Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
d92b2f2d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d92b2f2d
编写于
7月 30, 2022
作者:
Z
zhiboniu
提交者:
GitHub
7月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Phi prior box (#44431)
* phi_prior_box * add float[] support * phi_prior_box_optest * update
上级
46be6854
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
667 addition
and
101 deletion
+667
-101
paddle/fluid/operators/detection/prior_box_op.cc
paddle/fluid/operators/detection/prior_box_op.cc
+8
-79
paddle/fluid/operators/detection/prior_box_op.cu
paddle/fluid/operators/detection/prior_box_op.cu
+0
-5
paddle/phi/api/yaml/generator/api_base.py
paddle/phi/api/yaml/generator/api_base.py
+1
-1
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+8
-0
paddle/phi/infermeta/binary.cc
paddle/phi/infermeta/binary.cc
+104
-0
paddle/phi/infermeta/binary.h
paddle/phi/infermeta/binary.h
+15
-0
paddle/phi/kernels/cpu/prior_box_kernel.cc
paddle/phi/kernels/cpu/prior_box_kernel.cc
+173
-0
paddle/phi/kernels/gpu/prior_box_kernel.cu
paddle/phi/kernels/gpu/prior_box_kernel.cu
+201
-0
paddle/phi/kernels/prior_box_kernel.h
paddle/phi/kernels/prior_box_kernel.h
+62
-0
paddle/phi/ops/compat/prior_box_sig.cc
paddle/phi/ops/compat/prior_box_sig.cc
+37
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+24
-13
python/paddle/fluid/tests/unittests/test_prior_box_op.py
python/paddle/fluid/tests/unittests/test_prior_box_op.py
+34
-3
未找到文件。
paddle/fluid/operators/detection/prior_box_op.cc
浏览文件 @
d92b2f2d
...
...
@@ -13,8 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/prior_box_op.h"
#include <string>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/binary.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
...
...
@@ -28,79 +29,6 @@ class PriorBoxOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Input"
),
"Input"
,
"Input"
,
"PriorBoxOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Image"
),
"Input"
,
"Image"
,
"PriorBoxOp"
);
auto
image_dims
=
ctx
->
GetInputDim
(
"Image"
);
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
image_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The Input(Image) of Op(PriorBoxOp) should be a 4-D Tensor "
"and data format is NCHW. But received Image's dimensions = %d, "
"shape = [%s]."
,
image_dims
.
size
(),
image_dims
));
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The Input(Input) of Op(PriorBoxOp) should be a 4-D Tensor "
"and data format is NCHW. But received Input's dimensions = %d, "
"shape = [%s]."
,
input_dims
.
size
(),
input_dims
));
auto
min_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"min_sizes"
);
auto
max_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"max_sizes"
);
auto
variances
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"variances"
);
auto
aspect_ratios
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
bool
flip
=
ctx
->
Attrs
().
Get
<
bool
>
(
"flip"
);
std
::
vector
<
float
>
aspect_ratios_vec
;
ExpandAspectRatios
(
aspect_ratios
,
flip
,
&
aspect_ratios_vec
);
size_t
num_priors
=
aspect_ratios_vec
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The length of min_size and "
"max_size must be equal. But received: min_size's length is %d, "
"max_size's length is %d."
,
min_sizes
.
size
(),
max_sizes
.
size
()));
num_priors
+=
max_sizes
.
size
();
for
(
size_t
i
=
0
;
i
<
max_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
platform
::
errors
::
InvalidArgument
(
"max_size[%d] must be greater "
"than min_size[%d]. But received: max_size[%d] is %f, "
"min_size[%d] is %f."
,
i
,
i
,
i
,
max_sizes
[
i
],
i
,
min_sizes
[
i
]));
}
}
std
::
vector
<
int64_t
>
dim_vec
(
4
);
dim_vec
[
0
]
=
input_dims
[
2
];
dim_vec
[
1
]
=
input_dims
[
3
];
dim_vec
[
2
]
=
num_priors
;
dim_vec
[
3
]
=
4
;
ctx
->
SetOutputDim
(
"Boxes"
,
phi
::
make_ddim
(
dim_vec
));
ctx
->
SetOutputDim
(
"Variances"
,
phi
::
make_ddim
(
dim_vec
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -274,17 +202,18 @@ https://arxiv.org/abs/1512.02325.
}
// namespace operators
}
// namespace paddle
DECLARE_INFER_SHAPE_FUNCTOR
(
prior_box
,
PriorBoxInferShapeFunctor
,
PD_INFER_META
(
phi
::
PriorBoxInferMeta
));
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
prior_box
,
ops
::
PriorBoxOp
,
ops
::
PriorBoxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
prior_box
,
ops
::
PriorBoxOpKernel
<
float
,
float
>
,
ops
::
PriorBoxOpKernel
<
double
,
double
>
);
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
PriorBoxInferShapeFunctor
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
prior_box
,
MKLDNN
,
...
...
paddle/fluid/operators/detection/prior_box_op.cu
浏览文件 @
d92b2f2d
...
...
@@ -194,8 +194,3 @@ class PriorBoxOpCUDAKernel : public framework::OpKernel<T> {
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
prior_box
,
ops
::
PriorBoxOpCUDAKernel
<
float
>
,
ops
::
PriorBoxOpCUDAKernel
<
double
>
);
paddle/phi/api/yaml/generator/api_base.py
浏览文件 @
d92b2f2d
...
...
@@ -141,7 +141,7 @@ class BaseAPI(object):
'DataLayout'
:
'DataLayout'
,
'DataType'
:
'DataType'
,
'int64_t[]'
:
'const std::vector<int64_t>&'
,
'int[]'
:
'const std::vector<int>&'
'int[]'
:
'const std::vector<int>&'
,
}
optional_types_trans
=
{
'Tensor'
:
'const paddle::optional<Tensor>&'
,
...
...
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
d92b2f2d
...
...
@@ -1791,6 +1791,14 @@
func
:
prelu
backward
:
prelu_grad
-
api
:
prior_box
args
:
(Tensor input, Tensor image, float[] min_sizes, float[] aspect_ratios, float[] variances, float[] max_sizes = {}, bool flip=true, bool clip=true, float step_w=0.0, float step_h=0.0, float offset=0.5, bool min_max_aspect_ratios_order=false)
output
:
Tensor(out), Tensor(var)
infer_meta
:
func
:
PriorBoxInferMeta
kernel
:
func
:
prior_box
-
api
:
psroi_pool
args
:
(Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
output
:
Tensor
...
...
paddle/phi/infermeta/binary.cc
浏览文件 @
d92b2f2d
...
...
@@ -1809,6 +1809,110 @@ void PReluInferMeta(const MetaTensor& x,
out
->
share_lod
(
x
);
}
inline
void
ExpandAspectRatios
(
const
std
::
vector
<
float
>&
input_aspect_ratior
,
bool
flip
,
std
::
vector
<
float
>*
output_aspect_ratior
)
{
constexpr
float
epsilon
=
1e-6
;
output_aspect_ratior
->
clear
();
output_aspect_ratior
->
push_back
(
1.0
f
);
for
(
size_t
i
=
0
;
i
<
input_aspect_ratior
.
size
();
++
i
)
{
float
ar
=
input_aspect_ratior
[
i
];
bool
already_exist
=
false
;
for
(
size_t
j
=
0
;
j
<
output_aspect_ratior
->
size
();
++
j
)
{
if
(
fabs
(
ar
-
output_aspect_ratior
->
at
(
j
))
<
epsilon
)
{
already_exist
=
true
;
break
;
}
}
if
(
!
already_exist
)
{
output_aspect_ratior
->
push_back
(
ar
);
if
(
flip
)
{
output_aspect_ratior
->
push_back
(
1.0
f
/
ar
);
}
}
}
}
void
PriorBoxInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
image
,
const
std
::
vector
<
float
>&
min_sizes
,
const
std
::
vector
<
float
>&
aspect_ratios
,
const
std
::
vector
<
float
>&
variances
,
const
std
::
vector
<
float
>&
max_sizes
,
bool
flip
,
bool
clip
,
float
step_w
,
float
step_h
,
float
offset
,
bool
min_max_aspect_ratios_order
,
MetaTensor
*
out
,
MetaTensor
*
var
)
{
auto
image_dims
=
image
.
dims
();
auto
input_dims
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
image_dims
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"The Input(Image) of Op(PriorBoxOp) should be a 4-D Tensor "
"and data format is NCHW. But received Image's dimensions = %d, "
"shape = [%s]."
,
image_dims
.
size
(),
image_dims
));
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"The Input(Input) of Op(PriorBoxOp) should be a 4-D Tensor "
"and data format is NCHW. But received Input's dimensions = %d, "
"shape = [%s]."
,
input_dims
.
size
(),
input_dims
));
std
::
vector
<
float
>
aspect_ratios_vec
;
ExpandAspectRatios
(
aspect_ratios
,
flip
,
&
aspect_ratios_vec
);
size_t
num_priors
=
aspect_ratios_vec
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
phi
::
errors
::
InvalidArgument
(
"The length of min_size and "
"max_size must be equal. But received: min_size's length is %d, "
"max_size's length is %d."
,
min_sizes
.
size
(),
max_sizes
.
size
()));
num_priors
+=
max_sizes
.
size
();
for
(
size_t
i
=
0
;
i
<
max_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
phi
::
errors
::
InvalidArgument
(
"max_size[%d] must be greater "
"than min_size[%d]. But received: max_size[%d] is %f, "
"min_size[%d] is %f."
,
i
,
i
,
i
,
max_sizes
[
i
],
i
,
min_sizes
[
i
]));
}
}
std
::
vector
<
int64_t
>
dim_vec
(
4
);
dim_vec
[
0
]
=
input_dims
[
2
];
dim_vec
[
1
]
=
input_dims
[
3
];
dim_vec
[
2
]
=
num_priors
;
dim_vec
[
3
]
=
4
;
out
->
set_dtype
(
input
.
dtype
());
var
->
set_dtype
(
input
.
dtype
());
out
->
set_dims
(
phi
::
make_ddim
(
dim_vec
));
var
->
set_dims
(
phi
::
make_ddim
(
dim_vec
));
}
void
SearchsortedInferMeta
(
const
MetaTensor
&
sorted_sequence
,
const
MetaTensor
&
value
,
bool
out_int32
,
...
...
paddle/phi/infermeta/binary.h
浏览文件 @
d92b2f2d
...
...
@@ -256,6 +256,21 @@ void PReluInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
PriorBoxInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
image
,
const
std
::
vector
<
float
>&
min_sizes
,
const
std
::
vector
<
float
>&
aspect_ratios
,
const
std
::
vector
<
float
>&
variances
,
const
std
::
vector
<
float
>&
max_sizes
,
bool
flip
,
bool
clip
,
float
step_w
,
float
step_h
,
float
offset
,
bool
min_max_aspect_ratios_order
,
MetaTensor
*
out
,
MetaTensor
*
var
);
void
SearchsortedInferMeta
(
const
MetaTensor
&
sorted_sequence
,
const
MetaTensor
&
value
,
bool
out_int32
,
...
...
paddle/phi/kernels/cpu/prior_box_kernel.cc
0 → 100644
浏览文件 @
d92b2f2d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/prior_box_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PriorBoxKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
image
,
const
std
::
vector
<
float
>&
min_sizes
,
const
std
::
vector
<
float
>&
aspect_ratios
,
const
std
::
vector
<
float
>&
variances
,
const
std
::
vector
<
float
>&
max_sizes
,
bool
flip
,
bool
clip
,
float
step_w
,
float
step_h
,
float
offset
,
bool
min_max_aspect_ratios_order
,
DenseTensor
*
out
,
DenseTensor
*
var
)
{
std
::
vector
<
float
>
new_aspect_ratios
;
ExpandAspectRatios
(
aspect_ratios
,
flip
,
&
new_aspect_ratios
);
T
new_step_w
=
static_cast
<
T
>
(
step_w
);
T
new_step_h
=
static_cast
<
T
>
(
step_h
);
T
new_offset
=
static_cast
<
T
>
(
offset
);
auto
img_width
=
image
.
dims
()[
3
];
auto
img_height
=
image
.
dims
()[
2
];
auto
feature_width
=
input
.
dims
()[
3
];
auto
feature_height
=
input
.
dims
()[
2
];
T
step_width
,
step_height
;
if
(
new_step_w
==
0
||
new_step_h
==
0
)
{
step_width
=
static_cast
<
T
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
T
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
new_step_w
;
step_height
=
new_step_h
;
}
int
num_priors
=
new_aspect_ratios
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
num_priors
+=
max_sizes
.
size
();
}
ctx
.
template
Alloc
<
T
>(
out
);
ctx
.
template
Alloc
<
T
>(
var
);
T
*
b_t
=
out
->
data
<
T
>
();
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
T
center_x
=
(
w
+
new_offset
)
*
step_width
;
T
center_y
=
(
h
+
new_offset
)
*
step_height
;
T
box_width
,
box_height
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
auto
min_size
=
min_sizes
[
s
];
if
(
min_max_aspect_ratios_order
)
{
box_width
=
box_height
=
min_size
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
if
(
max_sizes
.
size
()
>
0
)
{
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
new_aspect_ratios
.
size
();
++
r
)
{
float
ar
=
new_aspect_ratios
[
r
];
if
(
fabs
(
ar
-
1.
)
<
1e-6
)
{
continue
;
}
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
}
else
{
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
new_aspect_ratios
.
size
();
++
r
)
{
float
ar
=
new_aspect_ratios
[
r
];
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
if
(
max_sizes
.
size
()
>
0
)
{
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
}
}
}
}
if
(
clip
)
{
T
*
dt
=
out
->
data
<
T
>
();
std
::
transform
(
dt
,
dt
+
out
->
numel
(),
dt
,
[](
T
v
)
->
T
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
v
,
0.
),
1.
);
});
}
DenseTensor
var_t
;
var_t
.
Resize
(
phi
::
make_ddim
({
1
,
static_cast
<
int
>
(
variances
.
size
())}));
ctx
.
template
Alloc
<
T
>(
&
var_t
);
auto
var_et
=
EigenTensor
<
T
,
2
>::
From
(
var_t
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for
(
size_t
i
=
0
;
i
<
variances
.
size
();
++
i
)
{
var_et
(
0
,
i
)
=
variances
[
i
];
}
int
box_num
=
feature_height
*
feature_width
*
num_priors
;
auto
var_dim
=
var
->
dims
();
var
->
Resize
({
box_num
,
static_cast
<
int
>
(
variances
.
size
())});
auto
e_vars
=
EigenMatrix
<
T
,
Eigen
::
RowMajor
>::
From
(
*
var
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
variances
.
size
();
++
j
)
{
e_vars
(
i
,
j
)
=
variances
[
j
];
}
}
var
->
Resize
(
var_dim
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
prior_box
,
CPU
,
ALL_LAYOUT
,
phi
::
PriorBoxKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/prior_box_kernel.cu
0 → 100644
浏览文件 @
d92b2f2d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/prior_box_kernel.h"
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
>
__device__
inline
T
clip
(
T
in
)
{
return
min
(
max
(
in
,
0.
),
1.
);
}
template
<
typename
T
>
__global__
void
GenPriorBox
(
T
*
out
,
const
T
*
aspect_ratios
,
const
int
height
,
const
int
width
,
const
int
im_height
,
const
int
im_width
,
const
int
as_num
,
const
T
offset
,
const
T
step_width
,
const
T
step_height
,
const
T
*
min_sizes
,
const
T
*
max_sizes
,
const
int
min_num
,
bool
is_clip
,
bool
min_max_aspect_ratios_order
)
{
int
num_priors
=
max_sizes
?
as_num
*
min_num
+
min_num
:
as_num
*
min_num
;
int
box_num
=
height
*
width
*
num_priors
;
CUDA_KERNEL_LOOP
(
i
,
box_num
)
{
int
h
=
i
/
(
num_priors
*
width
);
int
w
=
(
i
/
num_priors
)
%
width
;
int
p
=
i
%
num_priors
;
int
m
=
max_sizes
?
p
/
(
as_num
+
1
)
:
p
/
as_num
;
T
cx
=
(
w
+
offset
)
*
step_width
;
T
cy
=
(
h
+
offset
)
*
step_height
;
T
bw
,
bh
;
T
min_size
=
min_sizes
[
m
];
if
(
max_sizes
)
{
int
s
=
p
%
(
as_num
+
1
);
if
(
!
min_max_aspect_ratios_order
)
{
if
(
s
<
as_num
)
{
T
ar
=
aspect_ratios
[
s
];
bw
=
min_size
*
sqrt
(
ar
)
/
2.
;
bh
=
min_size
/
sqrt
(
ar
)
/
2.
;
}
else
{
T
max_size
=
max_sizes
[
m
];
bw
=
sqrt
(
min_size
*
max_size
)
/
2.
;
bh
=
bw
;
}
}
else
{
if
(
s
==
0
)
{
bw
=
bh
=
min_size
/
2.
;
}
else
if
(
s
==
1
)
{
T
max_size
=
max_sizes
[
m
];
bw
=
sqrt
(
min_size
*
max_size
)
/
2.
;
bh
=
bw
;
}
else
{
T
ar
=
aspect_ratios
[
s
-
1
];
bw
=
min_size
*
sqrt
(
ar
)
/
2.
;
bh
=
min_size
/
sqrt
(
ar
)
/
2.
;
}
}
}
else
{
int
s
=
p
%
as_num
;
T
ar
=
aspect_ratios
[
s
];
bw
=
min_size
*
sqrt
(
ar
)
/
2.
;
bh
=
min_size
/
sqrt
(
ar
)
/
2.
;
}
T
xmin
=
(
cx
-
bw
)
/
im_width
;
T
ymin
=
(
cy
-
bh
)
/
im_height
;
T
xmax
=
(
cx
+
bw
)
/
im_width
;
T
ymax
=
(
cy
+
bh
)
/
im_height
;
out
[
i
*
4
]
=
is_clip
?
clip
<
T
>
(
xmin
)
:
xmin
;
out
[
i
*
4
+
1
]
=
is_clip
?
clip
<
T
>
(
ymin
)
:
ymin
;
out
[
i
*
4
+
2
]
=
is_clip
?
clip
<
T
>
(
xmax
)
:
xmax
;
out
[
i
*
4
+
3
]
=
is_clip
?
clip
<
T
>
(
ymax
)
:
ymax
;
}
}
template
<
typename
T
>
__global__
void
SetVariance
(
T
*
out
,
const
T
*
var
,
const
int
vnum
,
const
int
num
)
{
CUDA_KERNEL_LOOP
(
i
,
num
)
{
out
[
i
]
=
var
[
i
%
vnum
];
}
}
template
<
typename
T
,
typename
Context
>
void
PriorBoxKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
image
,
const
std
::
vector
<
float
>&
min_sizes
,
const
std
::
vector
<
float
>&
aspect_ratios
,
const
std
::
vector
<
float
>&
variances
,
const
std
::
vector
<
float
>&
max_sizes
,
bool
flip
,
bool
clip
,
float
step_w
,
float
step_h
,
float
offset
,
bool
min_max_aspect_ratios_order
,
DenseTensor
*
out
,
DenseTensor
*
var
)
{
std
::
vector
<
float
>
new_aspect_ratios
;
ExpandAspectRatios
(
aspect_ratios
,
flip
,
&
new_aspect_ratios
);
T
new_step_w
=
static_cast
<
T
>
(
step_w
);
T
new_step_h
=
static_cast
<
T
>
(
step_h
);
T
new_offset
=
static_cast
<
T
>
(
offset
);
auto
im_width
=
image
.
dims
()[
3
];
auto
im_height
=
image
.
dims
()[
2
];
auto
width
=
input
.
dims
()[
3
];
auto
height
=
input
.
dims
()[
2
];
T
step_width
,
step_height
;
if
(
new_step_w
==
0
||
new_step_h
==
0
)
{
step_width
=
static_cast
<
T
>
(
im_width
)
/
width
;
step_height
=
static_cast
<
T
>
(
im_height
)
/
height
;
}
else
{
step_width
=
new_step_w
;
step_height
=
new_step_h
;
}
int
num_priors
=
new_aspect_ratios
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
num_priors
+=
max_sizes
.
size
();
}
int
min_num
=
static_cast
<
int
>
(
min_sizes
.
size
());
int
box_num
=
width
*
height
*
num_priors
;
int
block
=
512
;
int
grid
=
(
box_num
+
block
-
1
)
/
block
;
auto
stream
=
ctx
.
stream
();
ctx
.
template
Alloc
<
T
>(
out
);
ctx
.
template
Alloc
<
T
>(
var
);
DenseTensor
r
;
paddle
::
framework
::
TensorFromVector
(
new_aspect_ratios
,
ctx
,
&
r
);
DenseTensor
min
;
paddle
::
framework
::
TensorFromVector
(
min_sizes
,
ctx
,
&
min
);
T
*
max_data
=
nullptr
;
DenseTensor
max
;
if
(
max_sizes
.
size
()
>
0
)
{
paddle
::
framework
::
TensorFromVector
(
max_sizes
,
ctx
,
&
max
);
max_data
=
max
.
data
<
T
>
();
}
GenPriorBox
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
out
->
data
<
T
>
(),
r
.
data
<
T
>
(),
height
,
width
,
im_height
,
im_width
,
new_aspect_ratios
.
size
(),
new_offset
,
step_width
,
step_height
,
min
.
data
<
T
>
(),
max_data
,
min_num
,
clip
,
min_max_aspect_ratios_order
);
DenseTensor
v
;
paddle
::
framework
::
TensorFromVector
(
variances
,
ctx
,
&
v
);
grid
=
(
box_num
*
4
+
block
-
1
)
/
block
;
SetVariance
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
var
->
data
<
T
>
(),
v
.
data
<
T
>
(),
variances
.
size
(),
box_num
*
4
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
prior_box
,
GPU
,
ALL_LAYOUT
,
phi
::
PriorBoxKernel
,
float
,
double
)
{}
paddle/phi/kernels/prior_box_kernel.h
0 → 100644
浏览文件 @
d92b2f2d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PriorBoxKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
image
,
const
std
::
vector
<
float
>&
min_sizes
,
const
std
::
vector
<
float
>&
aspect_ratios
,
const
std
::
vector
<
float
>&
variances
,
const
std
::
vector
<
float
>&
max_sizes
,
bool
flip
,
bool
clip
,
float
step_w
,
float
step_h
,
float
offset
,
bool
min_max_aspect_ratios_order
,
DenseTensor
*
out
,
DenseTensor
*
var
);
inline
void
ExpandAspectRatios
(
const
std
::
vector
<
float
>&
input_aspect_ratior
,
bool
flip
,
std
::
vector
<
float
>*
output_aspect_ratior
)
{
constexpr
float
epsilon
=
1e-6
;
output_aspect_ratior
->
clear
();
output_aspect_ratior
->
push_back
(
1.0
f
);
for
(
size_t
i
=
0
;
i
<
input_aspect_ratior
.
size
();
++
i
)
{
float
ar
=
input_aspect_ratior
[
i
];
bool
already_exist
=
false
;
for
(
size_t
j
=
0
;
j
<
output_aspect_ratior
->
size
();
++
j
)
{
if
(
fabs
(
ar
-
output_aspect_ratior
->
at
(
j
))
<
epsilon
)
{
already_exist
=
true
;
break
;
}
}
if
(
!
already_exist
)
{
output_aspect_ratior
->
push_back
(
ar
);
if
(
flip
)
{
output_aspect_ratior
->
push_back
(
1.0
f
/
ar
);
}
}
}
}
}
// namespace phi
paddle/phi/ops/compat/prior_box_sig.cc
0 → 100644
浏览文件 @
d92b2f2d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
PriorBoxOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"prior_box"
,
{
"Input"
,
"Image"
},
{
"min_sizes"
,
"aspect_ratios"
,
"variances"
,
"max_sizes"
,
"flip"
,
"clip"
,
"step_w"
,
"step_h"
,
"offset"
,
"min_max_aspect_ratios_order"
},
{
"Boxes"
,
"Variances"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
prior_box
,
phi
::
PriorBoxOpArgumentMapping
);
python/paddle/fluid/layers/detection.py
浏览文件 @
d92b2f2d
...
...
@@ -22,7 +22,7 @@ import paddle
from
.layer_function_generator
import
generate_layer_fn
from
.layer_function_generator
import
autodoc
,
templatedoc
from
..layer_helper
import
LayerHelper
from
..framework
import
Variable
,
_non_static_mode
,
static_only
from
..framework
import
Variable
,
_non_static_mode
,
static_only
,
in_dygraph_mode
from
..
import
core
from
.loss
import
softmax_with_cross_entropy
from
.
import
tensor
...
...
@@ -1794,7 +1794,8 @@ def ssd_loss(location,
return
loss
def
prior_box
(
input
,
def
prior_box
(
input
,
image
,
min_sizes
,
max_sizes
=
None
,
...
...
@@ -1805,7 +1806,8 @@ def prior_box(input,
steps
=
[
0.0
,
0.0
],
offset
=
0.5
,
name
=
None
,
min_max_aspect_ratios_order
=
False
):
min_max_aspect_ratios_order
=
False
,
):
"""
This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
...
...
@@ -1905,6 +1907,15 @@ def prior_box(input,
# [6L, 9L, 1L, 4L]
"""
if
in_dygraph_mode
():
step_w
,
step_h
=
steps
if
max_sizes
==
None
:
max_sizes
=
[]
return
_C_ops
.
final_state_prior_box
(
input
,
image
,
min_sizes
,
aspect_ratios
,
variance
,
max_sizes
,
flip
,
clip
,
step_w
,
step_h
,
offset
,
min_max_aspect_ratios_order
)
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
check_variable_and_dtype
(
input
,
'input'
,
...
...
python/paddle/fluid/tests/unittests/test_prior_box_op.py
浏览文件 @
d92b2f2d
...
...
@@ -19,6 +19,35 @@ import numpy as np
import
sys
import
math
from
op_test
import
OpTest
import
paddle
def
python_prior_box
(
input
,
image
,
min_sizes
,
aspect_ratios
=
[
1.
],
variances
=
[
0.1
,
0.1
,
0.2
,
0.2
],
max_sizes
=
None
,
flip
=
False
,
clip
=
False
,
step_w
=
0
,
step_h
=
0
,
offset
=
0.5
,
min_max_aspect_ratios_order
=
False
,
name
=
None
):
return
paddle
.
fluid
.
layers
.
detection
.
prior_box
(
input
,
image
,
min_sizes
=
min_sizes
,
max_sizes
=
max_sizes
,
aspect_ratios
=
aspect_ratios
,
variance
=
variances
,
flip
=
flip
,
clip
=
clip
,
steps
=
[
step_w
,
step_h
],
offset
=
offset
,
name
=
name
,
min_max_aspect_ratios_order
=
min_max_aspect_ratios_order
)
class
TestPriorBoxOp
(
OpTest
):
...
...
@@ -35,10 +64,10 @@ class TestPriorBoxOp(OpTest):
'variances'
:
self
.
variances
,
'flip'
:
self
.
flip
,
'clip'
:
self
.
clip
,
'min_max_aspect_ratios_order'
:
self
.
min_max_aspect_ratios_order
,
'step_w'
:
self
.
step_w
,
'step_h'
:
self
.
step_h
,
'offset'
:
self
.
offset
'offset'
:
self
.
offset
,
'min_max_aspect_ratios_order'
:
self
.
min_max_aspect_ratios_order
,
}
if
len
(
self
.
max_sizes
)
>
0
:
self
.
attrs
[
'max_sizes'
]
=
self
.
max_sizes
...
...
@@ -46,10 +75,11 @@ class TestPriorBoxOp(OpTest):
self
.
outputs
=
{
'Boxes'
:
self
.
out_boxes
,
'Variances'
:
self
.
out_var
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
setUp
(
self
):
self
.
op_type
=
"prior_box"
self
.
python_api
=
python_prior_box
self
.
set_data
()
def
set_max_sizes
(
self
):
...
...
@@ -191,4 +221,5 @@ class TestPriorBoxOpWithSpecifiedOutOrder(TestPriorBoxOp):
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录