未验证 提交 dce0732d 编写于 作者: X Xin Pan 提交者: GitHub

Merge pull request #10380 from panyx0718/dist_timeline

timeline for distributed training
......@@ -80,6 +80,8 @@ parser.add_argument(
type=str,
default="",
help="Comma-separated list of hostname:port pairs")
parser.add_argument(
"--profile", action='store_true', help="If set, profile a few steps.")
# Flags for defining the tf.train.Server
parser.add_argument(
......@@ -183,8 +185,8 @@ def main():
start_time = time.time()
num_samples = 0
train_pass_acc.reset()
for batch_id, data in enumerate(train_reader()):
ts = time.time()
def run_step(batch_id, data):
img_data = np.array(
map(lambda x: x[0].reshape(data_shape), data)).astype(
"float32")
......@@ -196,13 +198,27 @@ def main():
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost, batch_acc, batch_size])
return loss, acc, b_size
if args.profile and args.task_index == 0:
# warmup.
for batch_id, data in enumerate(train_reader()):
if batch_id > 5: break
run_step(batch_id, data)
with profiler.profiler('All', 'total', '/tmp/profile_vgg'):
for batch_id, data in enumerate(train_reader()):
if batch_id > 5: break
run_step(batch_id, data)
for batch_id, data in enumerate(train_reader()):
ts = time.time()
loss, acc, b_size = run_step(batch_id, data)
iters += 1
num_samples += len(data)
train_pass_acc.add(value=acc, weight=b_size)
print(
"Task:%d Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, "
"Speed = %.2f img/s " % (args.task_index, pass_id, iters,
loss, acc,
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, "
"Speed = %.2f img/s" % (pass_id, iters, loss, acc,
len(data) / (time.time() - ts))
) # The accuracy is the accumulation of batches, but not the current batch.
......
......@@ -69,6 +69,10 @@ message VariableMessage {
bytes rows = 9;
// Look up table block execution output variable name.
string out_varname = 10;
// If true, the ps server will start profiling, the ps
// server stops profiling and generates a profile to /tmp/profile_ps_*
// when profile switches from true to false.
bool profile = 11;
}
message VoidMessage {}
......@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
#include "paddle/fluid/operators/detail/variable_response.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
......@@ -45,6 +46,13 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
void* payload = nullptr;
size_t payload_size;
ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
// Note: normally the profiler is enabled in 1 trainer, hence only
// 1 trainer returns true for ShouldSendProfileState(). It tells PS
// servers the trainer's profiling state so that PS can follow the
// trainer.
if (platform::ShouldSendProfileState()) {
e.WriteBool(VarMsg::kProfileFieldNumber, platform::IsProfileEnabled());
}
e.WriteString(VarMsg::kVarnameFieldNumber, name);
if (var->IsType<framework::LoDTensor>()) {
e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
......
......@@ -17,6 +17,7 @@
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/operators/detail/send_recv.pb.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
......@@ -427,7 +428,26 @@ int VariableResponse::Parse(Source* source) {
meta_.set_out_varname(temp);
break;
}
case sendrecv::VariableMessage::kProfileFieldNumber: {
bool profiling;
if (!input.ReadRaw(reinterpret_cast<void*>(&profiling), 1)) {
return tag;
}
meta_.set_profile(profiling);
int64_t listener_id = platform::ListenerId();
if (listener_id <= 0) {
break;
}
if (profiling && !platform::IsProfileEnabled()) {
platform::EnableProfiler(platform::ProfilerState::kCPU);
} else if (!profiling && platform::IsProfileEnabled()) {
// TODO(panyx0718): Should we allow to customize file dir.
platform::DisableProfiler(
platform::EventSortingKey::kDefault,
string::Sprintf("/tmp/profile_ps_%lld", listener_id));
}
break;
}
default: {
// Unknown tag, return unknown error.
return -1;
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/operators/listen_and_serv_op.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
......@@ -294,6 +295,8 @@ void ListenAndServOp::RunAsyncLoop(framework::Executor *executor,
void ListenAndServOp::RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const {
// Mark this as PS that it should decide profiling by listening from trainer.
platform::SetProfileListener();
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();
......
......@@ -13,12 +13,15 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include <sys/time.h>
#include <time.h>
#include <algorithm>
#include <iomanip>
#include <limits>
#include <map>
#include <mutex> // NOLINT
#include <random>
#include <string>
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
......@@ -33,6 +36,9 @@ namespace platform {
struct EventList;
static int64_t profiler_lister_id = 0;
static bool should_send_profile_state = false;
// The profiler state, the initial value is ProfilerState::kDisabled
static ProfilerState g_state = ProfilerState::kDisabled;
// The thread local event list only can be accessed by the specific thread
......@@ -219,13 +225,12 @@ void EnableProfiler(ProfilerState state) {
PADDLE_ENFORCE(state != ProfilerState::kDisabled,
"Can't enbale profling, since the input state is ",
"ProfilerState::kDisabled");
PADDLE_ENFORCE(g_state == ProfilerState::kDisabled,
"The profiling state should be disabled when calling ",
"EnableProfiler.");
if (state == g_state) {
return;
}
g_state = state;
if (g_state == ProfilerState::kAll) {
should_send_profile_state = true;
GetDeviceTracer()->Enable();
}
#ifdef PADDLE_WITH_CUDA
if (g_state == ProfilerState::kCUDA) {
// Generate some dummy events first to reduce the startup overhead.
......@@ -435,8 +440,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
void DisableProfiler(EventSortingKey sorted_key,
const std::string& profile_path) {
PADDLE_ENFORCE(g_state != ProfilerState::kDisabled,
"Can't disable profiling, since it's not starting.");
if (g_state == ProfilerState::kDisabled) return;
// Mark the profiling stop.
Mark("_stop_profiler_", nullptr);
......@@ -444,12 +448,25 @@ void DisableProfiler(EventSortingKey sorted_key,
ParseEvents(all_events, sorted_key);
ResetProfiler();
DeviceTracer* tracer = GetDeviceTracer();
if (g_state == ProfilerState::kAll && tracer && tracer->IsEnabled()) {
if (tracer->IsEnabled()) {
tracer->Disable();
tracer->GenProfile(profile_path);
}
g_state = ProfilerState::kDisabled;
should_send_profile_state = true;
}
bool IsProfileEnabled() { return g_state != ProfilerState::kDisabled; }
bool ShouldSendProfileState() { return should_send_profile_state; }
void SetProfileListener() {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int64_t>::max());
profiler_lister_id = dist6(rng);
}
int64_t ListenerId() { return profiler_lister_id; }
} // namespace platform
} // namespace paddle
......@@ -114,5 +114,13 @@ void ResetProfiler();
void DisableProfiler(EventSortingKey sorted_key,
const std::string& profile_path);
// Test if the profiler is currently enabled.
bool IsProfileEnabled();
// Whether the trainer should send profiling state to PS.
bool ShouldSendProfileState();
// Mark current process as PS by assigning a lister id.
void SetProfileListener();
int64_t ListenerId();
} // namespace platform
} // namespace paddle
......@@ -22,7 +22,11 @@ import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--profile_path', type=str, default='', help='Input profile file name.')
'--profile_path',
type=str,
default='',
help='Input profile file name. If there are multiple file, the format '
'should be trainer1=file1,trainer2=file2,ps=file3')
parser.add_argument(
'--timeline_path', type=str, default='', help='Output timeline file name.')
args = parser.parse_args()
......@@ -108,8 +112,8 @@ class _ChromeTraceFormatter(object):
class Timeline(object):
def __init__(self, profile_pb):
self._profile_pb = profile_pb
def __init__(self, profile_dict):
self._profile_dict = profile_dict
self._pid = 0
self._devices = dict()
self._chrome_trace = _ChromeTraceFormatter()
......@@ -120,27 +124,29 @@ class Timeline(object):
return cur_pid
def _allocate_pids(self):
for event in self._profile_pb.events:
for k, profile_pb in self._profile_dict.iteritems():
for event in profile_pb.events:
if event.type == profiler_pb2.Event.CPU:
if (event.device_id, "CPU") not in self._devices:
if (k, event.device_id, "CPU") not in self._devices:
pid = self._allocate_pid()
self._devices[(event.device_id, "CPU")] = pid
self._chrome_trace.emit_pid("cpu:block:%d" %
(event.device_id), pid)
self._devices[(k, event.device_id, "CPU")] = pid
self._chrome_trace.emit_pid("%s:cpu:block:%d" %
(k, event.device_id), pid)
elif event.type == profiler_pb2.Event.GPUKernel:
if (event.device_id, "GPUKernel") not in self._devices:
if (k, event.device_id, "GPUKernel") not in self._devices:
pid = self._allocate_pid()
self._devices[(event.device_id, "GPUKernel")] = pid
self._chrome_trace.emit_pid("gpu:%d" % (event.device_id),
pid)
self._devices[(k, event.device_id, "GPUKernel")] = pid
self._chrome_trace.emit_pid("%s:gpu:%d" %
(k, event.device_id), pid)
def _allocate_events(self):
for event in self._profile_pb.events:
for k, profile_pb in self._profile_dict.iteritems():
for event in profile_pb.events:
if event.type == profiler_pb2.Event.CPU:
type = "CPU"
elif event.type == profiler_pb2.Event.GPUKernel:
type = "GPUKernel"
pid = self._devices[(event.device_id, type)]
pid = self._devices[(k, event.device_id, type)]
args = {'name': event.name}
if event.memcopy.bytes > 0:
args = {'mem_bytes': event.memcopy.bytes}
......@@ -163,11 +169,23 @@ timeline_path = '/tmp/timeline'
if args.timeline_path:
timeline_path = args.timeline_path
with open(profile_path, 'r') as f:
profile_paths = profile_path.split(',')
profile_dict = dict()
if len(profile_path) == 1:
with open(profile_path, 'r') as f:
profile_s = f.read()
profile_pb = profiler_pb2.Profile()
profile_pb.ParseFromString(profile_s)
profile_dict['trainer'] = profile_pb
else:
for profile_path in profile_paths:
k, v = profile_path.split('=')
with open(v, 'r') as f:
profile_s = f.read()
profile_pb = profiler_pb2.Profile()
profile_pb.ParseFromString(profile_s)
profile_dict[k] = profile_pb
tl = Timeline(profile_pb)
tl = Timeline(profile_dict)
with open(timeline_path, 'w') as f:
f.write(tl.generate_chrome_trace())
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册