未验证 提交 e254e7c6 编写于 作者: T TTerror 提交者: GitHub

optimize prior_box for kunlun, *test=kunlun (#39477)

上级 f138371c
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#ifdef PADDLE_WITH_XPU #ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/detection/prior_box_op.h" #include "paddle/fluid/operators/detection/prior_box_op.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -81,21 +82,17 @@ class PriorBoxOpXPUKernel : public framework::OpKernel<T> { ...@@ -81,21 +82,17 @@ class PriorBoxOpXPUKernel : public framework::OpKernel<T> {
dev_ctx.x_context(), boxes_data, aspect_ratios_param, min_sizes_param, dev_ctx.x_context(), boxes_data, aspect_ratios_param, min_sizes_param,
max_sizes_param, feature_height, feature_width, img_height, img_width, max_sizes_param, feature_height, feature_width, img_height, img_width,
offset, step_height, step_width, clip, min_max_aspect_ratios_order); offset, step_height, step_width, clip, min_max_aspect_ratios_order);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS, PADDLE_ENFORCE_XDNN_SUCCESS(ret, "gen_prior_box");
platform::errors::External(
"XPU gen_prior_box kernel return wrong value[%d %s]",
ret, XPUAPIErrorMsg[ret]));
int box_num = feature_height * feature_width * num_priors; int box_num = feature_height * feature_width * num_priors;
int vlen = variances.size(); int vlen = variances.size();
std::vector<K> var_cpu(vlen * box_num);
for (int i = 0; i < box_num; ++i) { for (int i = 0; i < box_num; ++i) {
ret = xpu_memcpy(vars_data + i * vlen, variances.data(), vlen * sizeof(K), std::copy(variances.begin(), variances.end(), var_cpu.begin() + i * vlen);
XPUMemcpyKind::XPU_HOST_TO_DEVICE);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS, platform::errors::External(
"XPU xpu_memcpy return wrong "
"value[%d %s] in prior_box.",
ret, XPUAPIErrorMsg[ret]));
} }
ret = xpu_memcpy(vars_data, var_cpu.data(), var_cpu.size() * sizeof(K),
XPUMemcpyKind::XPU_HOST_TO_DEVICE);
PADDLE_ENFORCE_XPU_SUCCESS(ret);
} }
}; };
......
...@@ -14,19 +14,32 @@ ...@@ -14,19 +14,32 @@
from __future__ import print_function from __future__ import print_function
import unittest import math
import numpy as np import numpy as np
import sys import sys
import unittest
sys.path.append("..") sys.path.append("..")
import math
import paddle import paddle
from op_test import OpTest
from op_test_xpu import XPUOpTest from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
paddle.enable_static() paddle.enable_static()
class TestPriorBoxOp(XPUOpTest): class XPUTestPriorBoxOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'prior_box'
self.use_dynamic_create_class = False
class TestPriorBoxOp(XPUOpTest):
def setUp(self):
self.op_type = "prior_box"
self.use_xpu = True
self.dtype = self.in_type
self.set_data()
def set_data(self): def set_data(self):
self.init_test_params() self.init_test_params()
self.init_test_input() self.init_test_input()
...@@ -53,14 +66,6 @@ class TestPriorBoxOp(XPUOpTest): ...@@ -53,14 +66,6 @@ class TestPriorBoxOp(XPUOpTest):
place = paddle.XPUPlace(0) place = paddle.XPUPlace(0)
self.check_output_with_place(place) self.check_output_with_place(place)
def test_check_grad(self):
pass
def setUp(self):
self.op_type = "prior_box"
self.use_xpu = True
self.set_data()
def set_max_sizes(self): def set_max_sizes(self):
max_sizes = [5, 10] max_sizes = [5, 10]
self.max_sizes = np.array(max_sizes).astype('float32').tolist() self.max_sizes = np.array(max_sizes).astype('float32').tolist()
...@@ -103,16 +108,16 @@ class TestPriorBoxOp(XPUOpTest): ...@@ -103,16 +108,16 @@ class TestPriorBoxOp(XPUOpTest):
def init_test_input(self): def init_test_input(self):
self.image = np.random.random( self.image = np.random.random(
(self.batch_size, self.image_channels, self.image_w, (self.batch_size, self.image_channels, self.image_w,
self.image_h)).astype('float32') self.image_h)).astype(self.dtype)
self.input = np.random.random( self.input = np.random.random(
(self.batch_size, self.input_channels, self.layer_w, (self.batch_size, self.input_channels, self.layer_w,
self.layer_h)).astype('float32') self.layer_h)).astype(self.dtype)
def init_test_output(self): def init_test_output(self):
out_dim = (self.layer_h, self.layer_w, self.num_priors, 4) out_dim = (self.layer_h, self.layer_w, self.num_priors, 4)
out_boxes = np.zeros(out_dim).astype('float32') out_boxes = np.zeros(out_dim).astype(self.dtype)
out_var = np.zeros(out_dim).astype('float32') out_var = np.zeros(out_dim).astype(self.dtype)
idx = 0 idx = 0
for h in range(self.layer_h): for h in range(self.layer_h):
...@@ -147,10 +152,11 @@ class TestPriorBoxOp(XPUOpTest): ...@@ -147,10 +152,11 @@ class TestPriorBoxOp(XPUOpTest):
idx += 1 idx += 1
else: else:
c_w = c_h = min_size / 2. c_w = c_h = min_size / 2.
out_boxes[h, w, idx, :] = [(c_x - c_w) / self.image_w, out_boxes[h, w, idx, :] = [
(c_y - c_h) / self.image_h, (c_x - c_w) / self.image_w, (c_y - c_h) /
(c_x + c_w) / self.image_w, self.image_h, (c_x + c_w) / self.image_w,
(c_y + c_h) / self.image_h] (c_y + c_h) / self.image_h
]
idx += 1 idx += 1
if len(self.max_sizes) > 0: if len(self.max_sizes) > 0:
max_size = self.max_sizes[s] max_size = self.max_sizes[s]
...@@ -183,19 +189,21 @@ class TestPriorBoxOp(XPUOpTest): ...@@ -183,19 +189,21 @@ class TestPriorBoxOp(XPUOpTest):
# set the variance. # set the variance.
out_var = np.tile(self.variances, (self.layer_h, self.layer_w, out_var = np.tile(self.variances, (self.layer_h, self.layer_w,
self.num_priors, 1)) self.num_priors, 1))
self.out_boxes = out_boxes.astype('float32') self.out_boxes = out_boxes.astype(self.dtype)
self.out_var = out_var.astype('float32') self.out_var = out_var.astype(self.dtype)
class TestPriorBoxOpWithoutMaxSize(TestPriorBoxOp):
class TestPriorBoxOpWithoutMaxSize(TestPriorBoxOp):
def set_max_sizes(self): def set_max_sizes(self):
self.max_sizes = [] self.max_sizes = []
class TestPriorBoxOpWithSpecifiedOutOrder(TestPriorBoxOp):
class TestPriorBoxOpWithSpecifiedOutOrder(TestPriorBoxOp):
def set_min_max_aspect_ratios_order(self): def set_min_max_aspect_ratios_order(self):
self.min_max_aspect_ratios_order = True self.min_max_aspect_ratios_order = True
support_types = get_xpu_op_support_types('prior_box')
for stype in support_types:
create_test_class(globals(), XPUTestPriorBoxOp, stype)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册