From dc070ecfb0966b76d219d06e8c7c31ce05752fc7 Mon Sep 17 00:00:00 2001 From: joejiong Date: Mon, 30 Nov 2020 15:34:40 +0800 Subject: [PATCH] Remove cast from paddle.pow api (#29134) As the title --- .../paddle/fluid/tests/unittests/test_pow.py | 78 ++----------------- python/paddle/tensor/math.py | 6 -- 2 files changed, 8 insertions(+), 76 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_pow.py b/python/paddle/fluid/tests/unittests/test_pow.py index a468b24a79a..5da9f45fc10 100755 --- a/python/paddle/fluid/tests/unittests/test_pow.py +++ b/python/paddle/fluid/tests/unittests/test_pow.py @@ -13,12 +13,13 @@ # limitations under the License. from __future__ import print_function +import unittest + +import numpy as np + import paddle import paddle.tensor as tensor -import paddle.fluid as fluid from paddle.static import Program, program_guard -import numpy as np -import unittest DYNAMIC = 1 STATIC = 2 @@ -49,8 +50,8 @@ def _run_power(mode, x, y): x_ = paddle.static.data(name="x", shape=x.shape, dtype=x.dtype) y_ = y res = paddle.pow(x_, y_) - place = fluid.CPUPlace() - exe = fluid.Executor(place) + place = paddle.CPUPlace() + exe = paddle.static.Executor(place) outs = exe.run(feed={'x': x}, fetch_list=[res]) return outs[0] # y is tensor @@ -59,8 +60,8 @@ def _run_power(mode, x, y): x_ = paddle.static.data(name="x", shape=x.shape, dtype=x.dtype) y_ = paddle.static.data(name="y", shape=y.shape, dtype=y.dtype) res = paddle.pow(x_, y_) - place = fluid.CPUPlace() - exe = fluid.Executor(place) + place = paddle.CPUPlace() + exe = paddle.static.Executor(place) outs = exe.run(feed={'x': x, 'y': y}, fetch_list=[res]) return outs[0] @@ -105,24 +106,6 @@ class TestPowerAPI(unittest.TestCase): res = _run_power(STATIC, x, y) self.assertTrue(np.allclose(res, np.power(x, y))) - # test 1-d float tensor ** 1-d int tensor - dims = (np.random.randint(200, 300), ) - x = (np.random.rand(*dims) * 10).astype(np.float64) - y = (np.random.rand(*dims) * 10).astype(np.int64) - res = _run_power(DYNAMIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - res = _run_power(STATIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - - # test 1-d int tensor ** 1-d float tensor - dims = (np.random.randint(200, 300), ) - x = (np.random.rand(*dims) * 10).astype(np.int64) - y = (np.random.rand(*dims) * 10).astype(np.float64) - res = _run_power(DYNAMIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - res = _run_power(STATIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - # test 1-d int tensor ** 1-d int tensor dims = (np.random.randint(200, 300), ) x = (np.random.rand(*dims) * 10).astype(np.int64) @@ -141,24 +124,6 @@ class TestPowerAPI(unittest.TestCase): res = _run_power(STATIC, x, y) self.assertTrue(np.allclose(res, np.power(x, y))) - # test 1-d int tensor ** 1-d int tensor - dims = (np.random.randint(200, 300), ) - x = (np.random.rand(*dims) * 10).astype(np.int64) - y = (np.random.rand(*dims) * 10).astype(np.int32) - res = _run_power(DYNAMIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - res = _run_power(STATIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - - # test 1-d int tensor ** 1-d int tensor - dims = (np.random.randint(200, 300), ) - x = (np.random.rand(*dims) * 10).astype(np.int32) - y = (np.random.rand(*dims) * 10).astype(np.int64) - res = _run_power(DYNAMIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - res = _run_power(STATIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - # test 1-d int tensor ** 1-d int tensor dims = (np.random.randint(200, 300), ) x = (np.random.rand(*dims) * 10).astype(np.float32) @@ -168,33 +133,6 @@ class TestPowerAPI(unittest.TestCase): res = _run_power(STATIC, x, y) self.assertTrue(np.allclose(res, np.power(x, y))) - # test 1-d int tensor ** 1-d int tensor - dims = (np.random.randint(200, 300), ) - x = (np.random.rand(*dims) * 10).astype(np.float64) - y = (np.random.rand(*dims) * 10).astype(np.float32) - res = _run_power(DYNAMIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - res = _run_power(STATIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - - # test 1-d int tensor ** 1-d int tensor - dims = (np.random.randint(200, 300), ) - x = (np.random.rand(*dims) * 10).astype(np.float64) - y = (np.random.rand(*dims) * 10).astype(np.int32) - res = _run_power(DYNAMIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - res = _run_power(STATIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - - # test 1-d int tensor ** 1-d int tensor - dims = (np.random.randint(200, 300), ) - x = (np.random.rand(*dims) * 10).astype(np.float32) - y = (np.random.rand(*dims) * 10).astype(np.int64) - res = _run_power(DYNAMIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - res = _run_power(STATIC, x, y) - self.assertTrue(np.allclose(res, np.power(x, y))) - # test broadcast dims = (np.random.randint(1, 10), np.random.randint(5, 10), np.random.randint(5, 10)) diff --git a/python/paddle/tensor/math.py b/python/paddle/tensor/math.py index dd1e0be5ad2..9f84c0b2b5c 100755 --- a/python/paddle/tensor/math.py +++ b/python/paddle/tensor/math.py @@ -184,9 +184,6 @@ def pow(x, y, name=None): if isinstance(y, (int, float)): return core.ops.pow(x, 'factor', y) elif isinstance(y, (paddle.Tensor, Variable)): - if x.dtype != y.dtype: - y = cast(y, dtype='float64') - x = cast(x, dtype='float64') return _elementwise_op_in_dygraph( x, y, axis=-1, act=None, op_name='elementwise_pow') else: @@ -204,9 +201,6 @@ def pow(x, y, name=None): elif isinstance(y, (paddle.Tensor, Variable)): # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here helper = LayerHelper('elementwise_pow', **locals()) - if x.dtype != y.dtype: - y = cast(y, dtype='float64') - x = cast(x, dtype='float64') out = helper.create_variable_for_type_inference(dtype=x.dtype) return _elementwise_op(LayerHelper('elementwise_pow', **locals())) else: -- GitLab