diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index bd6ed0f30e4d71df7a4e84c6dd3472c391008393..ac8843e4f3a6f5bdaf9fee12bdc3460454ca48e2 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -3929,22 +3929,25 @@ def dice_loss(input, label, epsilon=0.00001): return reduce_mean(dice_score) -def resize_bilinear(input, out_shape=None, scale=None, name=None): +def image_resize(input, + out_shape=None, + scale=None, + name=None, + resample='BILINEAR'): """ - The mathematical meaning of resize bilinear layer is - Bilinear interpolation. - Bilinear interpolation is an extension of linear interpolation for - interpolating functions of two variables (e.g. H-direction and - W-direction in this layer) on a rectilinear 2D grid. + Resize a batch of images. - For details, please refer to Wikipedia: - https://en.wikipedia.org/wiki/Bilinear_interpolation + The input must be a tensor of the shape (num_batches, channels, in_h, in_w), + and the resizing only applies on the last two dimensions(hight and width). + + Supporting resample methods: + 'BILINEAR' : Bilinear interpolation Args: - input (Variable): The input tensor of resize bilinear layer, + input (Variable): The input tensor of image resize layer, This is a 4-D tensor of the shape (num_batches, channels, in_h, in_w). - out_shape(list|tuple|Variable|None): Output shape of resize bilinear + out_shape(list|tuple|Variable|None): Output shape of image resize layer, the shape is (out_h, out_w). Default: None scale(float|None): The multiplier for the input height or width. @@ -3953,6 +3956,8 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None): Default: None name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. + resample(str): The resample method. It can only be 'BILINEAR' currently. + Default: 'BILINEAR' Returns: out (Variable): The output is a 4-D tensor of the shape @@ -3961,8 +3966,12 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None): Examples: .. code-block:: python - out = fluid.layers.resize_bilinear(input, out_shape=[12, 12]) + out = fluid.layers.image_resize(input, out_shape=[12, 12]) """ + resample_methods = {'BILINEAR': 'bilinear_interp'} + if resample not in resample_methods: + raise ValueError( + "The 'resample' of image_resize can only be 'BILINEAR' currently.") if out_shape is None and scale is None: raise ValueError("One of out_shape and scale must not be None") helper = LayerHelper('bilinear_interp', **locals()) @@ -3990,7 +3999,7 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None): out = helper.create_tmp_variable(dtype) helper.append_op( - type="bilinear_interp", + type=resample_methods[resample], inputs=inputs, outputs={"Out": out}, attrs={"out_h": out_h, @@ -3998,6 +4007,55 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None): return out +def resize_bilinear(input, out_shape=None, scale=None, name=None): + """ + This is an alias of layer 'image_resize' with bilinear interpolation. + + The mathematical meaning of resize bilinear layer is + Bilinear interpolation. + Bilinear interpolation is an extension of linear interpolation for + interpolating functions of two variables (e.g. H-direction and + W-direction in this layer) on a rectilinear 2D grid. + + For details, please refer to Wikipedia: + https://en.wikipedia.org/wiki/Bilinear_interpolation + """ + + return image_resize(input, out_shape, scale, name, 'BILINEAR') + + +def image_resize_short(input, out_short_len, resample='BILINEAR'): + """ + Resize a batch of images. The short edge of input images will be + resized to the given 'out_short_len'. The long edge of input images + will be resized proportionately to make images' length-width ratio + constant. + + Args: + input (Variable): The input tensor of image resize layer, + This is a 4-D tensor of the shape + (num_batches, channels, in_h, in_w). + out_short_len(int): The length of output images' short edge. + + Returns: + out (Variable): The output is a 4-D tensor of the shape + (num_batches, channls, out_h, out_w). + """ + in_shape = input.shape + if len(in_shape) != 4: + raise ValueError( + "The rank of input must be 4 (num_batches, channels, in_h, in_w).") + hw = in_shape[2:4] + short_idx = hw.index(min(hw)) + long_idx = 1 - short_idx + out_shape = list(hw) + out_shape[short_idx] = out_short_len + out_shape[long_idx] = round( + float(out_shape[long_idx]) * + (float(out_short_len) / float(hw[short_idx]))) + return image_resize(input=input, out_shape=out_shape, resample=resample) + + def gather(input, index): """ Output is obtained by gathering entries of the outer-most dimension @@ -4005,7 +4063,7 @@ def gather(input, index): .. math:: - Out = X[Index] + Out = X[Index] .. code-block:: text @@ -4013,8 +4071,8 @@ def gather(input, index): Given: - X = [[1, 2], - [3, 4], + X = [[1, 2], + [3, 4], [5, 6]] Index = [1, 2]