Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
e18ab78f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e18ab78f
编写于
3月 29, 2019
作者:
A
AIFollowers
提交者:
qingqing01
3月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add model_stat.py (#16512)
* Add a tool to summary model's PARAMS, FLOPs in paddle/fluid/contrib.
上级
d4f63d82
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
194 addition
and
0 deletion
+194
-0
python/paddle/fluid/contrib/model_stat.py
python/paddle/fluid/contrib/model_stat.py
+194
-0
未找到文件。
python/paddle/fluid/contrib/model_stat.py
0 → 100644
浏览文件 @
e18ab78f
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Example:
>>from paddle.fluid.contrib.model_stat import summary
>>main_program = ...
>>summary(main_program)
+-----+------------+----------------+----------------+---------+------------+
| No. | TYPE | INPUT | OUTPUT | PARAMs | FLOPs |
+-----+------------+----------------+----------------+---------+------------+
| 0 | conv2d | (3, 200, 200) | (64, 100, 100) | 9408 | 188160000 |
| 1 | batch_norm | (64, 100, 100) | (64, 100, 100) | 256 | 640000 |
| 2 | relu | (64, 100, 100) | (64, 100, 100) | 0 | 640000 |
| 3 | pool2d | (64, 100, 100) | (64, 50, 50) | 0 | 1440000 |
...
| 176 | conv2d | (512, 7, 7) | (512, 7, 7) | 2359296 | 231211008 |
| 177 | relu | (512, 7, 7) | (512, 7, 7) | 0 | 25088 |
| 178 | conv2d | (512, 7, 7) | (2048, 7, 7) | 1048576 | 102760448 |
| 179 | relu | (2048, 7, 7) | (2048, 7, 7) | 0 | 100352 |
| 180 | pool2d | (2048, 7, 7) | (2048, 1, 1) | 0 | 100352 |
+-----+------------+----------------+----------------+---------+------------+
Total PARAMs: 48017344(0.0480G)
Total FLOPs: 11692747751(11.69G)
'''
from
collections
import
OrderedDict
from
prettytable
import
PrettyTable
def
summary
(
main_prog
):
'''
It can summary model's PARAMS, FLOPs until now.
It support common operator like conv, fc, pool, relu, sigmoid, bn etc.
Args:
main_prog: main program
Returns:
print summary on terminal
'''
collected_ops_list
=
[]
for
one_b
in
main_prog
.
blocks
:
block_vars
=
one_b
.
vars
for
one_op
in
one_b
.
ops
:
op_info
=
OrderedDict
()
spf_res
=
_summary_model
(
block_vars
,
one_op
)
if
spf_res
is
None
:
continue
# TODO: get the operator name
op_info
[
'type'
]
=
one_op
.
type
op_info
[
'input_shape'
]
=
spf_res
[
0
][
1
:]
op_info
[
'out_shape'
]
=
spf_res
[
1
][
1
:]
op_info
[
'PARAMs'
]
=
spf_res
[
2
]
op_info
[
'FLOPs'
]
=
spf_res
[
3
]
collected_ops_list
.
append
(
op_info
)
summary_table
,
total
=
_format_summary
(
collected_ops_list
)
_print_summary
(
summary_table
,
total
)
def
_summary_model
(
block_vars
,
one_op
):
'''
Compute operator's params and flops.
Args:
block_vars: all vars of one block
one_op: one operator to count
Returns:
in_data_shape: one operator's input data shape
out_data_shape: one operator's output data shape
params: one operator's PARAMs
flops: : one operator's FLOPs
'''
if
one_op
.
type
in
[
'conv2d'
,
'depthwise_conv2d'
]:
k_arg_shape
=
block_vars
[
one_op
.
input
(
"Filter"
)[
0
]].
shape
in_data_shape
=
block_vars
[
one_op
.
input
(
"Input"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Output"
)[
0
]].
shape
c_out
,
c_in
,
k_h
,
k_w
=
k_arg_shape
_
,
c_out_
,
h_out
,
w_out
=
out_data_shape
assert
c_out
==
c_out_
,
'shape error!'
k_groups
=
one_op
.
attr
(
"groups"
)
kernel_ops
=
k_h
*
k_w
*
(
c_in
/
k_groups
)
bias_ops
=
0
if
one_op
.
input
(
"Bias"
)
==
[]
else
1
params
=
c_out
*
(
kernel_ops
+
bias_ops
)
flops
=
h_out
*
w_out
*
c_out
*
(
kernel_ops
+
bias_ops
)
# base nvidia paper, include mul and add
flops
=
2
*
flops
elif
one_op
.
type
==
'pool2d'
:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
_
,
c_out
,
h_out
,
w_out
=
out_data_shape
k_size
=
one_op
.
attr
(
"ksize"
)
params
=
0
flops
=
h_out
*
w_out
*
c_out
*
(
k_size
[
0
]
*
k_size
[
1
])
elif
one_op
.
type
==
'mul'
:
k_arg_shape
=
block_vars
[
one_op
.
input
(
"Y"
)[
0
]].
shape
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
# TODO: fc has mul ops
# add attr to mul op, tell us whether it belongs to 'fc'
# this's not the best way
if
'fc'
not
in
one_op
.
output
(
"Out"
)[
0
]:
return
None
k_in
,
k_out
=
k_arg_shape
# bias in sum op
params
=
k_in
*
k_out
+
1
flops
=
k_in
*
k_out
elif
one_op
.
type
in
[
'sigmoid'
,
'tanh'
,
'relu'
,
'leaky_relu'
,
'prelu'
]:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Out"
)[
0
]].
shape
params
=
0
if
one_op
.
type
==
'prelu'
:
params
=
1
flops
=
1
for
one_dim
in
in_data_shape
:
flops
*=
one_dim
elif
one_op
.
type
==
'batch_norm'
:
in_data_shape
=
block_vars
[
one_op
.
input
(
"X"
)[
0
]].
shape
out_data_shape
=
block_vars
[
one_op
.
output
(
"Y"
)[
0
]].
shape
_
,
c_in
,
h_out
,
w_out
=
in_data_shape
# gamma, beta
params
=
c_in
*
2
# compute mean and std
flops
=
h_out
*
w_out
*
c_in
*
2
else
:
return
None
return
in_data_shape
,
out_data_shape
,
params
,
flops
def
_format_summary
(
collected_ops_list
):
'''
Format summary report.
Args:
collected_ops_list: the collected operator with summary
Returns:
summary_table: summary report format
total: sum param and flops
'''
summary_table
=
PrettyTable
(
[
"No."
,
"TYPE"
,
"INPUT"
,
"OUTPUT"
,
"PARAMs"
,
"FLOPs"
])
summary_table
.
align
=
'r'
total
=
{}
total_params
=
[]
total_flops
=
[]
for
i
,
one_op
in
enumerate
(
collected_ops_list
):
# notice the order
table_row
=
[
i
,
one_op
[
'type'
],
one_op
[
'input_shape'
],
one_op
[
'out_shape'
],
int
(
one_op
[
'PARAMs'
]),
int
(
one_op
[
'FLOPs'
]),
]
summary_table
.
add_row
(
table_row
)
total_params
.
append
(
int
(
one_op
[
'PARAMs'
]))
total_flops
.
append
(
int
(
one_op
[
'FLOPs'
]))
total
[
'params'
]
=
total_params
total
[
'flops'
]
=
total_flops
return
summary_table
,
total
def
_print_summary
(
summary_table
,
total
):
'''
Print all the summary on terminal.
Args:
summary_table: summary report format
total: sum param and flops
'''
parmas
=
total
[
'params'
]
flops
=
total
[
'flops'
]
print
(
summary_table
)
print
(
'Total PARAMs: {}({:.4f}M)'
.
format
(
sum
(
parmas
),
sum
(
parmas
)
/
(
10
**
6
)))
print
(
'Total FLOPs: {}({:.2f}G)'
.
format
(
sum
(
flops
),
sum
(
flops
)
/
10
**
9
))
print
(
"Notice:
\n
now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu)]"
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录