Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e26cced7
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e26cced7
编写于
12月 27, 2018
作者:
W
Wu Yi
提交者:
GitHub
12月 27, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine batch merge pass (#14777)
* refine batch merge pass * refine batch merge pass test=develop
上级
4048cfa9
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
25 addition
and
4 deletion
+25
-4
paddle/fluid/framework/ir/multi_batch_merge_pass.cc
paddle/fluid/framework/ir/multi_batch_merge_pass.cc
+25
-4
未找到文件。
paddle/fluid/framework/ir/multi_batch_merge_pass.cc
浏览文件 @
e26cced7
...
...
@@ -75,6 +75,7 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
std
::
vector
<
Node
*>
optimize_ops
;
std
::
vector
<
Node
*>
lr_ops
;
// ops other than forward/backward/optimize
std
::
unordered_set
<
std
::
string
>
grad_names
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>
gradname2paramname
;
std
::
vector
<
ir
::
Node
*>
nodes
=
TopologySortOperations
(
*
graph
);
auto
origin_nodes
=
graph
->
ReleaseNodes
();
...
...
@@ -99,6 +100,7 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
auto
op_role_vars
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
op_role_var
);
for
(
size_t
i
=
0
;
i
<
op_role_vars
.
size
();
i
+=
2
)
{
grad_names
.
insert
(
op_role_vars
[
i
+
1
]);
gradname2paramname
[
op_role_vars
[
i
+
1
]]
=
op_role_vars
[
i
];
}
}
else
if
(
op_role
&
static_cast
<
int
>
(
framework
::
OpRole
::
kLRSched
))
{
lr_ops
.
push_back
(
node
);
...
...
@@ -109,7 +111,7 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
// 2. copy forward backward
ir
::
Node
*
prev_repeat_last_op_node
=
nullptr
;
// record origin_grad -> repeated
grad
list map.
// record origin_grad -> repeated
_grad_
list map.
std
::
map
<
ir
::
Node
*
,
std
::
vector
<
ir
::
Node
*>>
grad_repeated_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
created
;
std
::
unordered_set
<
std
::
string
>
bn_vars_need_rename
;
...
...
@@ -124,10 +126,16 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
if
(
grad_names
.
find
(
outname
)
!=
grad_names
.
end
())
{
std
::
string
new_gname
=
string
::
Sprintf
(
"%s.repeat.%d"
,
outname
,
i
);
repeated_op
.
RenameOutput
(
outname
,
new_gname
);
// remove op_role_var for backward ops that outputs grad for a
// parameter.
repeated_op
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
std
::
vector
<
std
::
string
>
());
}
}
// 3.5 let batch_norm ops use independent vars, note batch_norm_grad do
// not need this update
// not need this update, because only moving mean and variance should be
// differ, trainable parameter scale and bias is the same as other
// parameters.
if
(
node
->
Name
()
==
"batch_norm"
)
{
// NOTE: assume bn op created by layers use save var as output mean and
// variance
...
...
@@ -224,16 +232,25 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
var
->
inputs
.
push_back
(
repeated_node
);
}
}
}
}
// end copy forward backward
// 5. create GRAD merge op node
// 5. create GRAD merge op node: sum(repeat.0...repeat.n) ->
// scale(1/num_repeats)
for
(
auto
kv
:
grad_repeated_map
)
{
OpDesc
sum_op
;
sum_op
.
SetType
(
"sum"
);
std
::
vector
<
std
::
string
>
repeated_grad_names
;
std
::
vector
<
std
::
string
>
param_grad_op_role_var
;
for
(
auto
r
:
kv
.
second
)
{
repeated_grad_names
.
push_back
(
r
->
Var
()
->
Name
());
}
// NOTE: use op_role_var to control allreduce op appending in
// multi_devices_graph_pass, we want to append op_role_var
// only once for the merged gradient, so break after first call.
param_grad_op_role_var
.
push_back
(
gradname2paramname
.
at
(
kv
.
first
->
Var
()
->
Name
()));
// param
param_grad_op_role_var
.
push_back
(
kv
.
first
->
Var
()
->
Name
());
// grad
sum_op
.
SetInput
(
"X"
,
repeated_grad_names
);
sum_op
.
SetOutput
(
"Out"
,
{
kv
.
first
->
Var
()
->
Name
()});
sum_op
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
...
...
@@ -256,6 +273,10 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
scale_op
.
SetAttr
(
"scale"
,
static_cast
<
float
>
(
1.0
f
/
num_repeats
));
scale_op
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
static_cast
<
int
>
(
OpRole
::
kBackward
));
scale_op
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
param_grad_op_role_var
);
auto
scale_op_node
=
result
.
CreateOpNode
(
&
scale_op
);
scale_op_node
->
inputs
.
push_back
(
sum_out_var_node
);
sum_out_var_node
->
outputs
.
push_back
(
scale_op_node
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录