提交 e55ec44b 编写于 作者: Y Yu Yang

Merge branch 'develop' of github.com:baidu/Paddle into feature/clean_mnist_v2

import numpy
import paddle.v2 as paddle
......@@ -30,19 +29,18 @@ def main():
pass
trainer = paddle.trainer.SGD(update_equation=adam_optimizer)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(paddle.dataset.mnist.train_creator(),
buf_size=8192), batch_size=32),
topology=cost,
paddle.reader.shuffle(
paddle.dataset.mnist.train_creator(), buf_size=8192),
batch_size=32),
cost=cost,
parameters=parameters,
event_handler=event_handler,
data_types=[ # data_types will be removed, It should be in
# network topology
('pixel', images.type),
('label', label.type)],
reader_dict={'pixel': 0, 'label': 1}
)
batch_size=32, # batch size should be refactor in Data reader
reader_dict={images.name: 0,
label.name: 1})
if __name__ == '__main__':
......
......@@ -18,6 +18,7 @@ import parameters
import trainer
import event
import data_type
import topology
import data_feeder
from . import dataset
from . import reader
......@@ -27,7 +28,8 @@ import py_paddle.swig_paddle as api
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader'
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology'
]
......
......@@ -23,7 +23,7 @@ class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sampe.
a list of mini-batch data entries. Each data entry in the list is one sample.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
......
......@@ -13,10 +13,10 @@
# limitations under the License.
from paddle.trainer.PyDataProvider2 import \
InputType, dense_vector, sparse_binary_vector,\
InputType, DataType, dense_vector, sparse_binary_vector,\
sparse_vector, integer_value, integer_value_sequence
__all__ = [
'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector',
'integer_value', 'integer_value_sequence'
'InputType', 'DataType', 'dense_vector', 'sparse_binary_vector',
'sparse_vector', 'integer_value', 'integer_value_sequence'
]
......@@ -284,6 +284,7 @@ def mixed(size=0,
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
LayerV2 = Layer
data = DataLayerV2
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
......
import numpy as np
from . import layer as v2_layer
import py_paddle.swig_paddle as api
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
from topology import Topology
__all__ = ['Parameters', 'create']
def create(*layers):
def create(layers):
"""
Create parameter pool by layers. In paddle, layer can be represent a
model config.
Create parameter pool by topology.
:param layers:
:return:
"""
for layer in layers:
if not isinstance(layer, v2_layer.Layer):
raise ValueError(
'create must pass a topologies which type is paddle.layer.Layer')
model_config = v2_layer.parse_network(*layers)
topology = Topology(layers)
pool = Parameters()
for param in model_config.parameters:
for param in topology.proto().parameters:
pool.__append_config__(param)
return pool
......@@ -224,6 +219,7 @@ class Parameters(object):
except ValueError:
# If no such parameter in gradient machine, then don't copy
pass
self.__gradient_machines__.append(gradient_machine)
......
......@@ -2,5 +2,11 @@ add_test(NAME test_v2_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME test_v2_api
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
add_test(NAME topology_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_topology.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.v2.layer as layer
import paddle.v2.topology as topology
import paddle.v2.data_type as data_type
import paddle.trainer_config_helpers as conf_helps
class TestTopology(unittest.TestCase):
def test_data_type(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
hidden = layer.fc(input=pixel,
size=100,
act=conf_helps.SigmoidActivation())
inference = layer.fc(input=hidden,
size=10,
act=conf_helps.SoftmaxActivation())
cost = layer.classification_cost(input=inference, label=label)
topo = topology.Topology(cost)
data_types = topo.data_type()
self.assertEqual(len(data_types), 2)
pixel_data_type = filter(lambda type: type[0] == "pixel", data_types)
self.assertEqual(len(pixel_data_type), 1)
pixel_data_type = pixel_data_type[0]
self.assertEqual(pixel_data_type[1].type, data_type.DataType.Dense)
self.assertEqual(pixel_data_type[1].dim, 784)
label_data_type = filter(lambda type: type[0] == "label", data_types)
self.assertEqual(len(label_data_type), 1)
label_data_type = label_data_type[0]
self.assertEqual(label_data_type[1].type, data_type.DataType.Index)
self.assertEqual(label_data_type[1].dim, 10)
def test_get_layer(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
hidden = layer.fc(input=pixel,
size=100,
act=conf_helps.SigmoidActivation())
inference = layer.fc(input=hidden,
size=10,
act=conf_helps.SoftmaxActivation())
cost = layer.classification_cost(input=inference, label=label)
topo = topology.Topology(cost)
pixel_layer = topo.get_layer("pixel")
label_layer = topo.get_layer("label")
self.assertEqual(pixel_layer, pixel)
self.assertEqual(label_layer, label)
def test_parse(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
hidden = layer.fc(input=pixel,
size=100,
act=conf_helps.SigmoidActivation())
inference = layer.fc(input=hidden,
size=10,
act=conf_helps.SoftmaxActivation())
maxid = layer.max_id(input=inference)
cost1 = layer.classification_cost(input=inference, label=label)
cost2 = layer.cross_entropy_cost(input=inference, label=label)
topology.Topology(cost2).proto()
topology.Topology([cost1]).proto()
topology.Topology([cost1, cost2]).proto()
topology.Topology([inference, maxid]).proto()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from paddle.proto.ModelConfig_pb2 import ModelConfig
import layer as v2_layer
__all__ = ['Topology']
class Topology(object):
"""
Topology is used to store the information about all layers
and network configs.
"""
def __init__(self, layers):
if not isinstance(layers, collections.Sequence):
__check_layer_type__(layers)
layers = [layers]
for layer in layers:
__check_layer_type__(layer)
self.layers = layers
self.__model_config__ = v2_layer.parse_network(*layers)
assert isinstance(self.__model_config__, ModelConfig)
def proto(self):
return self.__model_config__
def get_layer(self, name):
"""
get v2.Layer Class instance by layer name
:param name:
:return:
"""
result_layer = []
def find_layer_by_name(layer, layer_name):
if len(result_layer) == 1:
return
elif layer.name == layer_name:
result_layer.append(layer)
else:
for parent_layer in layer.__parent_layers__.values():
find_layer_by_name(parent_layer, layer_name)
for layer in self.layers:
find_layer_by_name(layer, name)
assert len(result_layer) == 1
return result_layer[0]
def data_layers(self):
"""
get all data layer
:return:
"""
data_layers = set()
def find_data_layer(layer):
if isinstance(layer, v2_layer.DataLayerV2):
data_layers.add(layer)
for parent_layer in layer.__parent_layers__.values():
find_data_layer(parent_layer)
for layer in self.layers:
find_data_layer(layer)
return data_layers
def data_type(self):
"""
get data_type from proto, such as:
[('image', dense_vector(768)), ('label', integer_value(10))]
"""
return [(data_layer.name, data_layer.type)
for data_layer in self.data_layers()]
def __check_layer_type__(layer):
if not isinstance(layer, v2_layer.LayerV2):
raise ValueError('layer should have type paddle.layer.Layer')
import collections
import py_paddle.swig_paddle as api
from paddle.proto.ModelConfig_pb2 import ModelConfig
from data_feeder import DataFeeder
from data_feeder import DataFeeder
from topology import Topology
from . import event as v2_event
from . import layer as v2_layer
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters
......@@ -57,11 +56,10 @@ class SGD(ITrainer):
def train(self,
reader,
topology,
cost,
parameters,
num_passes=1,
event_handler=None,
data_types=None,
reader_dict=None):
"""
Training method. Will train num_passes of input data.
......@@ -73,18 +71,18 @@ class SGD(ITrainer):
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param data_types: Not important, will be removed after data refactor.
:return:
"""
if event_handler is None:
event_handler = default_event_handler
topology = v2_layer.parse_network(topology)
topology = Topology(cost)
__check_train_args__(**locals())
gm = api.GradientMachine.createFromConfigProto(
topology, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types())
topology.proto(), api.CREATE_MODE_NORMAL,
self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
gm.randParameters()
......@@ -98,7 +96,7 @@ class SGD(ITrainer):
assert isinstance(pass_evaluator, api.Evaluator)
out_args = api.Arguments.createArguments(0)
feeder = DataFeeder(data_types, reader_dict)
feeder = DataFeeder(topology.data_type(), reader_dict)
for pass_id in xrange(num_passes):
event_handler(v2_event.BeginPass(pass_id))
......@@ -144,7 +142,7 @@ def __check_train_args__(reader, topology, parameters, event_handler, **kwargs):
raise TypeError('train_data_reader should be a function, '
'which can return a iterator')
if not isinstance(topology, ModelConfig):
if not isinstance(topology, Topology):
raise TypeError('topology should be a model config')
if not isinstance(parameters, v2_parameters.Parameters):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册