未验证 提交 dae62556 编写于 作者: W Wilber 提交者: GitHub

Enhance infer error info message (#26731)

上级 c89f269c
......@@ -27,8 +27,9 @@ Analyzer::Analyzer() {}
void Analyzer::Run(Argument *argument) { RunAnalysis(argument); }
void Analyzer::RunAnalysis(Argument *argument) {
PADDLE_ENFORCE(argument->analysis_passes_valid(),
"analsis_passes is not valid in the argument.");
PADDLE_ENFORCE_EQ(argument->analysis_passes_valid(), true,
platform::errors::InvalidArgument(
"analsis_passes is not valid in the argument."));
const bool disable_logs = argument->disable_logs();
for (auto &pass : argument->analysis_passes()) {
if (!disable_logs) {
......@@ -38,7 +39,8 @@ void Analyzer::RunAnalysis(Argument *argument) {
continue;
auto *ptr = PassRegistry::Global().Retreive(pass);
PADDLE_ENFORCE_NOT_NULL(ptr, "no analysis pass called %s", pass);
PADDLE_ENFORCE_NOT_NULL(ptr, platform::errors::PreconditionNotMet(
"no analysis pass called %s", pass));
ptr->Run(argument);
}
}
......
......@@ -75,9 +75,14 @@ void TestWord2vecPrediction(const std::string& model_path) {
std::vector<PaddleTensor> outputs;
CHECK(predictor->Run(slots, &outputs));
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
PADDLE_ENFORCE_EQ(outputs.size(), 1UL,
platform::errors::PreconditionNotMet(
"Output size should be 1, but got %d", outputs.size()));
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE_EQ(outputs.front().data.length(), 33168UL);
PADDLE_ENFORCE_EQ(outputs.front().data.length(), 33168UL,
platform::errors::PreconditionNotMet(
"Output's data length should be 33168 but got %d",
outputs.front().data.length()));
float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
......
......@@ -79,7 +79,9 @@ struct Argument {
#define DECL_ARGUMENT_FIELD(field__, Field, type__) \
public: \
type__& field__() { \
PADDLE_ENFORCE(Has(#field__), "There is no such field"); \
PADDLE_ENFORCE_EQ( \
Has(#field__), true, \
platform::errors::PreconditionNotMet("There is no such field")); \
return field__##_; \
} \
void Set##Field(const type__& x) { \
......@@ -98,8 +100,11 @@ struct Argument {
#define DECL_ARGUMENT_UNIQUE_FIELD(field__, Field, type__) \
public: \
type__& field__() { \
PADDLE_ENFORCE_NOT_NULL(field__##_); \
PADDLE_ENFORCE(Has(#field__)); \
PADDLE_ENFORCE_NOT_NULL(field__##_, platform::errors::PreconditionNotMet( \
"filed should not be null.")); \
PADDLE_ENFORCE_EQ( \
Has(#field__), true, \
platform::errors::PreconditionNotMet("There is no such field")); \
return *static_cast<type__*>(field__##_.get()); \
} \
void Set##Field(type__* x) { \
......@@ -113,11 +118,15 @@ struct Argument {
} \
DECL_ARGUMENT_FIELD_VALID(field__); \
type__* field__##_ptr() { \
PADDLE_ENFORCE(Has(#field__)); \
PADDLE_ENFORCE_EQ( \
Has(#field__), true, \
platform::errors::PreconditionNotMet("There is no such field")); \
return static_cast<type__*>(field__##_.get()); \
} \
type__* Release##Field() { \
PADDLE_ENFORCE(Has(#field__)); \
PADDLE_ENFORCE_EQ( \
Has(#field__), true, \
platform::errors::PreconditionNotMet("There is no such field")); \
valid_fields_.erase(#field__); \
return static_cast<type__*>(field__##_.release()); \
} \
......@@ -227,8 +236,10 @@ struct Argument {
};
#define ARGUMENT_CHECK_FIELD(argument__, fieldname__) \
PADDLE_ENFORCE(argument__->Has(#fieldname__), \
"the argument field [%s] should be set", #fieldname__);
PADDLE_ENFORCE_EQ( \
argument__->Has(#fieldname__), true, \
platform::errors::PreconditionNotMet( \
"the argument field [%s] should be set", #fieldname__));
} // namespace analysis
} // namespace inference
......
......@@ -73,12 +73,15 @@ struct DataTypeNamer {
template <typename T>
const std::string &repr() const {
auto x = std::type_index(typeid(T));
PADDLE_ENFORCE(dic_.count(x), "unknown type for representation");
PADDLE_ENFORCE_GT(dic_.count(x), 0, platform::errors::PreconditionNotMet(
"unknown type for representation"));
return dic_.at(x);
}
const std::string &repr(const std::type_index &type) const { // NOLINT
PADDLE_ENFORCE(dic_.count(type), "unknown type for representation");
PADDLE_ENFORCE_GT(dic_.count(type), 0,
platform::errors::PreconditionNotMet(
"unknown type for representation"));
return dic_.at(type);
}
......@@ -116,7 +119,9 @@ template <typename T>
class OrderedRegistry {
public:
T *Register(const std::string &name, T *x) {
PADDLE_ENFORCE(!dic_.count(name), "duplicate key [%s]", name);
PADDLE_ENFORCE_EQ(dic_.count(name), 0,
platform::errors::PreconditionNotMet(
"There exists duplicate key [%s]", name));
dic_[name] = elements_.size();
elements_.emplace_back(std::unique_ptr<T>(x));
return elements_.back().get();
......@@ -136,14 +141,20 @@ class OrderedRegistry {
template <typename T>
T &GetFromScope(const framework::Scope &scope, const std::string &name) {
framework::Variable *var = scope.FindVar(name);
PADDLE_ENFORCE(var != nullptr);
PADDLE_ENFORCE_NOT_NULL(
var, platform::errors::PreconditionNotMet(
"The var which name is %s should not be nullptr.", name));
return *var->GetMutable<T>();
}
static framework::proto::ProgramDesc LoadProgramDesc(
const std::string &model_path) {
std::ifstream fin(model_path, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(fin.is_open(), "Cannot open file %s", model_path);
PADDLE_ENFORCE_EQ(
fin.is_open(), true,
platform::errors::NotFound(
"Cannot open file %s, please confirm whether the file exists",
model_path));
fin.seekg(0, std::ios::end);
std::string buffer(fin.tellg(), ' ');
fin.seekg(0, std::ios::beg);
......@@ -188,10 +199,12 @@ static std::string GetDirRoot(const std::string &path) {
static std::string GetOrCreateModelOptCacheDir(const std::string &model_root) {
std::string opt_cache_dir = model_root + "/_opt_cache/";
if (!PathExists(opt_cache_dir)) {
PADDLE_ENFORCE(MKDIR(opt_cache_dir.c_str()) != -1,
PADDLE_ENFORCE_NE(
MKDIR(opt_cache_dir.c_str()), -1,
platform::errors::PreconditionNotMet(
"Can not create optimize cache directory: %s, Make sure you "
"have permission to write",
opt_cache_dir);
opt_cache_dir));
}
return opt_cache_dir;
}
......
......@@ -38,7 +38,9 @@ IRPassManager::IRPassManager(Argument *argument) {
graph_ = std::unique_ptr<Graph>(new Graph(argument->main_program()));
if (argument->Has("scope")) {
auto *scope_ptr = argument->scope_ptr();
PADDLE_ENFORCE(scope_ptr);
PADDLE_ENFORCE_NOT_NULL(scope_ptr,
platform::errors::PreconditionNotMet(
"The scope ptr should not be nullptr."));
graph_->SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr);
}
......@@ -101,13 +103,17 @@ void IRPassManager::CreatePasses(Argument *argument,
std::string optim_cache_dir = argument->optim_cache_dir();
bool int8_valid =
!(model_from_memory && optim_cache_dir.empty() && enable_int8);
PADDLE_ENFORCE(int8_valid,
PADDLE_ENFORCE_EQ(
int8_valid, true,
platform::errors::PreconditionNotMet(
"When you are in TRT INT8 mode, and load model from "
"memory, you should set optim_cache_dir using "
"config.SetOptimCacheDir()");
PADDLE_ENFORCE(!(model_from_memory && use_static_engine),
"config.SetOptimCacheDir()"));
PADDLE_ENFORCE_EQ(
!(model_from_memory && use_static_engine), true,
platform::errors::PreconditionNotMet(
"When you are using Paddle-TRT, and also using load model "
"from memory, you should set the use_static to false.");
"from memory, you should set the use_static to false."));
if (!optim_cache_dir.empty()) {
pass->Set("model_opt_cache_dir", new std::string(optim_cache_dir));
......
......@@ -123,7 +123,9 @@ void RenameAndGetOutputs(
auto add_block_var = [&](const std::string &graph_arg,
const std::string &block_arg) {
auto arg_var_node = graph_var_map.find(graph_arg);
PADDLE_ENFORCE(arg_var_node != graph_var_map.end());
PADDLE_ENFORCE_NE(arg_var_node, graph_var_map.end(),
platform::errors::InvalidArgument(
"Can not find %s in graph_var_map", graph_arg));
auto *var_t = block_desc->Var(block_arg);
var_t->SetShape(arg_var_node->second->Var()->GetShape());
var_t->SetDataType(arg_var_node->second->Var()->GetDataType());
......@@ -133,7 +135,10 @@ void RenameAndGetOutputs(
framework::proto::OpDesc *op = block_desc->Op(index)->Proto();
framework::OpDesc op_desc(*op, nullptr);
auto correspond_node = subgraph_nodes[index];
PADDLE_ENFORCE_EQ(correspond_node->Name(), op->type());
PADDLE_ENFORCE_EQ(correspond_node->Name(), op->type(),
platform::errors::PreconditionNotMet(
"We should get %s, but get %s", op->type(),
correspond_node->Name()));
std::unordered_map<std::string, size_t> var2id;
std::unordered_map<std::string, framework::ir::Node *> in_vars;
......
......@@ -97,7 +97,9 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
std::vector<std::string> *repetitive_params) const {
auto *op_desc = node->Op();
auto &subgraph = *framework::ir::Agent(node).subgraph();
PADDLE_ENFORCE(!subgraph.empty());
PADDLE_ENFORCE_EQ(subgraph.empty(), false,
platform::errors::PreconditionNotMet(
"The subgraph should not be empty."));
framework::ProgramDesc *program_desc =
Get<framework::ProgramDesc *>("program");
......@@ -194,12 +196,17 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// to Tensor.
std::vector<std::string> output_mapping;
for (auto name : output_names) {
PADDLE_ENFORCE(output_name_map.count(name) != 0);
PADDLE_ENFORCE_NE(output_name_map.count(name), 0,
platform::errors::PreconditionNotMet(
"The output_name_map should have %s", name));
output_mapping.push_back(output_name_map[name]);
}
PADDLE_ENFORCE(!output_mapping.empty());
PADDLE_ENFORCE(!block_desc.Proto()->vars().empty(),
"the block has no var-desc");
PADDLE_ENFORCE_EQ(output_mapping.empty(), false,
platform::errors::PreconditionNotMet(
"The output_mapping should not be empty."));
PADDLE_ENFORCE_EQ(
!block_desc.Proto()->vars().empty(), true,
platform::errors::PreconditionNotMet("the block has no var-desc"));
// Set attrs
op_desc->SetType("tensorrt_engine");
......
......@@ -13,6 +13,8 @@
// limitations under the License.
#include "paddle/fluid/inference/analysis/passes/ir_analysis_pass.h"
#include <memory>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
......@@ -31,7 +33,10 @@ void IrAnalysisPass::RunImpl(Argument* argument) {
// Apply passes.
IRPassManager the_ir_manager(argument);
graph = the_ir_manager.Apply(std::move(graph));
PADDLE_ENFORCE_GT(graph->Nodes().size(), 0);
PADDLE_ENFORCE_GT(
graph->Nodes().size(), 0,
platform::errors::PreconditionNotMet(
"The graph nodes size should be greater than 0, but got 0"));
argument->SetMainGraph(graph.release());
CollectFusionStatis(argument);
}
......
......@@ -31,7 +31,9 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
if (!argument->scope_valid()) {
argument->SetScope(new framework::Scope);
}
PADDLE_ENFORCE(argument->use_gpu_valid());
PADDLE_ENFORCE_EQ(argument->use_gpu_valid(), true,
platform::errors::PreconditionNotMet(
"The use_gpu field should be valid"));
// The load program should run on the same device with the inference program,
// so that the parameters will on the same device, or they will keep copying
......@@ -51,14 +53,17 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
argument->model_from_memory_valid() && argument->model_from_memory());
argument->SetMainProgram(program.release());
} else {
PADDLE_THROW(
"either model_dir or (program path and parameter path) should be set.");
PADDLE_THROW(platform::errors::PreconditionNotMet(
"either model_dir or (program path and parameter path) should be "
"set."));
}
auto graph = std::unique_ptr<Graph>(new Graph(argument->main_program()));
argument->SetMainGraph(graph.release());
auto *scope_ptr = argument->scope_ptr();
PADDLE_ENFORCE(scope_ptr);
PADDLE_ENFORCE_NOT_NULL(scope_ptr,
platform::errors::PreconditionNotMet(
"The scope ptr should not be nullptr."));
argument->main_graph().SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr);
}
......
......@@ -31,7 +31,8 @@ void IrInferCleanGraphPass::RunImpl(Argument* argument) {
std::unordered_set<const framework::ir::Node*> invalid_nodes;
int valid_op = 0;
for (auto* node : graph.Nodes()) {
PADDLE_ENFORCE_NOT_NULL(node);
PADDLE_ENFORCE_NOT_NULL(node, platform::errors::PreconditionNotMet(
"The node should not be nullptr."));
if (is_valid_node(node)) {
invalid_nodes.insert(node);
} else if (node->IsOp()) {
......
......@@ -23,8 +23,12 @@ namespace inference {
namespace analysis {
void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
PADDLE_ENFORCE(argument->scope_valid());
PADDLE_ENFORCE(argument->use_gpu_valid());
PADDLE_ENFORCE_EQ(
argument->scope_valid(), true,
platform::errors::PreconditionNotMet("The scope field should be valid"));
PADDLE_ENFORCE_EQ(argument->use_gpu_valid(), true,
platform::errors::PreconditionNotMet(
"The use_gpu field should be valid"));
platform::Place place;
......@@ -40,7 +44,9 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
LOG(INFO) << "Sync params from CPU to GPU";
PADDLE_ENFORCE(argument->gpu_device_id_valid());
PADDLE_ENFORCE_EQ(argument->gpu_device_id_valid(), true,
platform::errors::PreconditionNotMet(
"The gpu_device_id field should be valid"));
place = platform::CUDAPlace(argument->gpu_device_id());
auto *scope = argument->scope_ptr();
......@@ -56,7 +62,8 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
continue;
}
auto *var = scope->FindLocalVar(var_name);
PADDLE_ENFORCE(var != nullptr);
PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
"The var should not be nullptr"));
if (var->IsType<framework::LoDTensor>() ||
var->IsType<framework::Tensor>()) {
auto *t = var->GetMutable<framework::LoDTensor>();
......
......@@ -224,7 +224,9 @@ void UpdateOpDescsByReuse(
// modify the graph
for (auto input_node : node->inputs) {
PADDLE_ENFORCE(input_node->IsVar());
PADDLE_ENFORCE_EQ(input_node->IsVar(), true,
platform::errors::PreconditionNotMet(
"The input node should be a variable."));
std::string input_node_name = input_node->Name();
if (reuse_table.count(input_node_name) &&
reuse_table.at(input_node_name) != input_node_name) {
......@@ -246,7 +248,9 @@ void UpdateOpDescsByReuse(
// modify the graph
for (auto out_node : node->outputs) {
PADDLE_ENFORCE(out_node->IsVar());
PADDLE_ENFORCE_EQ(out_node->IsVar(), true,
platform::errors::PreconditionNotMet(
"The output node should be a variable."));
std::string out_node_name = out_node->Name();
if (reuse_table.count(out_node_name) &&
reuse_table.at(out_node_name) != out_node_name) {
......
......@@ -230,7 +230,8 @@ void AnalysisConfig::EnableMkldnnBfloat16() {
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
"MkldnnQuantizer was not enabled yet.");
platform::errors::PreconditionNotMet(
"MkldnnQuantizer was not enabled yet."));
return mkldnn_quantizer_config_.get();
}
......
......@@ -169,7 +169,8 @@ bool AnalysisPredictor::PrepareScope(
if (parent_scope) {
PADDLE_ENFORCE_NOT_NULL(
parent_scope,
"Both program and parent_scope should be set in Clone mode.");
platform::errors::PreconditionNotMet(
"Both program and parent_scope should be set in Clone mode."));
scope_ = parent_scope;
status_is_cloned_ = true;
} else {
......@@ -235,7 +236,9 @@ bool AnalysisPredictor::PrepareExecutor() {
executor_->Prepare(sub_scope_, *inference_program_, 0,
config_.use_feed_fetch_ops_);
PADDLE_ENFORCE_NOT_NULL(sub_scope_);
PADDLE_ENFORCE_NOT_NULL(sub_scope_,
platform::errors::PreconditionNotMet(
"The sub_scope should not be nullptr."));
return true;
}
......@@ -297,7 +300,8 @@ bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
timer.tic();
// set feed variable
framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr.");
PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
"The scope should not be nullptr."));
if (!SetFeed(inputs, scope)) {
LOG(ERROR) << "fail to set feed";
return false;
......@@ -399,7 +403,11 @@ bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
outputs->resize(fetches_.size());
for (size_t i = 0; i < fetches_.size(); ++i) {
int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
PADDLE_ENFORCE((size_t)idx == i);
PADDLE_ENFORCE_EQ(
static_cast<size_t>(idx), i,
platform::errors::InvalidArgument(
"Fetch op's col attr(%d) should be equal to the index(%d)", idx,
i));
framework::FetchType &fetch_var =
framework::GetFetchVariable(*scope, "fetch", idx);
auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
......@@ -435,10 +443,12 @@ void AnalysisPredictor::PrepareArgument() {
if (!config_.model_dir().empty()) {
argument_.SetModelDir(config_.model_dir());
} else {
PADDLE_ENFORCE(
!config_.params_file().empty(),
"Either model_dir or (param_file, prog_file) should be set.");
PADDLE_ENFORCE(!config_.prog_file().empty());
PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
platform::errors::PreconditionNotMet(
"Either model_dir or param_file should be set."));
PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
platform::errors::PreconditionNotMet(
"Either model_dir or prog_file should be set."));
std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
argument_.SetModelProgramPath(config_.prog_file());
......@@ -503,7 +513,9 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
PrepareArgument();
Analyzer().Run(&argument_);
PADDLE_ENFORCE(argument_.scope_valid());
PADDLE_ENFORCE_EQ(
argument_.scope_valid(), true,
platform::errors::InvalidArgument("The argument scope should be valid."));
VLOG(5) << "to prepare executor";
ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
inference_program_.reset(
......@@ -525,8 +537,10 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
FLAGS_minloglevel = 2; // GLOG_ERROR
}
VLOG(3) << "create AnalysisConfig";
PADDLE_ENFORCE(config.is_valid(),
"Note: Each config can only be used for one predictor.");
PADDLE_ENFORCE_EQ(
config.is_valid(), true,
platform::errors::InvalidArgument(
"Note: Each config can only be used for one predictor."));
if (config.use_gpu()) {
static std::once_flag gflags_initialized;
......@@ -623,7 +637,9 @@ bool AnalysisPredictor::MkldnnQuantize() {
}
void AnalysisPredictor::PrepareFeedFetch() {
PADDLE_ENFORCE_NOT_NULL(sub_scope_);
PADDLE_ENFORCE_NOT_NULL(sub_scope_,
platform::errors::InvalidArgument(
"The sub_scope should not be nullptr."));
CreateFeedFetchVar(sub_scope_);
for (auto *op : inference_program_->Block(0).AllOps()) {
if (op->Type() == "feed") {
......@@ -646,7 +662,8 @@ void AnalysisPredictor::PrepareFeedFetch() {
}
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
PADDLE_ENFORCE_NOT_NULL(scope);
PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
"The scope should not be nullptr."));
auto *var = scope->Var("feed");
var->GetMutable<framework::FeedList>();
var = scope->Var("fetch");
......@@ -667,7 +684,8 @@ AnalysisPredictor::GetInputTensorShape() {
std::vector<std::string> names = GetInputNames();
for (std::string name : names) {
auto *var = inference_program_->Block(0).FindVar(name);
PADDLE_ENFORCE_NOT_NULL(var, "input %s does not exist.", name);
PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
"Input %s does not exist.", name));
input_shapes[name] = var->GetShape();
}
return input_shapes;
......@@ -683,7 +701,11 @@ std::vector<std::string> AnalysisPredictor::GetOutputNames() {
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
const std::string &name) {
PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
PADDLE_ENFORCE_NOT_NULL(
executor_->scope()->FindVar(name),
platform::errors::PreconditionNotMet(
"The variable named %s is not found in the scope of the exector.",
name));
std::unique_ptr<ZeroCopyTensor> res(
new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
res->input_or_output_ = true;
......@@ -700,7 +722,11 @@ std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
const std::string &name) {
PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
PADDLE_ENFORCE_NOT_NULL(
executor_->scope()->FindVar(name),
platform::errors::PreconditionNotMet(
"he variable named %s is not found in the scope of the exector.",
name));
std::unique_ptr<ZeroCopyTensor> res(
new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
res->input_or_output_ = false;
......@@ -761,8 +787,11 @@ bool AnalysisPredictor::LoadProgramDesc() {
std::string pb_content;
// Read binary
std::ifstream fin(filename, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
filename);
PADDLE_ENFORCE_EQ(
static_cast<bool>(fin.is_open()), true,
platform::errors::NotFound(
"Cannot open file %s, please confirm whether the file is normal.",
filename));
fin.seekg(0, std::ios::end);
pb_content.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
......@@ -779,7 +808,8 @@ bool AnalysisPredictor::LoadProgramDesc() {
bool AnalysisPredictor::LoadParameters() {
PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
"The inference program should be loaded first.");
platform::errors::PreconditionNotMet(
"The inference program should be loaded first."));
const auto &global_block = inference_program_->MutableBlock(0);
......@@ -855,8 +885,9 @@ void AnalysisPredictor::ClearIntermediateTensor() {
#if PADDLE_WITH_TENSORRT
bool AnalysisPredictor::SaveTrtCalibToDisk() {
PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
"This func can be invoked only in trt mode");
PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
platform::errors::PreconditionNotMet(
"This func can be invoked only in trt mode"));
auto &block = inference_program_->Block(0);
for (auto &op_desc : block.AllOps()) {
if (op_desc->Type() == "tensorrt_engine") {
......
......@@ -62,9 +62,9 @@ PaddleBuf &PaddleBuf::operator=(const PaddleBuf &other) {
if (other.length() && other.data())
memcpy(data_, other.data(), other.length());
else if (other.length())
PADDLE_THROW(
PADDLE_THROW(platform::errors::InvalidArgument(
"Invalid argument, null pointer data with length %u is passed",
other.length());
other.length()));
length_ = other.length();
memory_owned_ = true;
......@@ -92,7 +92,8 @@ void PaddleBuf::Resize(size_t length) {
length_ = length;
memory_owned_ = true;
} else {
PADDLE_THROW("The memory is allocated externally, can not Resized");
PADDLE_THROW(platform::errors::PreconditionNotMet(
"The memory is allocated externally, can not Resized"));
}
}
......@@ -105,7 +106,11 @@ void PaddleBuf::Reset(void *data, size_t length) {
void PaddleBuf::Free() {
if (memory_owned_ && data_) {
PADDLE_ENFORCE_GT(length_, 0UL);
PADDLE_ENFORCE_GT(
length_, 0UL,
platform::errors::PreconditionNotMet(
"The memory used in PaddleBuf %d should be greater than 0",
length_));
delete[] static_cast<char *>(data_);
data_ = nullptr;
length_ = 0;
......
......@@ -87,7 +87,9 @@ bool NativePaddlePredictor::Init(
if (parent_scope) {
scope_ = parent_scope;
sub_scope_ = &(parent_scope->NewScope());
PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
PADDLE_ENFORCE_NOT_NULL(sub_scope_,
platform::errors::PreconditionNotMet(
"The sub_scope should not be nullptr."));
} else {
paddle::framework::InitDevices(false);
scope_.reset(new paddle::framework::Scope());
......@@ -182,7 +184,10 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
// Hot fix the bug that result diff in multi-thread.
// TODO(Superjomn) re-implement a real clone here.
PADDLE_ENFORCE_NOT_NULL(dynamic_cast<NativePaddlePredictor *>(cls.get()));
PADDLE_ENFORCE_NOT_NULL(
dynamic_cast<NativePaddlePredictor *>(cls.get()),
platform::errors::PreconditionNotMet(
"Dynamic_cast from PaddlePredictor to NativePaddlePredictor failed"));
if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
LOG(ERROR) << "fail to call Init";
return nullptr;
......@@ -224,8 +229,13 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
return false;
}
PADDLE_ENFORCE_NOT_NULL(input_ptr);
PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());
PADDLE_ENFORCE_NOT_NULL(input_ptr,
platform::errors::InvalidArgument(
"The input_ptr should not be nullptr."));
PADDLE_ENFORCE_NOT_NULL(
inputs[i].data.data(),
platform::errors::InvalidArgument(
"The data of input tensor should not be null."));
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
......@@ -241,7 +251,8 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
platform::CPUPlace(), inputs[i].data.data(),
inputs[i].data.length(), dev_ctx->stream());
#else
PADDLE_THROW("Not compile with CUDA, should not reach here.");
PADDLE_THROW(platform::errors::Unavailable(
"Not compile with CUDA, should not reach here."));
#endif
}
......@@ -287,7 +298,11 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
outputs->resize(fetchs_.size());
for (size_t i = 0; i < fetchs_.size(); ++i) {
int idx = BOOST_GET_CONST(int, fetchs_[i]->GetAttr("col"));
PADDLE_ENFORCE((size_t)idx == i);
PADDLE_ENFORCE_EQ(
static_cast<size_t>(idx), i,
platform::errors::InvalidArgument(
"Fetch op's col attr(%d) should be equal to the index(%d)", idx,
i));
framework::FetchType &fetch_var =
framework::GetFetchVariable(*scope, "fetch", idx);
auto fetch = BOOST_GET_CONST(framework::LoDTensor, fetch_var);
......@@ -318,10 +333,15 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
VLOG(3) << "create NativePaddlePredictor";
if (config.use_gpu) {
// 1. GPU memory
PADDLE_ENFORCE_GE(
config.fraction_of_gpu_memory, 0.f,
"fraction_of_gpu_memory in the config should be set to range (0., 1.]");
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
PADDLE_ENFORCE_GE(config.fraction_of_gpu_memory, 0.f,
platform::errors::InvalidArgument(
"fraction_of_gpu_memory in the config should be set "
"to range (0., 1.]"));
PADDLE_ENFORCE_GE(config.device, 0,
platform::errors::PreconditionNotMet(
"Invalid device id %d, the device id should be "
"greater than or equal to 0.",
config.device));
std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) {
......@@ -336,7 +356,9 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
PADDLE_ENFORCE_NOT_NULL(
dynamic_cast<NativePaddlePredictor *>(predictor.get()));
dynamic_cast<NativePaddlePredictor *>(predictor.get()),
platform::errors::PreconditionNotMet(
"Dynamic_cast from PaddlePredictor to NativePaddlePredictor failed"));
if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
return nullptr;
}
......
......@@ -112,16 +112,19 @@ static T convert(const std::string &item,
std::string message =
"invalid_argument exception when try to convert : " + item;
LOG(ERROR) << message;
PADDLE_THROW(message);
PADDLE_THROW(platform::errors::InvalidArgument(
"invalid_argument exception when try to convert %s.", item));
} catch (std::out_of_range &e) {
std::string message =
"out_of_range exception when try to convert : " + item;
LOG(ERROR) << message;
PADDLE_THROW(message);
PADDLE_THROW(platform::errors::InvalidArgument(
"out_of_range exception when try to convert %s.", item));
} catch (...) {
std::string message = "unexpected exception when try to convert " + item;
LOG(ERROR) << message;
PADDLE_THROW(message);
PADDLE_THROW(platform::errors::InvalidArgument(
"unexpected exception when try to convert %s.", item));
}
return res;
}
......@@ -353,7 +356,8 @@ static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
double batch_latency, int epoch = 1,
const framework::proto::VarType::Type data_type =
framework::proto::VarType::FP32) {
PADDLE_ENFORCE_GT(batch_size, 0, "Non-positive batch size.");
PADDLE_ENFORCE_GT(batch_size, 0, platform::errors::InvalidArgument(
"Non-positive batch size."));
double sample_latency = batch_latency / batch_size;
LOG(INFO) << "====== threads: " << num_threads << ", thread id: " << tid
<< " ======";
......
......@@ -62,9 +62,12 @@ bool AnalysisPredictor::MkldnnQuantizer::CalculateScales() {
if (scales_.find(var_name) != scales_.end()) continue;
auto* var = predictor_.sub_scope_->FindVar(var_name);
PADDLE_ENFORCE(var, "%s is not in the scope", var_name);
PADDLE_ENFORCE(var->IsType<LoDTensor>(),
"Only support lod tensor now.");
PADDLE_ENFORCE_NOT_NULL(var,
platform::errors::PreconditionNotMet(
"%s is not in the scope", var_name));
PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
platform::errors::PreconditionNotMet(
"Only support lod tensor now."));
LoDTensor* var_tensor = var->GetMutable<LoDTensor>();
// force unsigned type if already know it
......@@ -82,9 +85,11 @@ bool AnalysisPredictor::MkldnnQuantizer::CalculateScales() {
} else if (op->Type() == "transpose2" ||
op->Type() == "reshape2" || op->Type() == "pool2d") {
auto input_var_name = op->Input("X")[0];
PADDLE_ENFORCE(scales_.find(input_var_name) != scales_.end(),
PADDLE_ENFORCE_NE(
scales_.find(input_var_name), scales_.end(),
platform::errors::PreconditionNotMet(
"Input scales must be calculated before the "
"output scales to infer if output is unsigned.");
"output scales to infer if output is unsigned."));
if (scales_.find(input_var_name) != scales_.end()) {
scales_[var_name] = scales_[input_var_name];
}
......@@ -94,10 +99,11 @@ bool AnalysisPredictor::MkldnnQuantizer::CalculateScales() {
is_unsigned = true;
double min_scale = std::numeric_limits<double>::max();
for (auto input_var_name : op->Input("X")) {
PADDLE_ENFORCE(
scales_.find(input_var_name) != scales_.end(),
PADDLE_ENFORCE_NE(
scales_.find(input_var_name), scales_.end(),
platform::errors::PreconditionNotMet(
"Input scales must be calculated before the "
"output scales to infer if output is unsigned.");
"output scales to infer if output is unsigned."));
is_unsigned = is_unsigned && scales_[input_var_name].first;
min_scale = std::min(
min_scale,
......@@ -132,11 +138,12 @@ void AnalysisPredictor::MkldnnQuantizer::CalculateSingleScale(
auto rule = qconfig_->scale_algo(op_type_name, conn_name);
if (rule == ScaleAlgo::NONE) return;
PADDLE_ENFORCE(
var_tensor.numel() > 0,
PADDLE_ENFORCE_GT(
var_tensor.numel(), 0,
platform::errors::InvalidArgument(
"MkldnnQuantizer: LoDTensor of variable %s for quantization of op "
"%s of connection %s should not be empty.",
var_name, op_type_name, conn_name);
var_name, op_type_name, conn_name));
switch (rule) {
case ScaleAlgo::MAX:
......@@ -205,10 +212,11 @@ AnalysisPredictor::MkldnnQuantizer::GetKLScalingFactor(
float min_val = eigen_tensor.minCoeff();
bool is_positive = min_val >= 0.0f;
if (is_unsigned)
PADDLE_ENFORCE(
is_positive,
PADDLE_ENFORCE_EQ(
is_positive, true,
platform::errors::InvalidArgument(
"Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
min_val);
min_val));
int num_quantized_bins = 255;
......@@ -316,10 +324,11 @@ AnalysisPredictor::MkldnnQuantizer::GetMaxScalingFactor(
float max_abs = eigen_tensor.abs().maxCoeff();
float min_val = eigen_tensor.minCoeff();
if (is_unsigned)
PADDLE_ENFORCE(
min_val >= 0.0f,
PADDLE_ENFORCE_GE(
min_val, 0.0f,
platform::errors::InvalidArgument(
"Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
min_val);
min_val));
LoDTensor scale_tensor = CreateScaleTensor();
scale_tensor.data<double>()[0] = 1.0 / max_abs;
......@@ -330,16 +339,19 @@ AnalysisPredictor::MkldnnQuantizer::GetMaxScalingFactor(
std::pair<bool, LoDTensor>
AnalysisPredictor::MkldnnQuantizer::GetMaxChScalingFactor(
const LoDTensor& var_tensor, bool is_unsigned, bool is_transposed) const {
PADDLE_ENFORCE(var_tensor.dims().size() > 0, "Tensor dimension is empty.");
PADDLE_ENFORCE_GT(
var_tensor.dims().size(), 0,
platform::errors::InvalidArgument("Tensor dimension is empty."));
ConstEigenVectorArrayMap eigen_tensor{var_tensor.data<float>(),
var_tensor.numel(), 1};
float min_val = eigen_tensor.minCoeff();
if (is_unsigned)
PADDLE_ENFORCE(
min_val >= 0.0f,
PADDLE_ENFORCE_GE(
min_val, 0.0f,
platform::errors::InvalidArgument(
"Tensor is claimed to be unsigned, but its min value (%f) is < 0.0",
min_val);
min_val));
auto dims = var_tensor.dims();
constexpr int num_col_dims = 1;
......@@ -367,17 +379,19 @@ AnalysisPredictor::MkldnnQuantizer::Histogram(
const framework::LoDTensor& var_tensor, float min_val, float max_val,
size_t num_bins) const {
PADDLE_ENFORCE_GT(num_bins, 0,
platform::errors::InvalidArgument(
"MkldnnQuantizer: To calculate Histogram, num_bins (" +
std::to_string(num_bins) + ") must be positive.");
PADDLE_ENFORCE_GT(
var_tensor.numel(), 0,
"MkldnnQuantizer: To calculate Histogram, the tensor must not be empty.");
PADDLE_ENFORCE(max_val >= min_val,
std::to_string(num_bins) + ") must be positive."));
PADDLE_ENFORCE_GT(var_tensor.numel(), 0,
platform::errors::InvalidArgument(
"MkldnnQuantizer: To calculate Histogram, the tensor "
"must not be empty."));
PADDLE_ENFORCE_GE(max_val, min_val,
platform::errors::InvalidArgument(
"MkldnnQuantizer: To calculate Histogram, max_val (" +
std::to_string(max_val) +
") must be greater or equal"
std::to_string(max_val) + ") must be greater or equal"
"to min_val (" +
std::to_string(min_val) + ").");
std::to_string(min_val) + ")."));
ConstEigenVectorArrayMap eigen_tensor{var_tensor.data<float>(),
var_tensor.numel(), 1};
auto bin_width = std::abs(max_val - min_val) / num_bins;
......@@ -407,7 +421,8 @@ void AnalysisPredictor::MkldnnQuantizer::PrepareArgument() const {
auto graph = std::unique_ptr<Graph>(new Graph(arg.main_program()));
arg.SetMainGraph(graph.release());
auto* scope_ptr = arg.scope_ptr();
PADDLE_ENFORCE(scope_ptr);
PADDLE_ENFORCE_NOT_NULL(scope_ptr, platform::errors::PreconditionNotMet(
"The scope should not be nullptr."));
arg.main_graph().SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr);
auto* builder = predictor_.config_.pass_builder();
......@@ -441,7 +456,9 @@ bool AnalysisPredictor::MkldnnQuantizer::RunQuantizePasses() const {
PrepareArgument();
auto& arg = predictor_.argument_;
Analyzer().Run(&arg);
PADDLE_ENFORCE(arg.scope_valid());
PADDLE_ENFORCE_EQ(
arg.scope_valid(), true,
platform::errors::PreconditionNotMet("The scope should be valid."));
VLOG(5) << "to prepare executor";
ARGUMENT_CHECK_FIELD((&arg), ir_analyzed_program);
predictor_.inference_program_.reset(
......@@ -456,7 +473,8 @@ bool AnalysisPredictor::MkldnnQuantizer::RunWarmup() const {
VLOG(3) << "Predictor: run a quantization warmup iteration";
auto warmup_data = qconfig_->warmup_data();
PADDLE_ENFORCE_NOT_NULL(warmup_data,
"Warmup data cannot be NULL in the config.");
platform::errors::PreconditionNotMet(
"Warmup data cannot be NULL in the config."));
PrettyLogH1("--- Running warmup iteration for quantization");
// Run the inference program
......@@ -469,7 +487,10 @@ bool AnalysisPredictor::MkldnnQuantizer::RunWarmup() const {
float AnalysisPredictor::MkldnnQuantizer::SafeEntropy(
std::vector<int> reference_distr_P, int P_sum,
std::vector<int> candidate_distr_Q, int Q_sum) const {
PADDLE_ENFORCE_EQ(reference_distr_P.size(), candidate_distr_Q.size());
PADDLE_ENFORCE_EQ(reference_distr_P.size(), candidate_distr_Q.size(),
platform::errors::InvalidArgument(
"The P size %d should be equal to Q size %d",
reference_distr_P.size(), candidate_distr_Q.size()));
float tmp_sum1 = 0;
float tmp_sum2 = 0;
for (size_t idx = 0; idx < reference_distr_P.size(); idx++) {
......@@ -479,10 +500,11 @@ float AnalysisPredictor::MkldnnQuantizer::SafeEntropy(
tmp_sum1 += 0;
tmp_sum2 += 0;
} else {
PADDLE_ENFORCE(q_idx != 0, "MkldnnQuantizer: Fatal error!, idx = " +
std::to_string(idx) +
" qindex = 0! p_idx = " +
std::to_string(p_idx));
PADDLE_ENFORCE_NE(
q_idx, 0,
platform::errors::PreconditionNotMet(
"MkldnnQuantizer: Fatal error!, idx = " + std::to_string(idx) +
" qindex = 0! p_idx = " + std::to_string(p_idx)));
}
tmp_sum1 += p_idx * (log(Q_sum * p_idx));
tmp_sum2 += p_idx * (log(P_sum * q_idx));
......
......@@ -163,7 +163,8 @@ void TestInference(const std::string& dirname,
// int device_id = place.GetDeviceId();
paddle::platform::SetDeviceId(0);
#else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
PADDLE_THROW(paddle::platform::errors::Unavailable(
"'CUDAPlace' is not supported in CPU only device."));
#endif
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册