Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
dfd1eee7
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dfd1eee7
编写于
10月 12, 2019
作者:
G
Guo Sheng
提交者:
Tao Luo
10月 12, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add seq2seq api related code (#19820)
上级
e87cabb7
变更
24
隐藏空白更改
内联
并排
Showing
24 changed file
with
2480 addition
and
72 deletion
+2480
-72
paddle/fluid/API.spec
paddle/fluid/API.spec
+36
-2
paddle/fluid/operators/assign_op.cc
paddle/fluid/operators/assign_op.cc
+4
-2
paddle/fluid/operators/fill_constant_batch_size_like_op.cc
paddle/fluid/operators/fill_constant_batch_size_like_op.cc
+8
-1
paddle/fluid/operators/fill_constant_batch_size_like_op.cu.cc
...le/fluid/operators/fill_constant_batch_size_like_op.cu.cc
+3
-1
paddle/fluid/operators/fill_constant_batch_size_like_op.h
paddle/fluid/operators/fill_constant_batch_size_like_op.h
+14
-5
paddle/fluid/operators/fill_constant_op.cu.cc
paddle/fluid/operators/fill_constant_op.cu.cc
+1
-0
paddle/fluid/operators/gather_nd_op.cc
paddle/fluid/operators/gather_nd_op.cc
+8
-3
paddle/fluid/operators/gather_nd_op.cu
paddle/fluid/operators/gather_nd_op.cu
+1
-0
paddle/fluid/operators/gather_tree_op.cc
paddle/fluid/operators/gather_tree_op.cc
+78
-0
paddle/fluid/operators/gather_tree_op.cu
paddle/fluid/operators/gather_tree_op.cu
+80
-0
paddle/fluid/operators/gather_tree_op.h
paddle/fluid/operators/gather_tree_op.h
+58
-0
paddle/fluid/operators/reduce_ops/reduce_all_op.cc
paddle/fluid/operators/reduce_ops/reduce_all_op.cc
+3
-1
paddle/fluid/operators/reduce_ops/reduce_any_op.cc
paddle/fluid/operators/reduce_ops/reduce_any_op.cc
+3
-1
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+20
-7
paddle/fluid/operators/tensor_array_to_tensor_op.cc
paddle/fluid/operators/tensor_array_to_tensor_op.cc
+63
-12
python/paddle/fluid/layers/__init__.py
python/paddle/fluid/layers/__init__.py
+4
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+76
-0
python/paddle/fluid/layers/rnn.py
python/paddle/fluid/layers/rnn.py
+1165
-0
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+75
-36
python/paddle/fluid/layers/utils.py
python/paddle/fluid/layers/utils.py
+172
-0
python/paddle/fluid/tests/unittests/test_gather_tree_op.py
python/paddle/fluid/tests/unittests/test_gather_tree_op.py
+65
-0
python/paddle/fluid/tests/unittests/test_rnn_cell_api.py
python/paddle/fluid/tests/unittests/test_rnn_cell_api.py
+249
-0
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
+214
-0
python/paddle/fluid/tests/unittests/test_tensor_array_to_tensor.py
...ddle/fluid/tests/unittests/test_tensor_array_to_tensor.py
+80
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
dfd1eee7
...
...
@@ -306,6 +306,7 @@ paddle.fluid.layers.deformable_roi_pooling (ArgSpec(args=['input', 'rois', 'tran
paddle.fluid.layers.filter_by_instag (ArgSpec(args=['ins', 'ins_tag', 'filter_tag', 'is_lod'], varargs=None, keywords=None, defaults=None), ('document', '7703a2088af8de4128b143ff1164ca4a'))
paddle.fluid.layers.shard_index (ArgSpec(args=['input', 'index_num', 'nshards', 'shard_id', 'ignore_value'], varargs=None, keywords=None, defaults=(-1,)), ('document', '3c6b30e9cd57b38d4a5fa1ade887f779'))
paddle.fluid.layers.hard_swish (ArgSpec(args=['x', 'threshold', 'scale', 'offset', 'name'], varargs=None, keywords=None, defaults=(6.0, 6.0, 3.0, None)), ('document', 'bd763b9ca99239d624c3cb4626e3627a'))
paddle.fluid.layers.gather_tree (ArgSpec(args=['ids', 'parents'], varargs=None, keywords=None, defaults=None), ('document', '201b54fa7512305078c70a6610beaead'))
paddle.fluid.layers.mse_loss (ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None), ('document', '88b967ef5132567396062d5d654b3064'))
paddle.fluid.layers.uniform_random (ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', -1.0, 1.0, 0)), ('document', '34e7c1ff0263baf9551000b6bb3bc47e'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '9d7806e31bdf727c1a23b8782a09b545'))
...
...
@@ -318,11 +319,11 @@ paddle.fluid.layers.create_tensor (ArgSpec(args=['dtype', 'name', 'persistable']
paddle.fluid.layers.create_parameter (ArgSpec(args=['shape', 'dtype', 'name', 'attr', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(None, None, False, None)), ('document', '727aa63c061919bee38547fb126d9428'))
paddle.fluid.layers.create_global_var (ArgSpec(args=['shape', 'value', 'dtype', 'persistable', 'force_cpu', 'name'], varargs=None, keywords=None, defaults=(False, False, None)), ('document', 'fa7f74cfb940521cc9fdffabc83debbf'))
paddle.fluid.layers.cast (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '45df178cbd8c302f92c30ebdaaa6fa8a'))
paddle.fluid.layers.tensor_array_to_tensor (ArgSpec(args=['input', 'axis', 'name'
], varargs=None, keywords=None, defaults=(1, None)), ('document', 'dd7d2f1e12a8a4225d017209866e5621
'))
paddle.fluid.layers.tensor_array_to_tensor (ArgSpec(args=['input', 'axis', 'name'
, 'use_stack'], varargs=None, keywords=None, defaults=(1, None, False)), ('document', '4aa82374218ccf593bb8011df79c71e3
'))
paddle.fluid.layers.concat (ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'ec7d6e716fb29ef1e73e1e3efa5ca46b'))
paddle.fluid.layers.sums (ArgSpec(args=['input', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', '5df743d578638cd2bbb9369499b44af4'))
paddle.fluid.layers.assign (ArgSpec(args=['input', 'output'], varargs=None, keywords=None, defaults=(None,)), ('document', '8bd94aef4e123986d9a8c29f67b5532b'))
paddle.fluid.layers.fill_constant_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'value', 'input_dim_idx', 'output_dim_idx'
], varargs=None, keywords=None, defaults=(0, 0)), ('document', '37a288e4400f6d5510e982827461c11b
'))
paddle.fluid.layers.fill_constant_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'value', 'input_dim_idx', 'output_dim_idx'
, 'force_cpu'], varargs=None, keywords=None, defaults=(0, 0, False)), ('document', '2bb57637664173fee5f654e55896aec6
'))
paddle.fluid.layers.fill_constant (ArgSpec(args=['shape', 'dtype', 'value', 'force_cpu', 'out'], varargs=None, keywords=None, defaults=(False, None)), ('document', '66e1e468666dd47e5b2715226cebeac0'))
paddle.fluid.layers.argmin (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', '53629e27597e5dfb7020aac5bc639ebb'))
paddle.fluid.layers.argmax (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'd9a89fbedbaebd5f65897ac75ee636f3'))
...
...
@@ -467,6 +468,39 @@ paddle.fluid.layers.MultivariateNormalDiag.entropy (ArgSpec(args=['self'], varar
paddle.fluid.layers.MultivariateNormalDiag.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', 'd9190d29dbd54c81f747a6436c35f062'))
paddle.fluid.layers.MultivariateNormalDiag.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'c0edd2e2fc76711477b32dc4da9de768'))
paddle.fluid.layers.MultivariateNormalDiag.sample (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '08a2bbcaa20ee176ee7ec3d05737a0f6'))
paddle.fluid.layers.RNNCell ('paddle.fluid.layers.rnn.RNNCell', ('document', '2c3a2d3ecb4a3cec130395e7df0bd5c9'))
paddle.fluid.layers.RNNCell.__init__
paddle.fluid.layers.RNNCell.call (ArgSpec(args=['self', 'inputs', 'states'], varargs=None, keywords='kwargs', defaults=None), ('document', '3ac714b638258c520d66f682be67b658'))
paddle.fluid.layers.RNNCell.get_initial_states (ArgSpec(args=['self', 'batch_ref', 'shape', 'dtype', 'init_value'], varargs=None, keywords=None, defaults=(None, None, 0)), ('document', '003d1b4c99128f798ac0b0eecc81c489'))
paddle.fluid.layers.GRUCell ('paddle.fluid.layers.rnn.GRUCell', ('document', '7b2902a91258c4688a879805290adc00'))
paddle.fluid.layers.GRUCell.__init__ (ArgSpec(args=['self', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, 'float32', 'GRUCell')), ('document', '3624a6c93b4a999d0d809eb1a66d272e'))
paddle.fluid.layers.GRUCell.call (ArgSpec(args=['self', 'inputs', 'states'], varargs=None, keywords=None, defaults=None), ('document', '6094ab09a56c732c76abb5105327ea54'))
paddle.fluid.layers.GRUCell.get_initial_states (ArgSpec(args=['self', 'batch_ref', 'shape', 'dtype', 'init_value'], varargs=None, keywords=None, defaults=(None, None, 0)), ('document', '003d1b4c99128f798ac0b0eecc81c489'))
paddle.fluid.layers.LSTMCell ('paddle.fluid.layers.rnn.LSTMCell', ('document', '5cbd87bce446ba0f50398ce2772d43e9'))
paddle.fluid.layers.LSTMCell.__init__ (ArgSpec(args=['self', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'forget_bias', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, 1.0, 'float32', 'LSTMCell')), ('document', '9015961869b436d2739a0347618028e3'))
paddle.fluid.layers.LSTMCell.call (ArgSpec(args=['self', 'inputs', 'states'], varargs=None, keywords=None, defaults=None), ('document', '9c84a477021e4a7d0a497c1e6a31be2d'))
paddle.fluid.layers.LSTMCell.get_initial_states (ArgSpec(args=['self', 'batch_ref', 'shape', 'dtype', 'init_value'], varargs=None, keywords=None, defaults=(None, None, 0)), ('document', '003d1b4c99128f798ac0b0eecc81c489'))
paddle.fluid.layers.Decoder ('paddle.fluid.layers.rnn.Decoder', ('document', '23838bd065fddca1557a6a3368d9e365'))
paddle.fluid.layers.Decoder.__init__
paddle.fluid.layers.Decoder.finalize (ArgSpec(args=['self', 'outputs', 'final_states', 'sequence_lengths'], varargs=None, keywords=None, defaults=None), ('document', 'cab7fc752a05db18e99258473f50359d'))
paddle.fluid.layers.Decoder.initialize (ArgSpec(args=['self', 'inits'], varargs=None, keywords=None, defaults=None), ('document', '68cf1846fb58056dbe5a524f1ca9dff5'))
paddle.fluid.layers.Decoder.step (ArgSpec(args=['self', 'time', 'inputs', 'states'], varargs=None, keywords=None, defaults=None), ('document', '151d0229930b9654689f86c85f7c4c3f'))
paddle.fluid.layers.BeamSearchDecoder ('paddle.fluid.layers.rnn.BeamSearchDecoder', ('document', 'd7ef0c9229bfe73e0daefcfda24a2635'))
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper ('paddle.fluid.layers.rnn.OutputWrapper', ('document', 'a7141ebf1fb097fa71006cdd35bdc219'))
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper.__init__
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper.count T.count(value) -> integer -- return number of occurrences of value
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper.index T.index(value, [start, [stop]]) -> integer -- return first index of value.
paddle.fluid.layers.BeamSearchDecoder.StateWrapper ('paddle.fluid.layers.rnn.StateWrapper', ('document', '157731f37c88ea01bc746653125a41c8'))
paddle.fluid.layers.BeamSearchDecoder.StateWrapper.__init__
paddle.fluid.layers.BeamSearchDecoder.StateWrapper.count T.count(value) -> integer -- return number of occurrences of value
paddle.fluid.layers.BeamSearchDecoder.StateWrapper.index T.index(value, [start, [stop]]) -> integer -- return first index of value.
paddle.fluid.layers.BeamSearchDecoder.__init__ (ArgSpec(args=['self', 'cell', 'start_token', 'end_token', 'beam_size', 'embedding_fn', 'output_fn'], varargs=None, keywords=None, defaults=(None, None)), ('document', '68951eaed573ec47c17a43155514b2f1'))
paddle.fluid.layers.BeamSearchDecoder.finalize (ArgSpec(args=['self', 'outputs', 'final_states', 'sequence_lengths'], varargs=None, keywords=None, defaults=None), ('document', '9a7f0a8fc5802bf860f2ac960466fb45'))
paddle.fluid.layers.BeamSearchDecoder.initialize (ArgSpec(args=['self', 'initial_cell_states'], varargs=None, keywords=None, defaults=None), ('document', '01ee508a9615e2483fe6ddcf14d5fa25'))
paddle.fluid.layers.BeamSearchDecoder.step (ArgSpec(args=['self', 'time', 'inputs', 'states'], varargs=None, keywords='kwargs', defaults=None), ('document', '35ee583c3c0fe7cceeafa289ed3374bd'))
paddle.fluid.layers.BeamSearchDecoder.tile_beam_merge_with_batch (ArgSpec(args=['x', 'beam_size'], varargs=None, keywords=None, defaults=None), ('document', 'ce7ffacba6f56f57acbf5d4dd82fe04d'))
paddle.fluid.layers.rnn (ArgSpec(args=['cell', 'inputs', 'initial_states', 'sequence_length', 'time_major', 'is_reverse'], varargs=None, keywords='kwargs', defaults=(None, None, False, False)), ('document', 'c36ade777ff43d2ba5542079b66a012b'))
paddle.fluid.layers.dynamic_decode (ArgSpec(args=['decoder', 'inits', 'max_step_num', 'output_time_major'], varargs=None, keywords='kwargs', defaults=(None, None, False)), ('document', '55b44de9d290c0c2ad8fdd635e6ab575'))
paddle.fluid.contrib.InitState ('paddle.fluid.contrib.decoder.beam_search_decoder.InitState', ('document', '3afd1f84232718e628e9e566941c5f05'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.StateCell ('paddle.fluid.contrib.decoder.beam_search_decoder.StateCell', ('document', 'ecd0066c02867d445d7b461e28220c50'))
...
...
paddle/fluid/operators/assign_op.cc
浏览文件 @
dfd1eee7
...
...
@@ -154,10 +154,12 @@ REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
ops
::
AssignOpProtoMaker
,
ops
::
AssignOpInplaceInferer
);
REGISTER_OP_CPU_KERNEL_FUNCTOR
(
assign
,
float
,
ops
::
AssignKernel
,
double
,
ops
::
AssignKernel
,
int
,
ops
::
AssignKernel
,
int64_t
,
ops
::
AssignKernel
);
int64_t
,
ops
::
AssignKernel
,
bool
,
ops
::
AssignKernel
);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR
(
assign
,
float
,
ops
::
AssignKernel
,
double
,
ops
::
AssignKernel
,
int
,
ops
::
AssignKernel
,
int64_t
,
ops
::
AssignKernel
);
int64_t
,
ops
::
AssignKernel
,
bool
,
ops
::
AssignKernel
);
#endif
paddle/fluid/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
dfd1eee7
...
...
@@ -38,6 +38,11 @@ class FillConstantBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
AddAttr
<
float
>
(
"value"
,
"default 0. The value to be filled"
)
.
SetDefault
(
0.0
f
);
AddAttr
<
bool
>
(
"force_cpu"
,
"(bool, default false) Force fill output variable to cpu "
"memory. Otherwise, fill output variable to the running "
"device"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
This function creates a tensor of specified *shape*, *dtype* and batch size,
and initializes this with a constant supplied in *value*. The batch size is
...
...
@@ -65,4 +70,6 @@ REGISTER_OP_CPU_KERNEL(
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
int64_t
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
>
);
paddle/fluid/operators/fill_constant_batch_size_like_op.cu.cc
浏览文件 @
dfd1eee7
...
...
@@ -25,4 +25,6 @@ REGISTER_OP_CUDA_KERNEL(
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
int64_t
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
bool
>
);
paddle/fluid/operators/fill_constant_batch_size_like_op.h
浏览文件 @
dfd1eee7
...
...
@@ -23,6 +23,11 @@ template <typename DeviceContext, typename T>
class
FillConstantBatchSizeLikeOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"dtype"
));
auto
value
=
ctx
.
Attr
<
float
>
(
"value"
);
auto
force_cpu
=
ctx
.
Attr
<
bool
>
(
"force_cpu"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Input"
);
if
(
in
->
lod
().
size
()
&&
ctx
.
Attr
<
int
>
(
"input_dim_idx"
)
==
0
)
{
...
...
@@ -32,12 +37,16 @@ class FillConstantBatchSizeLikeOpKernel : public framework::OpKernel<T> {
odims
[
output_dim_idx
]
=
static_cast
<
int
>
(
in
->
lod
().
back
().
size
())
-
1
;
out
->
mutable_data
<
T
>
(
odims
,
ctx
.
GetPlace
());
}
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
value
=
ctx
.
Attr
<
float
>
(
"value"
);
math
::
SetConstant
<
DeviceContext
,
T
>
setter
;
setter
(
ctx
.
template
device_context
<
DeviceContext
>(),
out
,
static_cast
<
T
>
(
value
));
if
(
force_cpu
)
{
out
->
mutable_data
(
platform
::
CPUPlace
(),
data_type
);
}
else
{
out
->
mutable_data
(
ctx
.
GetPlace
(),
data_type
);
}
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
ctx
.
GetPlace
());
math
::
set_constant
(
dev_ctx
,
out
,
value
);
}
};
...
...
paddle/fluid/operators/fill_constant_op.cu.cc
浏览文件 @
dfd1eee7
...
...
@@ -19,4 +19,5 @@ REGISTER_OP_CUDA_KERNEL(fill_constant, ops::FillConstantKernel<float>,
ops
::
FillConstantKernel
<
double
>
,
ops
::
FillConstantKernel
<
int64_t
>
,
ops
::
FillConstantKernel
<
int
>
,
ops
::
FillConstantKernel
<
bool
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/gather_nd_op.cc
浏览文件 @
dfd1eee7
...
...
@@ -60,8 +60,13 @@ class GatherNdOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_type
=
x
->
type
();
return
framework
::
OpKernelType
(
x_type
,
x_type
==
framework
::
proto
::
VarType
::
BOOL
?
x
->
place
()
// to be consistent with compare and logical ops
:
ctx
.
device_context
().
GetPlace
());
}
};
...
...
@@ -173,7 +178,7 @@ REGISTER_OPERATOR(gather_nd_grad, ops::GatherNdGradOp,
REGISTER_OP_CPU_KERNEL
(
gather_nd
,
ops
::
GatherNdOpKernel
<
float
>
,
ops
::
GatherNdOpKernel
<
double
>
,
ops
::
GatherNdOpKernel
<
int64_t
>
,
ops
::
GatherNdOpKernel
<
int
>
,
ops
::
GatherNdOpKernel
<
int
>
,
ops
::
GatherNdOpKernel
<
bool
>
,
ops
::
GatherNdOpKernel
<
uint8_t
>
);
REGISTER_OP_CPU_KERNEL
(
gather_nd_grad
,
ops
::
GatherNdGradOpKernel
<
float
>
,
...
...
paddle/fluid/operators/gather_nd_op.cu
浏览文件 @
dfd1eee7
...
...
@@ -95,6 +95,7 @@ REGISTER_OP_CUDA_KERNEL(gather_nd, ops::GatherNdOpCUDAKernel<CUDA, float>,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
double
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
int64_t
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
int
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
bool
>
,
ops
::
GatherNdOpCUDAKernel
<
CUDA
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
gather_nd_grad
,
...
...
paddle/fluid/operators/gather_tree_op.cc
0 → 100644
浏览文件 @
dfd1eee7
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/gather_tree_op.h"
namespace
paddle
{
namespace
operators
{
class
GatherTreeOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"Input(Ids) of GatherTreeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Parents"
),
"Input(Parents) of GatherTreeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of GatherTreeOp should not be null."
);
auto
ids_dims
=
ctx
->
GetInputDim
(
"Ids"
);
auto
parents_dims
=
ctx
->
GetInputDim
(
"Parents"
);
PADDLE_ENFORCE
(
ids_dims
==
parents_dims
,
"The shape of Input(Parents) must be same with the shape of "
"Input(Ids)."
);
ctx
->
SetOutputDim
(
"Out"
,
ids_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"Ids"
)
->
type
(),
ctx
.
device_context
());
}
};
class
GatherTreeOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Ids"
,
"The Tensor with shape [length, batch_size, beam_size] containing "
"the selected ids of all time steps."
);
AddInput
(
"Parents"
,
"The Tensor has the same shape as Ids and contains the parents "
"corresponding to selected ids when searching among beams."
);
AddOutput
(
"Out"
,
"A Tensor with shape [length, batch_size, beam_size] containing the "
"full sequences. The sequences is collected by backtracing from the "
"last time step of Ids."
);
AddComment
(
R"DOC(
GatherTree Operator.
Backtrace from the last time step and generate the full sequences by collecting beam search
selected ids.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
gather_tree
,
ops
::
GatherTreeOp
,
ops
::
GatherTreeOpMaker
);
REGISTER_OP_CPU_KERNEL
(
gather_tree
,
ops
::
GatherTreeOpKernel
<
int32_t
>
,
ops
::
GatherTreeOpKernel
<
int64_t
>
);
paddle/fluid/operators/gather_tree_op.cu
0 → 100644
浏览文件 @
dfd1eee7
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather_tree_op.h"
namespace
paddle
{
namespace
operators
{
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template
<
typename
T
>
__global__
void
GatherTree
(
const
T
*
ids_data
,
const
T
*
parents_data
,
T
*
out_data
,
const
int64_t
max_length
,
const
int64_t
batch_size
,
const
int64_t
beam_size
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
batch_size
*
beam_size
)
{
int
batch
=
i
/
beam_size
;
int
beam
=
i
%
beam_size
;
auto
idx
=
(
max_length
-
1
)
*
batch_size
*
beam_size
+
batch
*
beam_size
+
beam
;
out_data
[
idx
]
=
ids_data
[
idx
];
auto
parent
=
parents_data
[
idx
];
for
(
int
step
=
max_length
-
2
;
step
>=
0
;
step
--
)
{
idx
=
step
*
batch_size
*
beam_size
+
batch
*
beam_size
;
out_data
[
idx
+
beam
]
=
ids_data
[
idx
+
parent
];
parent
=
parents_data
[
idx
+
parent
];
}
}
}
template
<
typename
T
>
class
GatherTreeOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
ids
=
ctx
.
Input
<
Tensor
>
(
"Ids"
);
auto
*
parents
=
ctx
.
Input
<
Tensor
>
(
"Parents"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
auto
*
ids_data
=
ids
->
data
<
T
>
();
const
auto
*
parents_data
=
parents
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
ids_dims
=
ids
->
dims
();
int64_t
max_length
=
ids_dims
[
0
];
int64_t
batch_size
=
ids_dims
[
1
];
int64_t
beam_size
=
ids_dims
[
2
];
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
const
int
block
=
512
;
int
max_threads
=
std
::
min
(
static_cast
<
int64_t
>
(
dev_ctx
.
GetMaxPhysicalThreadCount
()),
batch_size
*
beam_size
);
const
int
grid
=
std
::
max
(
max_threads
/
block
,
1
);
GatherTree
<<<
grid
,
block
>>>
(
ids_data
,
parents_data
,
out_data
,
max_length
,
batch_size
,
beam_size
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
gather_tree
,
ops
::
GatherTreeOpCUDAKernel
<
int32_t
>
,
ops
::
GatherTreeOpCUDAKernel
<
int64_t
>
);
paddle/fluid/operators/gather_tree_op.h
0 → 100644
浏览文件 @
dfd1eee7
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
GatherTreeOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
ids
=
ctx
.
Input
<
Tensor
>
(
"Ids"
);
auto
*
parents
=
ctx
.
Input
<
Tensor
>
(
"Parents"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
auto
*
ids_data
=
ids
->
data
<
T
>
();
const
auto
*
parents_data
=
parents
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
ids_dims
=
ids
->
dims
();
auto
max_length
=
ids_dims
[
0
];
auto
batch_size
=
ids_dims
[
1
];
auto
beam_size
=
ids_dims
[
2
];
for
(
int
batch
=
0
;
batch
<
batch_size
;
batch
++
)
{
for
(
int
beam
=
0
;
beam
<
beam_size
;
beam
++
)
{
auto
idx
=
(
max_length
-
1
)
*
batch_size
*
beam_size
+
batch
*
beam_size
+
beam
;
out_data
[
idx
]
=
ids_data
[
idx
];
auto
parent
=
parents_data
[
idx
];
for
(
int
step
=
max_length
-
2
;
step
>=
0
;
step
--
)
{
idx
=
step
*
batch_size
*
beam_size
+
batch
*
beam_size
;
out_data
[
idx
+
beam
]
=
ids_data
[
idx
+
parent
];
parent
=
parents_data
[
idx
+
parent
];
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reduce_ops/reduce_all_op.cc
浏览文件 @
dfd1eee7
...
...
@@ -14,7 +14,9 @@
#include "paddle/fluid/operators/reduce_ops/reduce_all_op.h"
REGISTER_REDUCE_OP_WITHOUT_GRAD
(
reduce_all
);
// kernel's device type is decided by input tensor place, to be consistent with
// compare and logical ops
REGISTER_REDUCE_OP_WITHOUT_GRAD
(
reduce_all
,
UseInputPlace
);
REGISTER_OP_CPU_KERNEL
(
reduce_all
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
,
ops
::
AllFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_any_op.cc
浏览文件 @
dfd1eee7
...
...
@@ -14,7 +14,9 @@
#include "paddle/fluid/operators/reduce_ops/reduce_any_op.h"
REGISTER_REDUCE_OP_WITHOUT_GRAD
(
reduce_any
);
// kernel's device type is decided by input tensor place, to be consistent with
// compare and logical ops
REGISTER_REDUCE_OP_WITHOUT_GRAD
(
reduce_any
,
UseInputPlace
);
REGISTER_OP_CPU_KERNEL
(
reduce_any
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
,
ops
::
AnyFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
dfd1eee7
...
...
@@ -223,6 +223,19 @@ class ReduceOp : public framework::OperatorWithKernel {
}
};
class
ReduceOpUseInputPlace
:
public
ReduceOp
{
public:
using
ReduceOp
::
ReduceOp
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
OpKernelType
kt
=
OperatorWithKernel
::
GetExpectedKernelType
(
ctx
);
kt
.
place_
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
place
();
return
kt
;
}
};
class
ReduceGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -313,11 +326,11 @@ namespace ops = paddle::operators;
paddle::framework::DefaultGradOpDescMaker<true>); \
REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)
#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name
)
\
class __##op_name##Maker__ : public ops::ReduceOpMaker { \
protected: \
virtual std::string GetName() const { return #op_name; } \
virtual std::string GetOpType() const { return "Reduce " #op_name; } \
}; \
REGISTER_OPERATOR(op_name, ops::ReduceOp
, __##op_name##Maker__,
\
#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name
, ...)
\
class __##op_name##Maker__ : public ops::ReduceOpMaker {
\
protected:
\
virtual std::string GetName() const { return #op_name; }
\
virtual std::string GetOpType() const { return "Reduce " #op_name; }
\
};
\
REGISTER_OPERATOR(op_name, ops::ReduceOp
##__VA_ARGS__, __##op_name##Maker__,
\
paddle::framework::EmptyGradOpMaker);
paddle/fluid/operators/tensor_array_to_tensor_op.cc
浏览文件 @
dfd1eee7
...
...
@@ -120,11 +120,18 @@ class LoDTensorArray2TensorOp : public framework::OperatorBase {
out
.
Resize
(
out_dims
);
LodTensorArray2LodTensorVector
(
scope
,
base_name
,
Input
(
"X"
),
&
names
);
// Invoke concat Op
auto
concat_op
=
framework
::
OpRegistry
::
CreateOp
(
"concat"
,
{{
"X"
,
names
}},
{{
"Out"
,
{
Output
(
"Out"
)}}},
attrs
);
concat_op
->
Run
(
scope
,
place
);
auto
use_stack
=
Attr
<
bool
>
(
"use_stack"
);
// Invoke concat Op or stack Op
auto
op
=
use_stack
?
framework
::
OpRegistry
::
CreateOp
(
"stack"
,
{{
"X"
,
names
}},
{{
"Y"
,
{
Output
(
"Out"
)}}},
attrs
)
:
framework
::
OpRegistry
::
CreateOp
(
"concat"
,
{{
"X"
,
names
}},
{{
"Out"
,
{
Output
(
"Out"
)}}},
attrs
);
op
->
Run
(
scope
,
place
);
}
};
...
...
@@ -139,17 +146,32 @@ class LoDTensorArray2TensorOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"axis"
,
"The axis along which the input tensors will be concatenated."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"use_stack"
,
"Act as concat_op or stack_op. For stack mode, all tensors "
"in the tensor array must have the same shape."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
tensor_array_to_tensor Operator.
Concatenate the input LoDTensorArray along dimension axis to the output Tensor.
If use concat mode, concatenate all tensors in the input LoDTensorArray along
axis into the output Tensor.
Examples:
Input = {[1,2], [3,4], [5,6]}
axis = 0
Output = [1,2,3,4,5,6]
OutputIndex = [2,2,2]
If use stack mode, stack all tensors in the input LoDTensorArray along axis into
the output Tensor.
Examples:
Input = {[1,2], [3,4], [5,6]}
axis = 0
Output = [[1,2],
[3,4],
[5,6]]
OutputIndex = [
1,1,1
]
OutputIndex = [
2,2,2
]
)DOC"
);
}
...
...
@@ -157,12 +179,34 @@ Examples:
class
LoDTensorArray2TensorOpInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// in runtime, shape is determined by RunImpl
if
(
ctx
->
IsRuntime
())
return
;
auto
dims
=
ctx
->
GetInputDim
(
"X"
);
// if the shape is empty
if
(
dims
==
framework
::
make_ddim
({
0UL
}))
return
;
// otherwise, suppose the shape of array is the shape of tensor in the
// array, which is consistent with what tensor_array_read_write dose
auto
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
auto
use_stack
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_stack"
);
if
(
use_stack
)
{
auto
dim_vec
=
framework
::
vectorize
<
int
>
(
dims
);
// use -1 for the stack dim size
dim_vec
.
insert
(
dim_vec
.
begin
()
+
axis
,
-
1
);
dims
=
framework
::
make_ddim
(
dim_vec
);
}
else
{
// use -1 for the concat dim size
dims
[
axis
]
=
-
1
;
}
ctx
->
SetOutputDim
(
"Out"
,
dims
);
}
};
class
LoDTensorArray2TensorGradInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{}
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
};
class
LoDTensorArray2TensorGradInferVarType
...
...
@@ -204,11 +248,18 @@ class LoDTensorArray2TensorGradOp : public framework::OperatorBase {
LodTensorVectorResizeFromLodTensorArray
(
scope
,
"grad_name"
,
Input
(
"X"
),
&
grad_names
);
auto
concat_grad_op
=
framework
::
OpRegistry
::
CreateOp
(
"concat_grad"
,
{{
"X"
,
names
},
{
"Out@GRAD"
,
{
dout_name
}}},
{{
"X@GRAD"
,
grad_names
}},
attrs
);
auto
use_stack
=
Attr
<
bool
>
(
"use_stack"
);
auto
grad_op
=
use_stack
?
framework
::
OpRegistry
::
CreateOp
(
"stack_grad"
,
{{
"X"
,
names
},
{
"Y@GRAD"
,
{
dout_name
}}},
{{
"X@GRAD"
,
grad_names
}},
attrs
)
:
framework
::
OpRegistry
::
CreateOp
(
"concat_grad"
,
{{
"X"
,
names
},
{
"Out@GRAD"
,
{
dout_name
}}},
{{
"X@GRAD"
,
grad_names
}},
attrs
);
concat_
grad_op
->
Run
(
scope
,
place
);
grad_op
->
Run
(
scope
,
place
);
LodTensorArrayCreateFromLodTensorArray
(
scope
,
Input
(
"X"
),
dx_name
);
auto
&
grad_inx
=
...
...
python/paddle/fluid/layers/__init__.py
浏览文件 @
dfd1eee7
...
...
@@ -35,6 +35,7 @@ from .metric_op import *
from
.learning_rate_scheduler
import
*
from
.collective
import
*
from
.distributions
import
*
from
.
import
rnn
__all__
=
[]
__all__
+=
nn
.
__all__
...
...
@@ -47,3 +48,6 @@ __all__ += detection.__all__
__all__
+=
metric_op
.
__all__
__all__
+=
learning_rate_scheduler
.
__all__
__all__
+=
distributions
.
__all__
__all__
+=
rnn
.
__all__
from
.rnn
import
*
python/paddle/fluid/layers/nn.py
浏览文件 @
dfd1eee7
...
...
@@ -221,6 +221,7 @@ __all__ = [
'filter_by_instag',
'shard_index',
'hard_swish',
'gather_tree',
'mse_loss',
'uniform_random',
]
...
...
@@ -16994,6 +16995,81 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
return out
def gather_tree(ids, parents):
"""
To be used after beam search. After beam search, we get selected ids at
each time step and the corresponding parents in the search tree. Both ids
and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
:attr:`gather_tree` is used to backtrace from the last time step and
generate the full sequences by collecting selected ids.
Here is an example:
.. code-block:: text
Given:
ids = [[[2 2]
[6 1]]
[[3 9]
[6 1]]
[[0 1]
[9 0]]]
parents = [[[0 0]
[1 1]]
[[1 0]
[1 0]]
[[0 0]
[0 1]]]
Then:
gather_tree(ids, parents)
= [[[2 2]
[1 6]]
[[3 3]
[6 1]]
[[0 1]
[9 0]]]
Args:
ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
and data type :attr:`int32` or :attr:`int64`. It contains the selected
ids of all time steps.
parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
It contains the parents corresponding to selected ids when searching
among beams.
Returns:
Variable: A Tensor with the same shape and data type as :attr:`ids`. \
It contains the full sequences. The sequences are collected from \
:attr:`ids` by backtracing according to :attr:`parents`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
ids = fluid.layers.data(name='ids',
shape=[5, 2, 2],
dtype='int64',
append_batch_size=False)
parents = fluid.layers.data(name='parents',
shape=[5, 2, 2],
dtype='int64',
append_batch_size=False)
final_sequences = fluid.layers.gather_tree(ids, parents)
"""
helper = LayerHelper('gather_tree', **locals())
out = helper.create_variable_for_type_inference(dtype=ids.dtype)
helper.append_op(
type="gather_tree",
inputs={"Ids": ids,
"Parents": parents},
outputs={"Out": out})
return out
def mse_loss(input, label):
"""
This op accepts input predications and target label and returns the mean square error.
...
...
python/paddle/fluid/layers/rnn.py
0 → 100644
浏览文件 @
dfd1eee7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
functools
import
partial
,
reduce
from
.
import
nn
from
.
import
tensor
from
.
import
control_flow
from
.
import
utils
from
.utils
import
*
__all__
=
[
'RNNCell'
,
'GRUCell'
,
'LSTMCell'
,
'Decoder'
,
'BeamSearchDecoder'
,
'rnn'
,
'dynamic_decode'
,
]
class
RNNCell
(
object
):
"""
RNNCell is the base class for abstraction representing the calculations
mapping the input and state to the output and new state. It is suitable to
and mostly used in RNN.
"""
def
call
(
self
,
inputs
,
states
,
**
kwargs
):
"""
Every cell must implement this method to do the calculations mapping the
inputs and states to the output and new states.
To be more flexible, both inputs and states can be a tensor variable or
a nested structure (list|tuple|namedtuple|dict) of tensor variable, that
is, a (possibly nested structure of) tensor variable[s].
Parameters:
inputs: A (possibly nested structure of) tensor variable[s].
states: A (possibly nested structure of) tensor variable[s].
**kwargs: Additional keyword arguments, provided by the caller.
Returns:
tuple: outputs and new_states pair. outputs and new_states both
\
can be nested structure of tensor variables. new_states must
\
have the same structure with states.
"""
raise
NotImplementedError
(
"RNNCell must implent the call function."
)
def
__call__
(
self
,
inputs
,
states
,
**
kwargs
):
return
self
.
call
(
inputs
,
states
,
**
kwargs
)
def
get_initial_states
(
self
,
batch_ref
,
shape
=
None
,
dtype
=
None
,
init_value
=
0
):
"""
Generate initialized states according to provided shape, data type and
value.
Parameters:
batch_ref: A (possibly nested structure of) tensor variable[s].
The first dimension of the tensor will be used as batch size to
initialize states.
shape: A (possiblely nested structure of) shape[s], where a shape is
represented as a list/tuple of integer). -1(for batch size) will
beautomatically inserted if shape is not started with it. If None,
property `state_shape` will be used. The default value is None.
dtype: A (possiblely nested structure of) data type[s]. The structure
must be same as that of `shape`, except when all tensors' in states
has the same data type, a single data type can be used. If None and
property `cell.state_shape` is not available, float32 will be used
as the data type. The default value is None.
init_value: A float value used to initialize states.
Returns:
Variable: tensor variable[s] packed in the same structure provided
\
by shape, representing the initialized states.
"""
# TODO: use inputs and batch_size
batch_ref
=
flatten
(
batch_ref
)[
0
]
def
_is_shape_sequence
(
seq
):
"""For shape, list/tuple of integer is the finest-grained objection"""
if
(
isinstance
(
seq
,
list
)
or
isinstance
(
seq
,
tuple
)):
if
reduce
(
lambda
flag
,
x
:
isinstance
(
x
,
int
)
and
flag
,
seq
,
True
):
return
False
# TODO: Add check for the illegal
if
isinstance
(
seq
,
dict
):
return
True
return
(
isinstance
(
seq
,
collections
.
Sequence
)
and
not
isinstance
(
seq
,
six
.
string_types
))
class
Shape
(
object
):
def
__init__
(
self
,
shape
):
self
.
shape
=
shape
if
shape
[
0
]
==
-
1
else
([
-
1
]
+
list
(
shape
))
# nested structure of shapes
states_shapes
=
self
.
state_shape
if
shape
is
None
else
shape
is_sequence_ori
=
utils
.
is_sequence
utils
.
is_sequence
=
_is_shape_sequence
states_shapes
=
map_structure
(
lambda
shape
:
Shape
(
shape
),
states_shapes
)
utils
.
is_sequence
=
is_sequence_ori
# nested structure of dtypes
try
:
states_dtypes
=
self
.
state_dtype
if
dtype
is
None
else
dtype
except
NotImplementedError
:
# use fp32 as default
states_dtypes
=
"float32"
if
len
(
flatten
(
states_dtypes
))
==
1
:
dtype
=
flatten
(
states_dtypes
)[
0
]
states_dtypes
=
map_structure
(
lambda
shape
:
dtype
,
states_shapes
)
init_states
=
map_structure
(
lambda
shape
,
dtype
:
tensor
.
fill_constant_batch_size_like
(
input
=
batch_ref
,
shape
=
shape
.
shape
,
dtype
=
dtype
,
value
=
init_value
),
states_shapes
,
states_dtypes
)
return
init_states
@
property
def
state_shape
(
self
):
"""
Used to initialize states.
A (possiblely nested structure of) shape[s], where a shape is represented
as a list/tuple of integers (-1 for batch size would be automatically
inserted into a shape if shape is not started with it).
Not necessary to be implemented if states are not initialized by
`get_initial_states` or the `shape` argument is provided when using
`get_initial_states`.
"""
raise
NotImplementedError
@
property
def
state_dtype
(
self
):
"""
Used to initialize states.
A (possiblely nested structure of) data types[s]. The structure must be
same as that of `shape`, except when all tensors' in states has the same
data type, a signle data type can be used.
Not necessary to be implemented if states are not initialized
by `get_initial_states` or the `dtype` argument is provided when using
`get_initial_states`.
"""
raise
NotImplementedError
class
GRUCell
(
RNNCell
):
"""
Gated Recurrent Unit cell. It is a wrapper for
`fluid.contrib.layers.rnn_impl.BasicGRUUnit` to make it adapt to RNNCell.
The formula used is as follow:
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\
tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot
\\
tilde{h_t}
For more details, please refer to `Learning Phrase Representations using
RNN Encoder Decoder for Statistical Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Examples:
.. code-block:: python
import paddle.fluid.layers as layers
cell = layers.GRUCell(hidden_size=256)
"""
def
__init__
(
self
,
hidden_size
,
param_attr
=
None
,
bias_attr
=
None
,
gate_activation
=
None
,
activation
=
None
,
dtype
=
"float32"
,
name
=
"GRUCell"
):
"""
Constructor of GRUCell.
Parameters:
hidden_size (int): The hidden size in the GRU cell.
param_attr(ParamAttr, optional): The parameter attribute for the learnable
weight matrix. Default: None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of GRU. Default: None.
gate_activation (function, optional): The activation function for :math:`act_g`.
Default: `fluid.layers.sigmoid`.
activation (function, optional): The activation function for :math:`act_c`.
Default: `fluid.layers.tanh`.
dtype(string, optional): The data type used in this cell. Default float32.
name(string, optional) : The name scope used to identify parameters and biases.
"""
self
.
hidden_size
=
hidden_size
from
..
import
contrib
# TODO: resolve recurrent import
self
.
gru_unit
=
contrib
.
layers
.
rnn_impl
.
BasicGRUUnit
(
name
,
hidden_size
,
param_attr
,
bias_attr
,
gate_activation
,
activation
,
dtype
)
def
call
(
self
,
inputs
,
states
):
"""
Perform calculations of GRU.
Parameters:
inputs(Variable): A tensor with shape `[batch_size, input_size]`,
corresponding to :math:`x_t` in the formula. The data type
should be float32.
states(Variable): A tensor with shape `[batch_size, hidden_size]`.
corresponding to :math:`h_{t-1}` in the formula. The data type
should be float32.
Returns:
tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and
\
`new_states` is the same tensor shaped `[batch_size, hidden_size]`,
\
corresponding to :math:`h_t` in the formula. The data type of the
\
tensor is same as that of `states`.
"""
new_hidden
=
self
.
gru_unit
(
inputs
,
states
)
return
new_hidden
,
new_hidden
@
property
def
state_shape
(
self
):
"""
The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
size would be automatically inserted into shape). The shape corresponds
to :math:`h_{t-1}`.
"""
return
[
self
.
hidden_size
]
class
LSTMCell
(
RNNCell
):
"""
Long-Short Term Memory cell. It is a wrapper for
`fluid.contrib.layers.rnn_impl.BasicLSTMUnit` to make it adapt to RNNCell.
The formula used is as follow:
.. math::
i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})
f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget
\\
_bias)
c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})
o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})
h_{t} & = o_{t} act_c (c_{t})
For more details, please refer to `RECURRENT NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_
Examples:
.. code-block:: python
import paddle.fluid.layers as layers
cell = layers.LSTMCell(hidden_size=256)
"""
def
__init__
(
self
,
hidden_size
,
param_attr
=
None
,
bias_attr
=
None
,
gate_activation
=
None
,
activation
=
None
,
forget_bias
=
1.0
,
dtype
=
"float32"
,
name
=
"LSTMCell"
):
"""
Constructor of LSTMCell.
Parameters:
hidden_size (int): The hidden size in the LSTM cell.
param_attr(ParamAttr, optional): The parameter attribute for the learnable
weight matrix. Default: None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of LSTM. Default: None.
gate_activation (function, optional): The activation function for :math:`act_g`.
Default: 'fluid.layers.sigmoid'.
activation (function, optional): The activation function for :math:`act_h`.
Default: 'fluid.layers.tanh'.
forget_bias(float, optional): forget bias used when computing forget gate.
Default 1.0
dtype(string, optional): The data type used in this cell. Default float32.
name(string, optional) : The name scope used to identify parameters and biases.
"""
self
.
hidden_size
=
hidden_size
from
..
import
contrib
# TODO: resolve recurrent import
self
.
lstm_unit
=
contrib
.
layers
.
rnn_impl
.
BasicLSTMUnit
(
name
,
hidden_size
,
param_attr
,
bias_attr
,
gate_activation
,
activation
,
forget_bias
,
dtype
)
def
call
(
self
,
inputs
,
states
):
"""
Perform calculations of LSTM.
Parameters:
inputs(Variable): A tensor with shape `[batch_size, input_size]`,
corresponding to :math:`x_t` in the formula. The data type
should be float32.
states(Variable): A list of containing two tensers, each shaped
`[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}`
in the formula. The data type should be float32.
Returns:
tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is
\
a tensor with shape `[batch_size, hidden_size]`, corresponding
\
to :math:`h_{t}` in the formula; `new_states` is a list containing
\
two tenser variables shaped `[batch_size, hidden_size]`, corresponding
\
to :math:`h_{t}, c_{t}` in the formula. The data type of these
\
tensors all is same as that of `states`.
"""
pre_hidden
,
pre_cell
=
states
new_hidden
,
new_cell
=
self
.
lstm_unit
(
inputs
,
pre_hidden
,
pre_cell
)
return
new_hidden
,
[
new_hidden
,
new_cell
]
@
property
def
state_shape
(
self
):
"""
The `state_shape` of LSTMCell is a list with two shapes: `[[hidden_size], [hidden_size]]`
(-1 for batch size would be automatically inserted into shape). These two
shapes correspond to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
"""
return
[[
self
.
hidden_size
],
[
self
.
hidden_size
]]
def
rnn
(
cell
,
inputs
,
initial_states
=
None
,
sequence_length
=
None
,
time_major
=
False
,
is_reverse
=
False
,
**
kwargs
):
"""
rnn creates a recurrent neural network specified by RNNCell `cell`,
which performs :code:`cell.call()` repeatedly until reachs to the maximum
length of `inputs`.
Parameters:
cell(RNNCell): An instance of `RNNCell`.
inputs(Variable): A (possibly nested structure of) tensor variable[s].
The shape of tensor should be `[batch_size, sequence_length, ...]`
for `time_major == False` or `[sequence_length, batch_size, ...]`
for `time_major == True`. It represents the inputs to be unrolled
in RNN.
initial_states(Variable, optional): A (possibly nested structure of)
tensor variable[s], representing the initial state for RNN.
If not provided, `cell.get_initial_states` would be used to produce
the initial state. Default None.
sequence_length(Variable, optional): A tensor with shape `[batch_size]`.
It stores real length of each instance, thus enables users to extract
the last valid state when past a batch element's sequence length for
correctness. If not provided, the padddings would be treated same as
non-padding inputs. Default None.
time_major(bool, optional): Indicate the data layout of Tensor included
in `input` and `output` tensors. If `False`, the data layout would
be batch major with shape `[batch_size, sequence_length, ...]`. If
`True`, the data layout would be time major with shape
`[sequence_length, batch_size, ...]`. Default: `False`.
is_reverse(bool, optional): Indicate whether to calculate in the reverse
order of input sequences. Default: `False`.
**kwargs: Additional keyword arguments. Arguments passed to `cell.call`.
Returns:
tuple: A tuple( :code:`(final_outputs, final_states)` ) including the final
\
outputs and states, both are Tensor or nested structure of Tensor.
\
`final_outputs` has the same structure and data types as
\
the returned `outputs` of :code:`cell.call` , and each Tenser in `final_outputs`
\
stacks all time steps' counterpart in `outputs` thus has shape `[batch_size, sequence_length, ...]`
\
for `time_major == False` or `[sequence_length, batch_size, ...]` for `time_major == True`.
\
`final_states` is the counterpart at last time step of initial states,
\
thus has the same structure with it and has tensors with same shapes
\
and data types.
Examples:
.. code-block:: python
import paddle.fluid as fluid
inputs = fluid.data(name="inputs",
shape=[-1, 32, 128],
dtype="float32")
cell = fluid.layers.GRUCell(hidden_size=128)
outputs = fluid.layers.rnn(cell=cell, inputs=inputs)
"""
def
_maybe_copy
(
state
,
new_state
,
step_mask
):
# TODO: use where_op
new_state
=
nn
.
elementwise_mul
(
new_state
,
step_mask
,
axis
=
0
)
-
nn
.
elementwise_mul
(
state
,
(
step_mask
-
1
),
axis
=
0
)
return
new_state
def
_transpose_batch_time
(
x
):
return
nn
.
transpose
(
x
,
[
1
,
0
]
+
list
(
range
(
2
,
len
(
x
.
shape
))))
def
_switch_grad
(
x
,
stop
=
False
):
x
.
stop_gradient
=
stop
return
x
if
initial_states
is
None
:
initial_states
=
cell
.
get_initial_states
(
batch_ref
=
inputs
)
initial_states
=
map_structure
(
_switch_grad
,
initial_states
)
if
not
time_major
:
inputs
=
map_structure
(
_transpose_batch_time
,
inputs
)
if
sequence_length
:
max_seq_len
=
nn
.
shape
(
flatten
(
inputs
)[
0
])[
0
]
mask
=
nn
.
sequence_mask
(
sequence_length
,
maxlen
=
max_seq_len
,
dtype
=
flatten
(
initial_states
)[
0
].
dtype
)
mask
=
nn
.
transpose
(
mask
,
[
1
,
0
])
if
is_reverse
:
inputs
=
map_structure
(
lambda
x
:
tensor
.
reverse
(
x
,
axis
=
[
0
]),
inputs
)
mask
=
tensor
.
reverse
(
mask
,
axis
=
[
0
])
if
sequence_length
else
None
# StaticRNN
rnn
=
control_flow
.
StaticRNN
()
with
rnn
.
step
():
inputs
=
map_structure
(
rnn
.
step_input
,
inputs
)
states
=
map_structure
(
rnn
.
memory
,
initial_states
)
copy_states
=
map_structure
(
lambda
x
:
x
,
states
)
outputs
,
new_states
=
cell
.
call
(
inputs
,
copy_states
,
**
kwargs
)
assert_same_structure
(
states
,
new_states
)
if
sequence_length
:
step_mask
=
rnn
.
step_input
(
mask
)
new_states
=
map_structure
(
partial
(
_maybe_copy
,
step_mask
=
step_mask
),
states
,
new_states
)
map_structure
(
rnn
.
update_memory
,
states
,
new_states
)
flat_outputs
=
flatten
(
outputs
)
map_structure
(
rnn
.
step_output
,
outputs
)
map_structure
(
rnn
.
step_output
,
new_states
)
rnn_out
=
rnn
()
final_outputs
=
rnn_out
[:
len
(
flat_outputs
)]
final_outputs
=
pack_sequence_as
(
outputs
,
final_outputs
)
final_states
=
map_structure
(
lambda
x
:
x
[
-
1
],
rnn_out
[
len
(
flat_outputs
):])
final_states
=
pack_sequence_as
(
new_states
,
final_states
)
if
is_reverse
:
final_outputs
=
map_structure
(
lambda
x
:
tensor
.
reverse
(
x
,
axis
=
[
0
]),
final_outputs
)
if
not
time_major
:
final_outputs
=
map_structure
(
_transpose_batch_time
,
final_outputs
)
return
(
final_outputs
,
final_states
)
class
Decoder
(
object
):
"""
Decoder is the base class for any decoder instance used in `dynamic_decode`.
It provides interface for output generation for one time step, which can be
used to generate sequences.
The key abstraction provided by Decoder is:
1. :code:`(initial_input, initial_state, finished) = initialize(inits)` ,
which generates the input and state for the first decoding step, and gives the
inintial status telling whether each sequence in the batch is finished.
It would be called once before the decoding iterations.
2. :code:`(output, next_state, next_input, finished) = step(time, input, state)` ,
which transforms the input and state to the output and new state, generates
input for the next decoding step, and emits the flag indicating finished status.
It is the main part for each decoding iteration.
3. :code:`(final_outputs, final_state) = finalize(outputs, final_state, sequence_lengths)` ,
which revises the outputs(stack of all time steps' output) and final state(state from the
last decoding step) to get the counterpart for special usage.
Not necessary to be implemented if no need to revise the stacked outputs and
state from the last decoding step. If implemented, it would be called after
the decoding iterations.
Decoder is more general compared to RNNCell, since the returned `next_input`
and `finished` make it can determine the input and when to finish by itself
when used in dynamic decoding. Decoder always wraps a RNNCell instance though
not necessary.
"""
def
initialize
(
self
,
inits
):
"""
Called once before the decoding iterations.
Parameters:
inits: Argument provided by the caller.
Returns:
tuple: A tuple( :code:(initial_inputs, initial_states, finished)` ).
\
`initial_inputs` and `initial_states` both are a (possibly nested
\
structure of) tensor variable[s], and `finished` is a tensor with
\
bool data type.
"""
raise
NotImplementedError
def
step
(
self
,
time
,
inputs
,
states
):
"""
Called per step of decoding.
Parameters:
time(Variable): A Tensor with shape :math:`[1]` provided by the caller.
The data type is int64.
inputs(Variable): A (possibly nested structure of) tensor variable[s].
states(Variable): A (possibly nested structure of) tensor variable[s].
Returns:
tuple: A tuple( :code:(outputs, next_states, next_inputs, finished)` ).
\
`next_inputs` and `next_states` both are a (possibly nested
\
structure of) tensor variable[s], and the structure, shape and
\
data type must be same as the counterpart from input arguments.
\
`outputs` is a (possibly nested structure of) tensor variable[s].
\
`finished` is a Tensor with bool data type.
"""
raise
NotImplementedError
@
property
def
output_dtype
(
self
):
"""
A (possiblely nested structure of) data type[s]. The structure must be
same as `outputs` returned by `decoder.step`.
"""
raise
NotImplementedError
def
finalize
(
self
,
outputs
,
final_states
,
sequence_lengths
):
"""
Called once after the decoding iterations if implemented.
Parameters:
outputs(Variable): A (possibly nested structure of) tensor variable[s].
The structure and data type is same as `output_dtype`.
The tensor stacks all time steps' output thus has shape
:math:`[time\_step, batch\_size, ...]` , which is done by the caller.
final_states(Variable): A (possibly nested structure of) tensor variable[s].
It is the `next_states` returned by `decoder.step` at last decoding step,
thus has the same structrue, shape and data type with states at any time
step.
Returns:
tuple: A tuple( :code:`(final_outputs, final_states)` ).
\
`final_outputs` and `final_states` both are a (possibly nested
\
structure of) tensor variable[s].
"""
raise
NotImplementedError
class
BeamSearchDecoder
(
Decoder
):
"""
Decoder with beam search decoding strategy. It wraps a cell to get probabilities,
and follows a beam search step to calculate scores and select candidate
token ids for each decoding step.
Please refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
for more details.
**NOTE** When decoding with beam search, the `inputs` and `states` of cell
would be tiled to `beam_size` (unsqueeze and tile), resulting to shapes like
`[batch_size * beam_size, ...]` , which is built into `BeamSearchDecoder` and
done automatically. Thus any other tensor with shape `[batch_size, ...]` used
in `cell.call` needs to be tiled manually first, which can be completed by using
:code:`BeamSearchDecoder.tile_beam_merge_with_batch` . The most common case
for this is the encoder output in attention mechanism.
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.layers import GRUCell, BeamSearchDecoder
trg_embeder = lambda x: fluid.embedding(
x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
output_layer = lambda x: layers.fc(x,
size=10000,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(name=
"output_w"),
bias_attr=False)
decoder_cell = GRUCell(hidden_size=128)
decoder = BeamSearchDecoder(decoder_cell,
start_token=0,
end_token=1,
beam_size=4,
embedding_fn=trg_embeder,
output_fn=output_layer)
"""
def
__init__
(
self
,
cell
,
start_token
,
end_token
,
beam_size
,
embedding_fn
=
None
,
output_fn
=
None
):
"""
Constructor of BeamSearchDecoder.
Parameters:
cell(RNNCell): An instance of `RNNCell` or object with the same interface.
start_token(int): The start token id.
end_token(int): The end token id.
beam_size(int): The beam width used in beam search.
embedding_fn(optional): A callable to apply to selected candidate ids.
Mostly it is an embedding layer to transform ids to embeddings,
and the returned value acts as the `input` argument for `cell.call`.
**Note that fluid.embedding should be used here rather than
fluid.layers.embedding, since shape of ids is [batch_size, beam_size].
when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
If not provided, the id to embedding transfomation must be built into
`cell.call`. Default None.
output_fn(optional): A callable to apply to the cell's output prior to
calculate scores and select candidate token ids. Default None.
"""
self
.
cell
=
cell
self
.
embedding_fn
=
embedding_fn
self
.
output_fn
=
output_fn
self
.
start_token
=
start_token
self
.
end_token
=
end_token
self
.
beam_size
=
beam_size
@
staticmethod
def
tile_beam_merge_with_batch
(
x
,
beam_size
):
"""
Tile the batch dimension of a tensor. Specifically, this function takes
a tensor t shaped `[batch_size, s0, s1, ...]` composed of minibatch
entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
`[batch_size * beam_size, s0, s1, ...]` composed of minibatch entries
`t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
`beam_size` times.
Parameters:
x(Variable): A tenosr with shape `[batch_size, ...]`. The data type
should be float32, float64, int32, int64 or bool.
beam_size(int): The beam width used in beam search.
Returns:
Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose
\
data type is same as `x`.
"""
x
=
nn
.
unsqueeze
(
x
,
[
1
])
# [batch_size, 1, ...]
expand_times
=
[
1
]
*
len
(
x
.
shape
)
expand_times
[
1
]
=
beam_size
x
=
nn
.
expand
(
x
,
expand_times
)
# [batch_size, beam_size, ...]
x
=
nn
.
transpose
(
x
,
list
(
range
(
2
,
len
(
x
.
shape
)))
+
[
0
,
1
])
# [..., batch_size, beam_size]
# use 0 to copy to avoid wrong shape
x
=
nn
.
reshape
(
x
,
shape
=
[
0
]
*
(
len
(
x
.
shape
)
-
2
)
+
[
-
1
])
# [..., batch_size * beam_size]
x
=
nn
.
transpose
(
x
,
[
len
(
x
.
shape
)
-
1
]
+
list
(
range
(
0
,
len
(
x
.
shape
)
-
1
)))
# [batch_size * beam_size, ...]
return
x
def
_split_batch_beams
(
self
,
x
):
"""
Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new
tensor with shape `[batch_size, beam_size, ...]`.
Parameters:
x(Variable): A tenosr with shape `[batch_size * beam_size, ...]`. The
data type should be float32, float64, int32, int64 or bool.
Returns:
Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose
\
data type is same as `x`.
"""
# TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
return
nn
.
reshape
(
x
,
shape
=
(
-
1
,
self
.
beam_size
)
+
x
.
shape
[
1
:])
def
_merge_batch_beams
(
self
,
x
):
"""
Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new
tensor with shape `[batch_size * beam_size, ...]`.
Parameters:
x(Variable): A tenosr with shape `[batch_size, beam_size, ...]`. The
data type should be float32, float64, int32, int64 or bool.
Returns:
Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose
\
data type is same as `x`.
"""
# TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
return
nn
.
reshape
(
x
,
shape
=
(
-
1
,
)
+
x
.
shape
[
2
:])
def
_expand_to_beam_size
(
self
,
x
):
"""
This function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed
of minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a
shape `[batch_size, beam_size, s0, s1, ...]` composed of minibatch entries
`t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
`beam_size` times.
Parameters:
probs(Variable): A tensor with shape `[batch_size, ...]`, representing
the log probabilities. Its data type should be float32.
finished(Variable): A tensor with shape `[batch_size, beam_size]`,
representing the finished status for all beams. Its data type
should be bool.
Returns:
Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose
\
data type is same as `x`.
"""
x
=
nn
.
unsqueeze
(
x
,
[
1
])
expand_times
=
[
1
]
*
len
(
x
.
shape
)
expand_times
[
1
]
=
self
.
beam_size
x
=
nn
.
expand
(
x
,
expand_times
)
return
x
def
_mask_probs
(
self
,
probs
,
finished
):
"""
Mask log probabilities. It forces finished beams to allocate all probability
mass to eos and unfinished beams to remain unchanged.
Parameters:
probs(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
representing the log probabilities. Its data type should be float32.
finished(Variable): A tensor with shape `[batch_size, beam_size]`,
representing the finished status for all beams. Its data type
should be bool.
Returns:
Variable: A tensor with the same shape and data type as `x`,
\
where unfinished beams stay unchanged and finished beams are
\
replaced with a tensor with all probability on the EOS token.
"""
# TODO: use where_op
finished
=
tensor
.
cast
(
finished
,
dtype
=
probs
.
dtype
)
probs
=
nn
.
elementwise_mul
(
nn
.
expand
(
nn
.
unsqueeze
(
finished
,
[
2
]),
[
1
,
1
,
self
.
vocab_size
]),
self
.
noend_mask_tensor
,
axis
=-
1
)
-
nn
.
elementwise_mul
(
probs
,
(
finished
-
1
),
axis
=
0
)
return
probs
def
_gather
(
self
,
x
,
indices
,
batch_size
):
"""
Gather from the tensor `x` using `indices`.
Parameters:
x(Variable): A tensor with shape `[batch_size, beam_size, ...]`.
indices(Variable): A `int64` tensor with shape `[batch_size, beam_size]`,
representing the indices that we use to gather.
batch_size(Variable): A tensor with shape `[1]`. Its data type should
be int32 or int64.
Returns:
Variable: A tensor with the same shape and data type as `x`,
\
representing the gathered tensor.
"""
# TODO: compatibility of int32 and int64
batch_size
=
tensor
.
cast
(
batch_size
,
indices
.
dtype
)
if
batch_size
.
dtype
!=
indices
.
dtype
else
batch_size
batch_pos
=
nn
.
expand
(
nn
.
unsqueeze
(
tensor
.
range
(
0
,
batch_size
,
1
,
dtype
=
indices
.
dtype
),
[
1
]),
[
1
,
self
.
beam_size
])
topk_coordinates
=
nn
.
stack
([
batch_pos
,
indices
],
axis
=
2
)
return
nn
.
gather_nd
(
x
,
topk_coordinates
)
class
OutputWrapper
(
collections
.
namedtuple
(
"OutputWrapper"
,
(
"scores"
,
"predicted_ids"
,
"parent_ids"
))):
"""
The structure for the returned value `outputs` of `decoder.step`.
A namedtuple includes scores, predicted_ids, parent_ids as fields.
"""
pass
class
StateWrapper
(
collections
.
namedtuple
(
"StateWrapper"
,
(
"cell_states"
,
"log_probs"
,
"finished"
,
"lengths"
))):
"""
The structure for the argument `states` of `decoder.step`.
A namedtuple includes cell_states, log_probs, finished, lengths as fields.
"""
pass
def
initialize
(
self
,
initial_cell_states
):
"""
Initialize the BeamSearchDecoder.
Parameters:
initial_cell_states(Variable): A (possibly nested structure of)
tensor variable[s]. An argument provided by the caller.
Returns:
tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ).
\
`initial_inputs` is a tensor t filled by `start_token` with shape
\
`[batch_size, beam_size, 1]` when `embedding_fn` is None, or the
\
returned value of `embedding_fn(t)` when `embedding_fn` is provided.
\
`initial_states` is a nested structure(namedtuple including cell_states,
\
log_probs, finished, lengths as fields) of tensor variables, where
\
`log_probs, finished, lengths` all has a tensor value shaped
\
`[batch_size, beam_size]` with data type `float32, bool, int64`.
\
cell_states has a value with the same structure as the input
\
argument `initial_cell_states` but with tiled shape `[batch_size, beam_size, ...]`.
\
`finished` is a `bool` tensor filled by False with shape `[batch_size, beam_size]`.
"""
self
.
kinf
=
1e9
state
=
flatten
(
initial_cell_states
)[
0
]
self
.
batch_size
=
nn
.
shape
(
state
)[
0
]
self
.
start_token_tensor
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
self
.
start_token
)
self
.
end_token_tensor
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
self
.
end_token
)
init_cell_states
=
map_structure
(
self
.
_expand_to_beam_size
,
initial_cell_states
)
# TODO: use fill_constant when support variable shape
init_inputs
=
nn
.
expand
(
nn
.
unsqueeze
(
nn
.
expand
(
self
.
start_token_tensor
,
[
self
.
batch_size
]),
[
1
]),
[
1
,
self
.
beam_size
])
log_probs
=
nn
.
expand
(
tensor
.
assign
(
np
.
array
(
[[
0.
]
+
[
-
self
.
kinf
]
*
(
self
.
beam_size
-
1
)],
dtype
=
"float32"
)),
[
self
.
batch_size
,
1
])
# TODO: remove the restriction of force_cpu
init_finished
=
tensor
.
fill_constant_batch_size_like
(
input
=
state
,
shape
=
[
-
1
,
self
.
beam_size
],
dtype
=
"bool"
,
value
=
False
,
force_cpu
=
True
)
init_lengths
=
tensor
.
zeros_like
(
init_inputs
)
init_inputs
=
self
.
embedding_fn
(
init_inputs
)
if
self
.
embedding_fn
else
init_inputs
return
init_inputs
,
self
.
StateWrapper
(
init_cell_states
,
log_probs
,
init_finished
,
init_lengths
),
init_finished
def
_beam_search_step
(
self
,
time
,
logits
,
next_cell_states
,
beam_state
):
"""
Calculate scores and select candidate token ids.
Parameters:
time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
representing the current time step number of decoding.
logits(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
representing the logits at the current time step. Its data type is float32.
next_cell_states(Variable): A (possibly nested structure of) tensor variable[s].
It has the same structure, shape and data type as the `cell_states` of
`initial_states` returned by `initialize()`. It represents the next state
from the cell.
beam_state(Variable): A structure of tensor variables.
It is same as the `initial_states` returned by `initialize()` for
the first decoding step and `beam_search_state` returned by
`initialize()` for the others.
Returns:
tuple: A tuple( :code:`(beam_search_output, beam_search_state)` ).
\
`beam_search_output` is a namedtuple(including scores, predicted_ids,
\
parent_ids as fields) of tensor variables, where
\
`scores, predicted_ids, parent_ids` all has a tensor value shaped
\
`[batch_size, beam_size]` with data type `float32, int64, int64`.
`beam_search_state` has the same structure, shape and data type
\
as the input argument `beam_state`.
"""
self
.
vocab_size
=
logits
.
shape
[
-
1
]
self
.
vocab_size_tensor
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
self
.
vocab_size
)
noend_array
=
[
-
self
.
kinf
]
*
self
.
vocab_size
noend_array
[
self
.
end_token
]
=
0
self
.
noend_mask_tensor
=
tensor
.
assign
(
np
.
array
(
noend_array
,
"float32"
))
step_log_probs
=
nn
.
log
(
nn
.
softmax
(
logits
))
step_log_probs
=
self
.
_mask_probs
(
step_log_probs
,
beam_state
.
finished
)
log_probs
=
nn
.
elementwise_add
(
x
=
step_log_probs
,
y
=
beam_state
.
log_probs
,
axis
=
0
)
# TODO: length penalty
scores
=
log_probs
scores
=
nn
.
reshape
(
scores
,
[
-
1
,
self
.
beam_size
*
self
.
vocab_size
])
topk_scores
,
topk_indices
=
nn
.
topk
(
input
=
scores
,
k
=
self
.
beam_size
)
beam_indices
=
nn
.
elementwise_floordiv
(
topk_indices
,
self
.
vocab_size_tensor
)
token_indices
=
nn
.
elementwise_mod
(
topk_indices
,
self
.
vocab_size_tensor
)
next_log_probs
=
self
.
_gather
(
nn
.
reshape
(
log_probs
,
[
-
1
,
self
.
beam_size
*
self
.
vocab_size
]),
topk_indices
,
self
.
batch_size
)
next_cell_states
=
map_structure
(
lambda
x
:
self
.
_gather
(
x
,
beam_indices
,
self
.
batch_size
),
next_cell_states
)
next_finished
=
self
.
_gather
(
beam_state
.
finished
,
beam_indices
,
self
.
batch_size
)
next_lengths
=
self
.
_gather
(
beam_state
.
lengths
,
beam_indices
,
self
.
batch_size
)
next_lengths
=
next_lengths
+
tensor
.
cast
(
nn
.
logical_not
(
next_finished
),
beam_state
.
lengths
.
dtype
)
next_finished
=
control_flow
.
logical_or
(
next_finished
,
control_flow
.
equal
(
token_indices
,
self
.
end_token_tensor
))
beam_search_output
=
self
.
OutputWrapper
(
topk_scores
,
token_indices
,
beam_indices
)
beam_search_state
=
self
.
StateWrapper
(
next_cell_states
,
next_log_probs
,
next_finished
,
next_lengths
)
return
beam_search_output
,
beam_search_state
def
step
(
self
,
time
,
inputs
,
states
,
**
kwargs
):
"""
Perform a beam search decoding step, which uses `cell` to get probabilities,
and follows a beam search step to calculate scores and select candidate
token ids.
Parameters:
time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
representing the current time step number of decoding.
inputs(Variable): A tensor variable. It is same as `initial_inputs`
returned by `initialize()` for the first decoding step and
`next_inputs` returned by `step()` for the others.
states(Variable): A structure of tensor variables.
It is same as the `initial_states` returned by `initialize()` for
the first decoding step and `beam_search_state` returned by
`step()` for the others.
**kwargs: Additional keyword arguments, provided by the caller.
Returns:
tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ).
\
`beam_search_state` and `next_inputs` have the same structure,
\
shape and data type as the input arguments `states` and `inputs` separately.
\
`beam_search_output` is a namedtuple(including scores, predicted_ids,
\
parent_ids as fields) of tensor variables, where
\
`scores, predicted_ids, parent_ids` all has a tensor value shaped
\
`[batch_size, beam_size]` with data type `float32, int64, int64`.
\
`finished` is a `bool` tensor with shape `[batch_size, beam_size]`.
"""
inputs
=
map_structure
(
self
.
_merge_batch_beams
,
inputs
)
cell_states
=
map_structure
(
self
.
_merge_batch_beams
,
states
.
cell_states
)
cell_outputs
,
next_cell_states
=
self
.
cell
(
inputs
,
cell_states
,
**
kwargs
)
cell_outputs
=
map_structure
(
self
.
_split_batch_beams
,
cell_outputs
)
next_cell_states
=
map_structure
(
self
.
_split_batch_beams
,
next_cell_states
)
if
self
.
output_fn
is
not
None
:
cell_outputs
=
self
.
output_fn
(
cell_outputs
)
beam_search_output
,
beam_search_state
=
self
.
_beam_search_step
(
time
=
time
,
logits
=
cell_outputs
,
next_cell_states
=
next_cell_states
,
beam_state
=
states
)
finished
=
beam_search_state
.
finished
sample_ids
=
beam_search_output
.
predicted_ids
next_inputs
=
self
.
embedding_fn
(
sample_ids
)
if
self
.
embedding_fn
else
sample_ids
return
(
beam_search_output
,
beam_search_state
,
next_inputs
,
finished
)
def
finalize
(
self
,
outputs
,
final_states
,
sequence_lengths
):
"""
Use `gather_tree` to backtrace along the beam search tree and construct
the full predicted sequences.
Parameters:
outputs(Variable): A structure(namedtuple) of tensor variables,
The structure and data type is same as `output_dtype`.
The tensor stacks all time steps' output thus has shape
`[time_step, batch_size, ...]`, which is done by the caller.
final_states(Variable): A structure(namedtuple) of tensor variables.
It is the `next_states` returned by `decoder.step` at last
decoding step, thus has the same structrue, shape and data type
with states at any time step.
sequence_lengths(Variable): An `int64` tensor shaped `[batch_size, beam_size]`.
It contains sequence lengths for each beam determined during
decoding.
Returns:
tuple: A tuple( :code:`(predicted_ids, final_states)` ).
\
`predicted_ids` is an `int64` tensor shaped
\
`[time_step, batch_size, beam_size]`. `final_states` is the same
\
as the input argument `final_states`.
"""
predicted_ids
=
nn
.
gather_tree
(
outputs
.
predicted_ids
,
outputs
.
parent_ids
)
# TODO: use FinalBeamSearchDecoderOutput as output
return
predicted_ids
,
final_states
@
property
def
output_dtype
(
self
):
"""
The nested structure of data types for beam search output. It is a namedtuple
including scores, predicted_ids, parent_ids as fields.
"""
return
self
.
OutputWrapper
(
scores
=
"float32"
,
predicted_ids
=
"int64"
,
parent_ids
=
"int64"
)
def
dynamic_decode
(
decoder
,
inits
=
None
,
max_step_num
=
None
,
output_time_major
=
False
,
**
kwargs
):
"""
Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
Tensor indicating finished status contains all True values or the number of
decoding step reachs to :attr:`max_step_num`.
:code:`decoder.initialize()` would be called once before the decoding loop.
If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
would be called once after the decoding loop.
Parameters:
decoder(Decoder): An instance of `Decoder`.
inits(object, optional): Argument passed to `decoder.initialize`.
Default `None`.
max_step_num(int, optional): The maximum number of steps. If not provided,
decode until the decoder is fully done, or in other words, the returned
Tensor by :code:`decoder.step()` indicating finished status contains
all True). Default `None`.
output_time_major(bool, optional): Indicate the data layout of Tensor included
in the final outpus(the first returned value of this method). If
attr:`False`, the data layout would be batch major with shape
`[batch_size, seq_len, ...]`. If attr:`True`, the data layout would
be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
**kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.
Returns:
tuple: A tuple( :code:`(final_outputs, final_states)` ) including the final
\
outputs and states, both are Tensor or nested structure of Tensor.
\
`final_outputs` has the same structure and data types as
\
:code:`decoder.output_dtype` , and each Tenser in `final_outputs`
\
is the stacked of all decoding steps' outputs, which might be revised
\
by :code:`decoder.finalize` . `final_states` is the counterpart
\
at last time step of initial states returned by :code:`decoder.initialize` ,
\
thus has the same structure with it and has tensors with same shapes
\
and data types.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.layers import GRUCell, BeamSearchDecoder, dynamic_decode
encoder_output = fluid.data(name="encoder_output",
shape=[-1, 32, 128],
dtype="float32")
trg_embeder = lambda x: fluid.embedding(
x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
output_layer = lambda x: layers.fc(x,
size=10000,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(name=
"output_w"),
bias_attr=False)
decoder_cell = GRUCell(hidden_size=128)
decoder = BeamSearchDecoder(decoder_cell,
start_token=0,
end_token=1,
beam_size=4,
embedding_fn=trg_embeder,
output_fn=output_layer)
outputs = dynamic_decode(
decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
"""
initial_inputs
,
initial_states
,
initial_finished
=
decoder
.
initialize
(
inits
)
global_inputs
,
global_states
,
global_finished
=
(
initial_inputs
,
initial_states
,
initial_finished
)
step_idx
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
0
)
cond
=
control_flow
.
logical_not
((
nn
.
reduce_all
(
initial_finished
)))
if
max_step_num
is
not
None
:
max_step_num
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
max_step_num
)
while_op
=
control_flow
.
While
(
cond
)
inputs
=
map_structure
(
lambda
x
:
x
,
initial_inputs
)
states
=
map_structure
(
lambda
x
:
x
,
initial_states
)
outputs_arrays
=
map_structure
(
lambda
dtype
:
control_flow
.
create_array
(
dtype
),
decoder
.
output_dtype
)
sequence_lengths
=
tensor
.
cast
(
tensor
.
zeros_like
(
initial_finished
),
"int64"
)
def
_maybe_copy
(
state
,
new_state
,
step_mask
):
# TODO: use where_op
new_state
=
nn
.
elementwise_mul
(
new_state
,
step_mask
,
axis
=
0
)
-
nn
.
elementwise_mul
(
state
,
(
step_mask
-
1
),
axis
=
0
)
return
new_state
def
_transpose_batch_time
(
x
):
return
nn
.
transpose
(
x
,
[
1
,
0
]
+
list
(
range
(
2
,
len
(
x
.
shape
))))
# While
with
while_op
.
block
():
(
outputs
,
next_states
,
next_inputs
,
next_finished
)
=
decoder
.
step
(
step_idx
,
inputs
,
states
,
**
kwargs
)
next_sequence_lengths
=
nn
.
elementwise_add
(
sequence_lengths
,
tensor
.
cast
(
control_flow
.
logical_not
(
global_finished
),
sequence_lengths
.
dtype
))
map_structure
(
lambda
x
,
x_array
:
control_flow
.
array_write
(
x
,
i
=
step_idx
,
array
=
x_array
),
outputs
,
outputs_arrays
)
control_flow
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
True
)
map_structure
(
tensor
.
assign
,
next_inputs
,
global_inputs
)
map_structure
(
tensor
.
assign
,
next_states
,
global_states
)
tensor
.
assign
(
next_finished
,
global_finished
)
tensor
.
assign
(
next_sequence_lengths
,
sequence_lengths
)
if
max_step_num
is
not
None
:
control_flow
.
logical_and
(
control_flow
.
logical_not
(
nn
.
reduce_all
(
next_finished
)),
control_flow
.
less_equal
(
step_idx
,
max_step_num
),
cond
)
else
:
control_flow
.
logical_not
(
nn
.
reduce_all
(
next_finished
),
cond
)
final_outputs
=
map_structure
(
lambda
array
:
tensor
.
tensor_array_to_tensor
(
array
,
axis
=
0
,
use_stack
=
True
)[
0
],
outputs_arrays
)
final_states
=
global_states
try
:
final_outputs
,
final_states
=
decoder
.
finalize
(
final_outputs
,
global_states
,
sequence_lengths
)
except
NotImplementedError
:
pass
if
not
output_time_major
:
final_outputs
=
map_structure
(
_transpose_batch_time
,
final_outputs
)
return
final_outputs
,
final_states
python/paddle/fluid/layers/tensor.py
浏览文件 @
dfd1eee7
...
...
@@ -273,50 +273,85 @@ def concat(input, axis=0, name=None):
return
out
def
tensor_array_to_tensor
(
input
,
axis
=
1
,
name
=
None
):
def
tensor_array_to_tensor
(
input
,
axis
=
1
,
name
=
None
,
use_stack
=
False
):
"""
This OP concatenates the input LodTensorArray along the axis.
This function concatenates or stacks all tensors in the input LoDTensorArray
along the axis mentioned and returns that as the output.
For Example:
.. code-block:: text
Case 1:
Given:
input.data = {[[0.6, 0.1, 0.3],
[0.5, 0.3, 0.2]],
[[1.3],
[1.8]],
[[2.3, 2.1],
[2.5, 2.4]]}
axis = 1, use_stack = False
Then:
output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
[0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]
output_index.data = [3, 1, 2]
Case 2:
Given:
input.data = {[[0.6, 0.1],
[0.5, 0.3]],
[[0.3, 1.3],
[0.2, 1.8]],
[[2.3, 2.1],
[2.5, 2.4]]}
axis = 1, use_stack = True
Then:
output.data = [[[0.6, 0.1]
[0.3, 1.3]
[2.3, 2.1],
[[0.5, 0.3]
[0.2, 1.8]
[2.5, 2.4]]]
output_index.data = [2, 2, 2]
Args:
input(Variable): A LodTensorArray with data type float32, float64, int32,
int64.
axis(int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is Rank(x). when axis<0, it works the same way
as axis+R. Default is 1.
name (str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
input(Variable): A LodTensorArray variable.
axis(int): The axis along which the tensors in attr::`input` will be
concatenated or stacked.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
use_stack(bool): Act as concat_op or stack_op. For stack mode, all
tensors in the tensor array must have the same shape.
Returns:
Variable: A LoDTensor with the same data type as input's
Variable: The input LodTensorArray items' dims along the axis.
Variable: The concatenated or stacked tensor variable.
Variable: A 1-D tensor variable with int32 data type. The data in this
\
tensor contains all input including tensors' sizes along the axis.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
place = fluid.CPUPlace()
x1 = fluid.data(name="x", shape=[2,2], lod_level=0)
tmp = fluid.layers.fill_constant(shape=[2,3], dtype="float32", value=1)
x_arr = fluid.layers.create_array(dtype="float32")
c0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
fluid.layers.array_write(x=tmp, i=c0, array=x_arr)
c1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
fluid.layers.array_write(x=x1, i=c1, array=x_arr)
output, output_index = fluid.layers.tensor_array_to_tensor(input=x_arr, axis=1)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feedx = fluid.LoDTensor()
feedx.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
res = exe.run(fluid.default_main_program(), feed={'x':feedx}, fetch_list=[output], return_numpy=False)
print(np.array(res[0]))
# [[ 1. 1. 1. 1.3 -2.4]
# [ 1. 1. 1. 0. 4. ]]
x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
array = fluid.layers.create_array(dtype='float32')
fluid.layers.array_write(x0, i, array)
fluid.layers.array_write(x1, i + 1, array)
output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
"""
helper
=
LayerHelper
(
'tensor_array_to_tensor'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
...
...
@@ -326,7 +361,8 @@ def tensor_array_to_tensor(input, axis=1, name=None):
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
[
out
],
'OutIndex'
:
[
out_index
]},
attrs
=
{
'axis'
:
axis
})
attrs
=
{
'axis'
:
axis
,
'use_stack'
:
use_stack
})
return
out
,
out_index
...
...
@@ -517,7 +553,8 @@ def fill_constant_batch_size_like(input,
dtype
,
value
,
input_dim_idx
=
0
,
output_dim_idx
=
0
):
output_dim_idx
=
0
,
force_cpu
=
False
):
"""
This OP creates a Tesnor accroding the shape and dtype, and initializes the
Tensor with the constants provided in ``value``. When the input is LoDTensor
...
...
@@ -537,6 +574,7 @@ def fill_constant_batch_size_like(input,
The default value is 0.
output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
the value of batch_size of input Tensor. The default value is 0.
force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Returns:
Variable: Tensor which will be created according to dtype.
...
...
@@ -562,7 +600,8 @@ def fill_constant_batch_size_like(input,
'dtype'
:
out
.
dtype
,
'value'
:
float
(
value
),
'input_dim_idx'
:
input_dim_idx
,
'output_dim_idx'
:
output_dim_idx
'output_dim_idx'
:
output_dim_idx
,
'force_cpu'
:
force_cpu
or
force_init_on_cpu
()
})
out
.
stop_gradient
=
True
return
out
...
...
python/paddle/fluid/layers/utils.py
浏览文件 @
dfd1eee7
...
...
@@ -13,6 +13,8 @@
# limitations under the License.
from
__future__
import
print_function
import
collections
import
six
import
numpy
as
np
...
...
@@ -59,3 +61,173 @@ def convert_to_list(value, n, name, dtype=np.int):
"including element "
+
str
(
single_value
)
+
" of type"
+
" "
+
str
(
type
(
single_value
)))
return
value_list
def
is_sequence
(
seq
):
"""
Whether `seq` is an entry or nested structure
"""
if
isinstance
(
seq
,
dict
):
return
True
return
(
isinstance
(
seq
,
collections
.
Sequence
)
and
not
isinstance
(
seq
,
six
.
string_types
))
def
_sorted
(
dict_
):
"""
Returns a sorted list of the dict keys, with error if keys not sortable.
"""
try
:
return
sorted
(
six
.
iterkeys
(
dict_
))
except
TypeError
:
raise
TypeError
(
"nest only supports dicts with sortable keys."
)
def
_yield_value
(
iterable
):
if
isinstance
(
iterable
,
dict
):
# Iterate through dictionaries in a deterministic order by sorting the
# keys. Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
for
key
in
_sorted
(
iterable
):
yield
iterable
[
key
]
else
:
for
value
in
iterable
:
yield
value
def
_yield_flat_nest
(
nest
):
for
n
in
_yield_value
(
nest
):
if
is_sequence
(
n
):
for
ni
in
_yield_flat_nest
(
n
):
yield
ni
else
:
yield
n
def
flatten
(
nest
):
"""
Traverse all entries in the nested structure and put them into an list.
"""
if
is_sequence
(
nest
):
return
list
(
_yield_flat_nest
(
nest
))
else
:
return
[
nest
]
def
_sequence_like
(
instance
,
args
):
"""
Convert the sequence `args` to the same type as `instance`.
"""
if
isinstance
(
instance
,
dict
):
# Pack dictionaries in a deterministic order by sorting the keys.
# Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
result
=
dict
(
zip
(
_sorted
(
instance
),
args
))
return
type
(
instance
)((
key
,
result
[
key
])
for
key
in
six
.
iterkeys
(
instance
))
elif
(
isinstance
(
instance
,
tuple
)
and
hasattr
(
instance
,
"_fields"
)
and
isinstance
(
instance
.
_fields
,
collections
.
Sequence
)
and
all
(
isinstance
(
f
,
six
.
string_types
)
for
f
in
instance
.
_fields
)):
# This is a namedtuple
return
type
(
instance
)(
*
args
)
else
:
# Not a namedtuple
return
type
(
instance
)(
args
)
def
_packed_nest_with_indices
(
structure
,
flat
,
index
):
"""
Helper function for pack_sequence_as.
"""
packed
=
[]
for
s
in
_yield_value
(
structure
):
if
is_sequence
(
s
):
new_index
,
child
=
_packed_nest_with_indices
(
s
,
flat
,
index
)
packed
.
append
(
_sequence_like
(
s
,
child
))
index
=
new_index
else
:
packed
.
append
(
flat
[
index
])
index
+=
1
return
index
,
packed
def
pack_sequence_as
(
structure
,
flat_sequence
):
"""
Pack a given flattened sequence into a given structure.
"""
if
not
is_sequence
(
flat_sequence
):
raise
TypeError
(
"flat_sequence must be a sequence"
)
if
not
is_sequence
(
structure
):
if
len
(
flat_sequence
)
!=
1
:
raise
ValueError
(
"Structure is a scalar but len(flat_sequence) == %d > 1"
%
len
(
flat_sequence
))
return
flat_sequence
[
0
]
flat_structure
=
flatten
(
structure
)
if
len
(
flat_structure
)
!=
len
(
flat_sequence
):
raise
ValueError
(
"Could not pack sequence. Structure had %d elements, but flat_sequence "
"had %d elements. Structure: %s, flat_sequence: %s."
%
(
len
(
flat_structure
),
len
(
flat_sequence
),
structure
,
flat_sequence
))
_
,
packed
=
_packed_nest_with_indices
(
structure
,
flat_sequence
,
0
)
return
_sequence_like
(
structure
,
packed
)
def
map_structure
(
func
,
*
structure
):
"""
Apply `func` to each entry in `structure` and return a new structure.
"""
flat_structure
=
[
flatten
(
s
)
for
s
in
structure
]
entries
=
zip
(
*
flat_structure
)
return
pack_sequence_as
(
structure
[
0
],
[
func
(
*
x
)
for
x
in
entries
])
def
_recursive_assert_same_structure
(
nest1
,
nest2
,
check_types
):
"""
Helper function for `assert_same_structure`.
"""
is_sequence_nest1
=
is_sequence
(
nest1
)
if
is_sequence_nest1
!=
is_sequence
(
nest2
):
raise
ValueError
(
"The two structures don't have the same nested structure.
\n\n
"
"First structure: %s
\n\n
Second structure: %s."
%
(
nest1
,
nest2
))
if
not
is_sequence_nest1
:
return
# finished checking
if
check_types
:
type_nest1
=
type
(
nest1
)
type_nest2
=
type
(
nest2
)
if
type_nest1
!=
type_nest2
:
raise
TypeError
(
"The two structures don't have the same sequence type. First "
"structure has type %s, while second structure has type %s."
%
(
type_nest1
,
type_nest2
))
if
isinstance
(
nest1
,
dict
):
keys1
=
set
(
six
.
iterkeys
(
nest1
))
keys2
=
set
(
six
.
iterkeys
(
nest2
))
if
keys1
!=
keys2
:
raise
ValueError
(
"The two dictionaries don't have the same set of keys. First "
"structure has keys {}, while second structure has keys {}."
.
format
(
keys1
,
keys2
))
nest1_as_sequence
=
[
n
for
n
in
_yield_value
(
nest1
)]
nest2_as_sequence
=
[
n
for
n
in
_yield_value
(
nest2
)]
for
n1
,
n2
in
zip
(
nest1_as_sequence
,
nest2_as_sequence
):
_recursive_assert_same_structure
(
n1
,
n2
,
check_types
)
def
assert_same_structure
(
nest1
,
nest2
,
check_types
=
True
):
"""
Confirm two nested structures with the same structure.
"""
len_nest1
=
len
(
flatten
(
nest1
))
if
is_sequence
(
nest1
)
else
1
len_nest2
=
len
(
flatten
(
nest2
))
if
is_sequence
(
nest2
)
else
1
if
len_nest1
!=
len_nest2
:
raise
ValueError
(
"The two structures don't have the same number of "
"elements.
\n\n
First structure (%i elements): %s
\n\n
"
"Second structure (%i elements): %s"
%
(
len_nest1
,
nest1
,
len_nest2
,
nest2
))
_recursive_assert_same_structure
(
nest1
,
nest2
,
check_types
)
python/paddle/fluid/tests/unittests/test_gather_tree_op.py
0 → 100644
浏览文件 @
dfd1eee7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
class
TestGatherTreeOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"gather_tree"
max_length
,
batch_size
,
beam_size
=
5
,
2
,
2
ids
=
np
.
random
.
randint
(
0
,
high
=
10
,
size
=
(
max_length
,
batch_size
,
beam_size
))
parents
=
np
.
random
.
randint
(
0
,
high
=
beam_size
,
size
=
(
max_length
,
batch_size
,
beam_size
))
self
.
inputs
=
{
"Ids"
:
ids
,
"Parents"
:
parents
}
self
.
outputs
=
{
'Out'
:
self
.
backtrace
(
ids
,
parents
)}
def
test_check_output
(
self
):
self
.
check_output
()
@
staticmethod
def
backtrace
(
ids
,
parents
):
out
=
np
.
zeros_like
(
ids
)
(
max_length
,
batch_size
,
beam_size
)
=
ids
.
shape
for
batch
in
range
(
batch_size
):
for
beam
in
range
(
beam_size
):
out
[
max_length
-
1
,
batch
,
beam
]
=
ids
[
max_length
-
1
,
batch
,
beam
]
parent
=
parents
[
max_length
-
1
,
batch
,
beam
]
for
step
in
range
(
max_length
-
2
,
-
1
,
-
1
):
out
[
step
,
batch
,
beam
]
=
ids
[
step
,
batch
,
parent
]
parent
=
parents
[
step
,
batch
,
parent
]
return
out
class
TestGatherTreeOpAPI
(
OpTest
):
def
test_case
(
self
):
ids
=
fluid
.
layers
.
data
(
name
=
'ids'
,
shape
=
[
5
,
2
,
2
],
dtype
=
'int64'
,
append_batch_size
=
False
)
parents
=
fluid
.
layers
.
data
(
name
=
'parents'
,
shape
=
[
5
,
2
,
2
],
dtype
=
'int64'
,
append_batch_size
=
False
)
final_sequences
=
fluid
.
layers
.
gather_tree
(
ids
,
parents
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_rnn_cell_api.py
0 → 100644
浏览文件 @
dfd1eee7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
from
paddle.fluid.executor
import
Executor
from
paddle.fluid
import
framework
from
paddle.fluid.layers.rnn
import
LSTMCell
,
GRUCell
,
RNNCell
from
paddle.fluid.layers
import
rnn
as
dynamic_rnn
from
paddle.fluid
import
contrib
from
paddle.fluid.contrib.layers
import
basic_lstm
import
paddle.fluid.layers.utils
as
utils
import
numpy
as
np
class
TestLSTMCell
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_size
=
4
self
.
input_size
=
16
self
.
hidden_size
=
16
def
test_run
(
self
):
inputs
=
fluid
.
data
(
name
=
'inputs'
,
shape
=
[
None
,
self
.
input_size
],
dtype
=
'float32'
)
pre_hidden
=
fluid
.
data
(
name
=
'pre_hidden'
,
shape
=
[
None
,
self
.
hidden_size
],
dtype
=
'float32'
)
pre_cell
=
fluid
.
data
(
name
=
'pre_cell'
,
shape
=
[
None
,
self
.
hidden_size
],
dtype
=
'float32'
)
cell
=
LSTMCell
(
self
.
hidden_size
)
lstm_hidden_new
,
lstm_states_new
=
cell
(
inputs
,
[
pre_hidden
,
pre_cell
])
lstm_unit
=
contrib
.
layers
.
rnn_impl
.
BasicLSTMUnit
(
"basicLSTM"
,
self
.
hidden_size
,
None
,
None
,
None
,
None
,
1.0
,
"float32"
)
lstm_hidden
,
lstm_cell
=
lstm_unit
(
inputs
,
pre_hidden
,
pre_cell
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
inputs_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
input_size
)).
astype
(
'float32'
)
pre_hidden_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
hidden_size
)).
astype
(
'float32'
)
pre_cell_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
hidden_size
)).
astype
(
'float32'
)
param_names
=
[[
"LSTMCell/BasicLSTMUnit_0.w_0"
,
"basicLSTM/BasicLSTMUnit_0.w_0"
],
[
"LSTMCell/BasicLSTMUnit_0.b_0"
,
"basicLSTM/BasicLSTMUnit_0.b_0"
]]
for
names
in
param_names
:
param
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
names
[
0
]).
get_tensor
(
))
param
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
size
=
param
.
shape
).
astype
(
'float32'
)
fluid
.
global_scope
().
find_var
(
names
[
0
]).
get_tensor
().
set
(
param
,
place
)
fluid
.
global_scope
().
find_var
(
names
[
1
]).
get_tensor
().
set
(
param
,
place
)
out
=
exe
.
run
(
feed
=
{
'inputs'
:
inputs_np
,
'pre_hidden'
:
pre_hidden_np
,
'pre_cell'
:
pre_cell_np
},
fetch_list
=
[
lstm_hidden_new
,
lstm_hidden
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
out
[
1
],
rtol
=
1e-4
,
atol
=
0
))
class
TestGRUCell
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_size
=
4
self
.
input_size
=
16
self
.
hidden_size
=
16
def
test_run
(
self
):
inputs
=
fluid
.
data
(
name
=
'inputs'
,
shape
=
[
None
,
self
.
input_size
],
dtype
=
'float32'
)
pre_hidden
=
layers
.
data
(
name
=
'pre_hidden'
,
shape
=
[
None
,
self
.
hidden_size
],
append_batch_size
=
False
,
dtype
=
'float32'
)
cell
=
GRUCell
(
self
.
hidden_size
)
gru_hidden_new
,
_
=
cell
(
inputs
,
pre_hidden
)
gru_unit
=
contrib
.
layers
.
rnn_impl
.
BasicGRUUnit
(
"basicGRU"
,
self
.
hidden_size
,
None
,
None
,
None
,
None
,
"float32"
)
gru_hidden
=
gru_unit
(
inputs
,
pre_hidden
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
inputs_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
input_size
)).
astype
(
'float32'
)
pre_hidden_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
hidden_size
)).
astype
(
'float32'
)
param_names
=
[
[
"GRUCell/BasicGRUUnit_0.w_0"
,
"basicGRU/BasicGRUUnit_0.w_0"
],
[
"GRUCell/BasicGRUUnit_0.w_1"
,
"basicGRU/BasicGRUUnit_0.w_1"
],
[
"GRUCell/BasicGRUUnit_0.b_0"
,
"basicGRU/BasicGRUUnit_0.b_0"
],
[
"GRUCell/BasicGRUUnit_0.b_1"
,
"basicGRU/BasicGRUUnit_0.b_1"
]
]
for
names
in
param_names
:
param
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
names
[
0
]).
get_tensor
(
))
param
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
size
=
param
.
shape
).
astype
(
'float32'
)
fluid
.
global_scope
().
find_var
(
names
[
0
]).
get_tensor
().
set
(
param
,
place
)
fluid
.
global_scope
().
find_var
(
names
[
1
]).
get_tensor
().
set
(
param
,
place
)
out
=
exe
.
run
(
feed
=
{
'inputs'
:
inputs_np
,
'pre_hidden'
:
pre_hidden_np
},
fetch_list
=
[
gru_hidden_new
,
gru_hidden
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
out
[
1
],
rtol
=
1e-4
,
atol
=
0
))
class
TestRnn
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_size
=
4
self
.
input_size
=
16
self
.
hidden_size
=
16
self
.
seq_len
=
4
def
test_run
(
self
):
inputs_basic_lstm
=
fluid
.
data
(
name
=
'inputs_basic_lstm'
,
shape
=
[
None
,
None
,
self
.
input_size
],
dtype
=
'float32'
)
sequence_length
=
fluid
.
data
(
name
=
"sequence_length"
,
shape
=
[
None
],
dtype
=
'int64'
)
inputs_dynamic_rnn
=
layers
.
transpose
(
inputs_basic_lstm
,
perm
=
[
1
,
0
,
2
])
cell
=
LSTMCell
(
self
.
hidden_size
,
name
=
"LSTMCell_for_rnn"
)
output
,
final_state
=
dynamic_rnn
(
cell
=
cell
,
inputs
=
inputs_dynamic_rnn
,
sequence_length
=
sequence_length
,
is_reverse
=
False
)
output_new
=
layers
.
transpose
(
output
,
perm
=
[
1
,
0
,
2
])
rnn_out
,
last_hidden
,
last_cell
=
basic_lstm
(
inputs_basic_lstm
,
None
,
None
,
self
.
hidden_size
,
num_layers
=
1
,
\
batch_first
=
False
,
bidirectional
=
False
,
sequence_length
=
sequence_length
,
forget_bias
=
1.0
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
inputs_basic_lstm_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
seq_len
,
self
.
batch_size
,
self
.
input_size
)).
astype
(
'float32'
)
sequence_length_np
=
np
.
ones
(
self
.
batch_size
,
dtype
=
'int64'
)
*
self
.
seq_len
inputs_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
input_size
)).
astype
(
'float32'
)
pre_hidden_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
hidden_size
)).
astype
(
'float32'
)
pre_cell_np
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
self
.
batch_size
,
self
.
hidden_size
)).
astype
(
'float32'
)
param_names
=
[[
"LSTMCell_for_rnn/BasicLSTMUnit_0.w_0"
,
"basic_lstm_layers_0/BasicLSTMUnit_0.w_0"
],
[
"LSTMCell_for_rnn/BasicLSTMUnit_0.b_0"
,
"basic_lstm_layers_0/BasicLSTMUnit_0.b_0"
]]
for
names
in
param_names
:
param
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
names
[
0
]).
get_tensor
(
))
param
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
size
=
param
.
shape
).
astype
(
'float32'
)
fluid
.
global_scope
().
find_var
(
names
[
0
]).
get_tensor
().
set
(
param
,
place
)
fluid
.
global_scope
().
find_var
(
names
[
1
]).
get_tensor
().
set
(
param
,
place
)
out
=
exe
.
run
(
feed
=
{
'inputs_basic_lstm'
:
inputs_basic_lstm_np
,
'sequence_length'
:
sequence_length_np
,
'inputs'
:
inputs_np
,
'pre_hidden'
:
pre_hidden_np
,
'pre_cell'
:
pre_cell_np
},
fetch_list
=
[
output_new
,
rnn_out
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
out
[
1
],
rtol
=
1e-4
))
class
TestRnnUtil
(
unittest
.
TestCase
):
"""
Test cases for rnn apis' utility methods for coverage.
"""
def
test_case
(
self
):
inputs
=
{
"key1"
:
1
,
"key2"
:
2
}
func
=
lambda
x
:
x
+
1
outputs
=
utils
.
map_structure
(
func
,
inputs
)
utils
.
assert_same_structure
(
inputs
,
outputs
)
try
:
inputs
[
"key3"
]
=
3
utils
.
assert_same_structure
(
inputs
,
outputs
)
except
ValueError
as
identifier
:
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_rnn_decode_api.py
0 → 100644
浏览文件 @
dfd1eee7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
from
paddle.fluid.executor
import
Executor
from
paddle.fluid
import
framework
from
paddle.fluid.layers.rnn
import
LSTMCell
,
GRUCell
,
RNNCell
,
BeamSearchDecoder
,
dynamic_decode
from
paddle.fluid.layers
import
rnn
as
dynamic_rnn
from
paddle.fluid
import
contrib
from
paddle.fluid.contrib.layers
import
basic_lstm
import
numpy
as
np
class
EncoderCell
(
RNNCell
):
def
__init__
(
self
,
num_layers
,
hidden_size
,
dropout_prob
=
0.
):
self
.
num_layers
=
num_layers
self
.
hidden_size
=
hidden_size
self
.
dropout_prob
=
dropout_prob
self
.
lstm_cells
=
[]
for
i
in
range
(
num_layers
):
self
.
lstm_cells
.
append
(
LSTMCell
(
hidden_size
))
def
call
(
self
,
step_input
,
states
):
new_states
=
[]
for
i
in
range
(
self
.
num_layers
):
out
,
new_state
=
self
.
lstm_cells
[
i
](
step_input
,
states
[
i
])
step_input
=
layers
.
dropout
(
out
,
self
.
dropout_prob
)
if
self
.
dropout_prob
>
0
else
out
new_states
.
append
(
new_state
)
return
step_input
,
new_states
@
property
def
state_shape
(
self
):
return
[
cell
.
state_shape
for
cell
in
self
.
lstm_cells
]
class
DecoderCell
(
RNNCell
):
def
__init__
(
self
,
num_layers
,
hidden_size
,
dropout_prob
=
0.
):
self
.
num_layers
=
num_layers
self
.
hidden_size
=
hidden_size
self
.
dropout_prob
=
dropout_prob
self
.
lstm_cells
=
[]
for
i
in
range
(
num_layers
):
self
.
lstm_cells
.
append
(
LSTMCell
(
hidden_size
))
def
attention
(
self
,
hidden
,
encoder_output
,
encoder_padding_mask
):
query
=
layers
.
fc
(
hidden
,
size
=
encoder_output
.
shape
[
-
1
],
bias_attr
=
False
)
attn_scores
=
layers
.
matmul
(
layers
.
unsqueeze
(
query
,
[
1
]),
encoder_output
,
transpose_y
=
True
)
if
encoder_padding_mask
is
not
None
:
attn_scores
=
layers
.
elementwise_add
(
attn_scores
,
encoder_padding_mask
)
attn_scores
=
layers
.
softmax
(
attn_scores
)
attn_out
=
layers
.
squeeze
(
layers
.
matmul
(
attn_scores
,
encoder_output
),
[
1
])
attn_out
=
layers
.
concat
([
attn_out
,
hidden
],
1
)
attn_out
=
layers
.
fc
(
attn_out
,
size
=
self
.
hidden_size
,
bias_attr
=
False
)
return
attn_out
def
call
(
self
,
step_input
,
states
,
encoder_output
,
encoder_padding_mask
=
None
):
lstm_states
,
input_feed
=
states
new_lstm_states
=
[]
step_input
=
layers
.
concat
([
step_input
,
input_feed
],
1
)
for
i
in
range
(
self
.
num_layers
):
out
,
new_lstm_state
=
self
.
lstm_cells
[
i
](
step_input
,
lstm_states
[
i
])
step_input
=
layers
.
dropout
(
out
,
self
.
dropout_prob
)
if
self
.
dropout_prob
>
0
else
out
new_lstm_states
.
append
(
new_lstm_state
)
out
=
self
.
attention
(
step_input
,
encoder_output
,
encoder_padding_mask
)
return
out
,
[
new_lstm_states
,
out
]
class
TestDynamicDecode
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_size
=
4
self
.
input_size
=
16
self
.
hidden_size
=
16
self
.
seq_len
=
4
def
test_run
(
self
):
start_token
=
0
end_token
=
1
src_vocab_size
=
10
trg_vocab_size
=
10
num_layers
=
1
hidden_size
=
self
.
hidden_size
beam_size
=
8
max_length
=
self
.
seq_len
src
=
layers
.
data
(
name
=
"src"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
src_len
=
layers
.
data
(
name
=
"src_len"
,
shape
=
[
-
1
],
dtype
=
'int64'
)
trg
=
layers
.
data
(
name
=
"trg"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
trg_len
=
layers
.
data
(
name
=
"trg_len"
,
shape
=
[
-
1
],
dtype
=
'int64'
)
src_embeder
=
lambda
x
:
fluid
.
embedding
(
x
,
size
=
[
src_vocab_size
,
hidden_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"src_embedding"
))
trg_embeder
=
lambda
x
:
fluid
.
embedding
(
x
,
size
=
[
trg_vocab_size
,
hidden_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"trg_embedding"
))
# use basic_lstm
encoder_cell
=
EncoderCell
(
num_layers
,
hidden_size
)
encoder_output
,
encoder_final_state
=
dynamic_rnn
(
cell
=
encoder_cell
,
inputs
=
src_embeder
(
src
),
sequence_length
=
src_len
,
is_reverse
=
False
)
src_mask
=
layers
.
sequence_mask
(
src_len
,
maxlen
=
layers
.
shape
(
src
)[
1
],
dtype
=
'float32'
)
encoder_padding_mask
=
(
src_mask
-
1.0
)
*
1000000000
encoder_padding_mask
=
layers
.
unsqueeze
(
encoder_padding_mask
,
[
1
])
decoder_cell
=
DecoderCell
(
num_layers
,
hidden_size
)
decoder_initial_states
=
[
encoder_final_state
,
decoder_cell
.
get_initial_states
(
batch_ref
=
encoder_output
,
shape
=
[
hidden_size
])
]
decoder_output
,
_
=
dynamic_rnn
(
cell
=
decoder_cell
,
inputs
=
trg_embeder
(
trg
),
initial_states
=
decoder_initial_states
,
sequence_length
=
None
,
encoder_output
=
encoder_output
,
encoder_padding_mask
=
encoder_padding_mask
)
output_layer
=
lambda
x
:
layers
.
fc
(
x
,
size
=
trg_vocab_size
,
num_flatten_dims
=
len
(
x
.
shape
)
-
1
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"output_w"
),
bias_attr
=
False
)
# inference
encoder_output
=
BeamSearchDecoder
.
tile_beam_merge_with_batch
(
encoder_output
,
beam_size
)
encoder_padding_mask
=
BeamSearchDecoder
.
tile_beam_merge_with_batch
(
encoder_padding_mask
,
beam_size
)
beam_search_decoder
=
BeamSearchDecoder
(
decoder_cell
,
start_token
,
end_token
,
beam_size
,
embedding_fn
=
trg_embeder
,
output_fn
=
output_layer
)
outputs
,
_
=
dynamic_decode
(
beam_search_decoder
,
inits
=
decoder_initial_states
,
max_step_num
=
max_length
,
encoder_output
=
encoder_output
,
encoder_padding_mask
=
encoder_padding_mask
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
src_np
=
np
.
random
.
randint
(
0
,
src_vocab_size
,
(
self
.
batch_size
,
max_length
)).
astype
(
'int64'
)
src_len_np
=
np
.
ones
(
self
.
batch_size
,
dtype
=
'int64'
)
*
max_length
trg_np
=
np
.
random
.
randint
(
0
,
trg_vocab_size
,
(
self
.
batch_size
,
max_length
)).
astype
(
'int64'
)
trg_len_np
=
np
.
ones
(
self
.
batch_size
,
dtype
=
'int64'
)
*
max_length
out
=
exe
.
run
(
feed
=
{
'src'
:
src_np
,
'src_len'
:
src_len_np
,
'trg'
:
trg_np
,
'trg_len'
:
trg_len_np
},
fetch_list
=
[
outputs
])
self
.
assertTrue
(
out
[
0
].
shape
[
0
]
==
self
.
batch_size
)
self
.
assertTrue
(
out
[
0
].
shape
[
1
]
<=
max_length
+
1
)
self
.
assertTrue
(
out
[
0
].
shape
[
2
]
==
beam_size
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_tensor_array_to_tensor.py
浏览文件 @
dfd1eee7
...
...
@@ -23,6 +23,8 @@ from paddle.fluid.executor import Executor
class
TestLoDTensorArrayConcat
(
unittest
.
TestCase
):
"""Test case for concat mode of tensor_array_to_tensor."""
def
setUp
(
self
):
self
.
op_type
=
"tensor_array_to_tensor"
self
.
attrs
=
{
"axis"
:
0
}
...
...
@@ -98,7 +100,7 @@ class TestLoDTensorArrayConcat(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
out
=
exe
.
run
(
program
,
fetch_list
=
fetch_list
,
scope
=
scope
)
#print ("index: ", numpy.array(out[1]))
#print ("index: ", numpy.array(out[1]))
# test forward
tensor_res
=
numpy
.
array
(
out
[
0
])
...
...
@@ -138,5 +140,82 @@ class TestLoDTensorArrayConcat(unittest.TestCase):
numpy
.
array
(
random_grad
[
i
+
1
]))
class
TestLoDTensorArrayStack
(
unittest
.
TestCase
):
"""Test case for stack mode of tensor_array_to_tensor."""
def
setUp
(
self
):
self
.
op_type
=
"tensor_array_to_tensor"
self
.
attrs
=
{
"axis"
:
1
,
"use_stack"
:
True
}
self
.
inputs
=
[
numpy
.
random
.
rand
(
2
,
3
,
4
).
astype
(
"float32"
),
numpy
.
random
.
rand
(
2
,
3
,
4
).
astype
(
"float32"
),
numpy
.
random
.
rand
(
2
,
3
,
4
).
astype
(
"float32"
)
]
self
.
outputs
=
[
numpy
.
stack
(
self
.
inputs
,
axis
=
self
.
attrs
[
"axis"
]),
numpy
.
array
(
[
x
.
shape
[
self
.
attrs
[
"axis"
]]
for
x
in
self
.
inputs
],
dtype
=
"int32"
)
]
self
.
input_grads
=
[
numpy
.
ones_like
(
x
)
for
x
in
self
.
inputs
]
self
.
set_program
()
for
var
in
self
.
program
.
list_vars
():
# to avoid scope clearing after execution
var
.
persistable
=
True
def
set_program
(
self
):
self
.
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
self
.
program
):
self
.
array
=
array
=
fluid
.
layers
.
create_array
(
dtype
=
'float32'
)
idx
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
0
)
for
i
,
x
in
enumerate
(
self
.
inputs
):
x
=
fluid
.
layers
.
assign
(
x
)
fluid
.
layers
.
array_write
(
x
,
idx
+
i
,
array
)
output
,
output_index
=
fluid
.
layers
.
tensor_array_to_tensor
(
input
=
array
,
**
self
.
attrs
)
loss
=
fluid
.
layers
.
reduce_sum
(
output
)
fluid
.
backward
.
append_backward
(
loss
)
self
.
output_vars
=
[
output
,
output_index
]
def
run_check
(
self
,
executor
,
scope
):
executor
.
run
(
self
.
program
,
scope
=
scope
)
for
i
,
output
in
enumerate
(
self
.
outputs
):
numpy
.
allclose
(
numpy
.
array
(
scope
.
var
(
self
.
output_vars
[
i
].
name
).
get_tensor
()),
output
,
atol
=
0
)
tensor_array_grad
=
scope
.
var
(
self
.
array
.
name
).
get_lod_tensor_array
()
for
i
,
input_grad
in
enumerate
(
self
.
input_grads
):
numpy
.
allclose
(
numpy
.
array
(
tensor_array_grad
[
i
]),
input_grad
,
atol
=
0
)
def
test_cpu
(
self
):
scope
=
core
.
Scope
()
place
=
core
.
CPUPlace
()
executor
=
fluid
.
Executor
(
place
)
self
.
run_check
(
executor
,
scope
)
def
test_gpu
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
scope
=
core
.
Scope
()
executor
=
fluid
.
Executor
(
place
)
self
.
run_check
(
executor
,
scope
)
class
TestTensorArrayToTensorAPI
(
unittest
.
TestCase
):
def
test_case
(
self
):
x0
=
fluid
.
layers
.
assign
(
numpy
.
random
.
rand
(
2
,
3
,
4
).
astype
(
"float32"
))
x1
=
fluid
.
layers
.
assign
(
numpy
.
random
.
rand
(
2
,
3
,
4
).
astype
(
"float32"
))
i
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
0
)
array
=
fluid
.
layers
.
create_array
(
dtype
=
'float32'
)
fluid
.
layers
.
array_write
(
x0
,
i
,
array
)
fluid
.
layers
.
array_write
(
x1
,
i
+
1
,
array
)
output
,
output_index
=
fluid
.
layers
.
tensor_array_to_tensor
(
input
=
array
,
axis
=
1
,
use_stack
=
True
)
output
,
output_index
=
fluid
.
layers
.
tensor_array_to_tensor
(
input
=
array
,
axis
=
1
,
use_stack
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录