 'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy',
'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
'lstm_unit', 'reduce_sum', 'reduce_mean' 'lstm_unit', 'reduce_sum', 'reduce_mean', 'sequence_first_step',
'sequence_last_step'
] ]
...@@ -575,8 +576,52 @@ def conv2d(input, ...@@ -575,8 +576,52 @@ def conv2d(input,
def sequence_pool(input, pool_type, **kwargs): def sequence_pool(input, pool_type, **kwargs):
""" """
This function add the operator for sequence pooling. This function add the operator for sequence pooling.
This is applied on top of the input using pool_type mentioned It pools features of all time-steps of each instance, and is applied
in the parameters. on top of the input using pool_type mentioned in the parameters.
It supports four pool_type:
- average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
- sum: :math:`Out[i] = \sum_jX_{ij}`
- sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
- max: :math:`Out[i] = max(X_i)`
.. code-block:: text
x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
x.data = [1, 3, 2, 4, 6, 5, 1]
x.dims = [7, 1]
then output is a Tensor:
out.dim = [3, 1]
with condition len(x.lod[-1]) - 1 == out.dims[0]
for different pool_type:
average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
sum : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
pool_type (string): The pooling type of sequence_pool.
It supports average, sum, sqrt and max.
Returns:
The sequence pooling variable which is a Tensor.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
""" """
helper = LayerHelper('sequence_pool', input=input, **kwargs) helper = LayerHelper('sequence_pool', input=input, **kwargs)
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -593,6 +638,72 @@ def sequence_pool(input, pool_type, **kwargs): ...@@ -593,6 +638,72 @@ def sequence_pool(input, pool_type, **kwargs):
return pool_out return pool_out
def sequence_first_step(input, **kwargs):
"""
This funciton get the first step of sequence.
.. code-block:: text
x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
x.data = [1, 3, 2, 4, 6, 5, 1]
x.dims = [7, 1]
then output is a Tensor:
out.dim = [3, 1]
with condition len(x.lod[-1]) - 1 == out.dims[0]
out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
Returns:
The sequence's first step variable which is a Tensor.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
"""
return sequence_pool(input=input, pool_type="first")
def sequence_last_step(input, **kwargs):
"""
This funciton get the last step of sequence.
.. code-block:: text
x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
x.data = [1, 3, 2, 4, 6, 5, 1]
x.dims = [7, 1]
then output is a Tensor:
out.dim = [3, 1]
with condition len(x.lod[-1]) - 1 == out.dims[0]
out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
Returns:
The sequence's last step variable which is a Tensor.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
"""
return sequence_pool(input=input, pool_type="last")
def pool2d(input, def pool2d(input,
pool_size, pool_size,
pool_type, pool_type,
......
...@@ -8,7 +8,7 @@ import proto.framework_pb2 as framework_pb2 ...@@ -8,7 +8,7 @@ import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator from framework import OpProtoHolder, Variable, Program, Operator
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
__all__ = ['deprecated', 'register_layer'] __all__ = ['deprecated', 'register_layer', 'autodoc']
def _convert_(name): def _convert_(name):
...@@ -175,12 +175,18 @@ def deprecated(func_or_class): ...@@ -175,12 +175,18 @@ def deprecated(func_or_class):
""" """
Wrap func with deprecated warning Wrap func with deprecated warning
""" """
warnings.simplefilter('always', DeprecationWarning) #turn off filter warnings.simplefilter('always', DeprecationWarning) # turn off filter
warnings.warn( warnings.warn(
"Call to deprecated function {}.".format(func.__name__), "Call to deprecated function {}.".format(func.__name__),
category=DeprecationWarning, category=DeprecationWarning,
stacklevel=2) stacklevel=2)
warnings.simplefilter('default', DeprecationWarning) #reset filter warnings.simplefilter('default', DeprecationWarning) # reset filter
return func(*args, **kwargs) return func(*args, **kwargs)
return func_wrapper return func_wrapper
def autodoc(func):
func.__doc__ = _generate_doc_string_(OpProtoHolder.instance().get_op_proto(
func.__name__))
return func
...@@ -33,7 +33,7 @@ def encoder_decoder(): ...@@ -33,7 +33,7 @@ def encoder_decoder():
fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh') fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4) lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
encoder_out = layers.sequence_pool(input=lstm_hidden0, pool_type="last") encoder_out = layers.sequence_last_step(input=lstm_hidden0)
# decoder # decoder
trg_language_word = layers.data( trg_language_word = layers.data(
......
...@@ -125,10 +125,11 @@ def model(): ...@@ -125,10 +125,11 @@ def model():
# need cos sim # need cos sim
inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features) inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
scale_infer = layers.scale(x=inference, scale=5.0)
label = layers.data(name='score', shape=[1], dtype='float32') label = layers.data(name='score', shape=[1], dtype='float32')
square_cost = layers.square_error_cost(input=inference, label=label) square_cost = layers.square_error_cost(input=scale_infer, label=label)
avg_cost = layers.mean(x=square_cost) avg_cost = layers.mean(x=square_cost)
......
...@@ -90,12 +90,10 @@ def get_numeric_gradient(scope, ...@@ -90,12 +90,10 @@ def get_numeric_gradient(scope,
def product(dim): def product(dim):
return reduce(lambda a, b: a * b, dim, 1) return reduce(lambda a, b: a * b, dim, 1)
ctx = core.DeviceContext.create(core.CPUPlace())
def get_output(): def get_output():
sum = [] sum = []
for output_name in output_names: for output_name in output_names:
op.run(scope, ctx) op.run(scope, core.CPUPlace())
sum.append( sum.append(
np.array(scope.find_var(output_name).get_tensor()).mean()) np.array(scope.find_var(output_name).get_tensor()).mean())
return np.array(sum).mean() return np.array(sum).mean()
......
...@@ -113,8 +113,7 @@ class TestSparseAdagradOp(unittest.TestCase): ...@@ -113,8 +113,7 @@ class TestSparseAdagradOp(unittest.TestCase):
LearningRate='LearningRate', LearningRate='LearningRate',
epsilon=2.0) epsilon=2.0)
ctx = core.DeviceContext.create(place) adagrad_op.run(scope, place)
adagrad_op.run(scope, ctx)
# get and compare moment result # get and compare moment result
moment_result_array = np.array(moment) moment_result_array = np.array(moment)
......
...@@ -296,8 +296,7 @@ class TestBatchNormOp(OpTest): ...@@ -296,8 +296,7 @@ class TestBatchNormOp(OpTest):
momentum=momentum, momentum=momentum,
epsilon=epsilon) epsilon=epsilon)
ctx = core.DeviceContext.create(place) batch_norm_op.run(scope, place)
batch_norm_op.run(scope, ctx)
# check forward result # check forward result
self.__assert_close(y_tensor, y_out, "y_out") self.__assert_close(y_tensor, y_out, "y_out")
...@@ -320,7 +319,7 @@ class TestBatchNormOp(OpTest): ...@@ -320,7 +319,7 @@ class TestBatchNormOp(OpTest):
["y_out", "mean", "variance", "saved_mean", "saved_variance"], ["y_out", "mean", "variance", "saved_mean", "saved_variance"],
place, place,
feed_dict={"y_out": y_grad}) feed_dict={"y_out": y_grad})
batch_norm_op_grad.run(scope, ctx) batch_norm_op_grad.run(scope, place)
x_grad_tensor = create_or_get_tensor(scope, x_grad_tensor = create_or_get_tensor(scope,
grad_var_name("x_val"), None, grad_var_name("x_val"), None,
......
...@@ -57,8 +57,7 @@ class TestBeamSearchDecodeOp(unittest.TestCase): ...@@ -57,8 +57,7 @@ class TestBeamSearchDecodeOp(unittest.TestCase):
SentenceIds="sentence_ids", SentenceIds="sentence_ids",
SentenceScores="sentence_scores") SentenceScores="sentence_scores")
ctx = core.DeviceContext.create(self.cpu_place) beam_search_decode_op.run(self.scope, self.cpu_place)
beam_search_decode_op.run(self.scope, ctx)
expected_lod = [[0, 4, 8], [0, 1, 3, 6, 9, 10, 13, 16, 19]] expected_lod = [[0, 4, 8], [0, 1, 3, 6, 9, 10, 13, 16, 19]]
self.assertEqual(sentence_ids.lod(), expected_lod) self.assertEqual(sentence_ids.lod(), expected_lod)
......
...@@ -14,7 +14,6 @@ def create_tensor(scope, name, np_data): ...@@ -14,7 +14,6 @@ def create_tensor(scope, name, np_data):
class BeamSearchOpTester(unittest.TestCase): class BeamSearchOpTester(unittest.TestCase):
def setUp(self): def setUp(self):
self.scope = core.Scope() self.scope = core.Scope()
self.ctx = core.DeviceContext.create(core.CPUPlace())
self._create_ids() self._create_ids()
self._create_scores() self._create_scores()
self._create_pre_ids() self._create_pre_ids()
...@@ -32,7 +31,7 @@ class BeamSearchOpTester(unittest.TestCase): ...@@ -32,7 +31,7 @@ class BeamSearchOpTester(unittest.TestCase):
level=0, level=0,
beam_size=2, beam_size=2,
end_id=0, ) end_id=0, )
op.run(self.scope, self.ctx) op.run(self.scope, core.CPUPlace())
selected_ids = self.scope.find_var("selected_ids").get_tensor() selected_ids = self.scope.find_var("selected_ids").get_tensor()
print 'selected_ids', np.array(selected_ids) print 'selected_ids', np.array(selected_ids)
print 'lod', selected_ids.lod() print 'lod', selected_ids.lod()
......
...@@ -65,8 +65,7 @@ class TestCondOp(unittest.TestCase): ...@@ -65,8 +65,7 @@ class TestCondOp(unittest.TestCase):
self.create_global_variables() self.create_global_variables()
self.create_cond_op() self.create_cond_op()
self.create_sub_net() self.create_sub_net()
ctx = core.DeviceContext.create(core.CPUPlace()) self.condop.run(self.scope, core.CPUPlace())
self.condop.run(self.scope, ctx)
return np.array(self.scope.find_var("Out").get_tensor()) return np.array(self.scope.find_var("Out").get_tensor())
def create_global_variables(self): def create_global_variables(self):
......
...@@ -63,8 +63,7 @@ class TestDynRNN(unittest.TestCase): ...@@ -63,8 +63,7 @@ class TestDynRNN(unittest.TestCase):
all_timesteps = fluid.layers.array_to_lod_tensor( all_timesteps = fluid.layers.array_to_lod_tensor(
x=out, table=rank_table) x=out, table=rank_table)
last = fluid.layers.sequence_pool( last = fluid.layers.sequence_last_step(input=all_timesteps)
input=all_timesteps, pool_type='last')
logits = fluid.layers.fc(input=last, size=1, act=None) logits = fluid.layers.fc(input=last, size=1, act=None)
loss = fluid.layers.sigmoid_cross_entropy_with_logits( loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=logits, label=label) x=logits, label=label)
...@@ -101,7 +100,7 @@ class TestDynRNN(unittest.TestCase): ...@@ -101,7 +100,7 @@ class TestDynRNN(unittest.TestCase):
rnn.update_memory(mem, out_) rnn.update_memory(mem, out_)
rnn.output(out_) rnn.output(out_)
last = fluid.layers.sequence_pool(input=rnn(), pool_type='last') last = fluid.layers.sequence_last_step(input=rnn())
logits = fluid.layers.fc(input=last, size=1, act=None) logits = fluid.layers.fc(input=last, size=1, act=None)
label = fluid.layers.data(name='label', shape=[1], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='float32')
loss = fluid.layers.sigmoid_cross_entropy_with_logits( loss = fluid.layers.sigmoid_cross_entropy_with_logits(
......
...@@ -24,7 +24,6 @@ class TestGaussianRandomOp(unittest.TestCase): ...@@ -24,7 +24,6 @@ class TestGaussianRandomOp(unittest.TestCase):
def gaussian_random_test(self, place): def gaussian_random_test(self, place):
context = core.DeviceContext.create(place)
program = fluid.Program() program = fluid.Program()
block = program.global_block() block = program.global_block()
vout = block.create_var(name="Out") vout = block.create_var(name="Out")
......
...@@ -33,8 +33,7 @@ class TestIsEmptyOp(unittest.TestCase): ...@@ -33,8 +33,7 @@ class TestIsEmptyOp(unittest.TestCase):
def one_case(self, input, target): def one_case(self, input, target):
op = Operator(type="is_empty", X=input, Out="out") op = Operator(type="is_empty", X=input, Out="out")
ctx = core.DeviceContext.create(core.CPUPlace()) op.run(self.scope, core.CPUPlace())
op.run(self.scope, ctx)
out = self.scope.var("out").get_tensor() out = self.scope.var("out").get_tensor()
self.assertEqual(np.array(out)[0], target) self.assertEqual(np.array(out)[0], target)
......
import unittest
import paddle.v2.fluid as fluid
import numpy
class TestReorderLoDTensor(unittest.TestCase):
def test_reorder(self):
dat = fluid.layers.data(name='input', shape=[1], lod_level=2)
dat.stop_gradient = False
rank_dat = fluid.layers.data(name='ref', shape=[1], lod_level=1)
table = fluid.layers.lod_rank_table(rank_dat)
new_dat = fluid.layers.reorder_lod_tensor_by_rank(
x=dat, rank_table=table)
loss = fluid.layers.mean(x=new_dat)
fluid.backward.append_backward_ops(loss=loss)
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(fluid.default_startup_program())
ref = fluid.Tensor()
ref_lod = [0, 3, 4, 7, 8, 14]
ref.set_lod([ref_lod])
ref.set(numpy.random.random(size=[14, 1]).astype('float32'), cpu)
input = fluid.Tensor()
lod_level_0 = numpy.random.randint(low=1, high=5, size=5)
lod_level_0 = [0] + numpy.cumsum(lod_level_0).tolist()
lod_level_1 = numpy.random.randint(low=1, high=5, size=lod_level_0[-1])
lod_level_1 = [0] + numpy.cumsum(lod_level_1).tolist()
input.set_lod([lod_level_0, lod_level_1])
input.set(
numpy.random.random(size=[lod_level_1[-1], 1]).astype('float32'),
cpu)
ig = exe.run(fluid.default_main_program(),
feed={'input': input,
'ref': ref},
fetch_list=['input@GRAD'],
return_numpy=False)[0]
self.assertAlmostEqual(numpy.array(ig).sum(), 1.0, delta=0.001)
self.assertEqual(input.lod(), ig.lod())
if __name__ == '__main__':
unittest.main()
...@@ -55,8 +55,7 @@ class TestSparseSGDOp(unittest.TestCase): ...@@ -55,8 +55,7 @@ class TestSparseSGDOp(unittest.TestCase):
Grad='Grad', Grad='Grad',
ParamOut='Param', ParamOut='Param',
LearningRate='LearningRate') LearningRate='LearningRate')
ctx = core.DeviceContext.create(place) sgd_op.run(scope, place)
sgd_op.run(scope, ctx)
# get and compare result # get and compare result
result_array = np.array(param) result_array = np.array(param)
......
...@@ -26,7 +26,6 @@ class TestUniformRandomOp(unittest.TestCase): ...@@ -26,7 +26,6 @@ class TestUniformRandomOp(unittest.TestCase):
self.uniform_random_test(place=core.GPUPlace(0)) self.uniform_random_test(place=core.GPUPlace(0))
def uniform_random_test(self, place): def uniform_random_test(self, place):
context = core.DeviceContext.create(place)
program = fluid.Program() program = fluid.Program()
block = program.global_block() block = program.global_block()
vout = block.create_var(name="Out") vout = block.create_var(name="Out")
......
...@@ -79,8 +79,7 @@ if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: ...@@ -79,8 +79,7 @@ if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']:
# the prefix is sys.prefix which should always be usr # the prefix is sys.prefix which should always be usr
paddle_bin_dir = 'opt/paddle/bin' paddle_bin_dir = 'opt/paddle/bin'
paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage', paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model', '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model',
'${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main', '${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main',
'${PADDLE_BINARY_DIR}/paddle/scripts/paddle'] '${PADDLE_BINARY_DIR}/paddle/scripts/paddle']
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册