提交 d78521d4 编写于 作者: Q qingqing01

fix doc format.

上级 f646f799
......@@ -4,11 +4,13 @@
- [实现C++类](#实现C++类)
- [定义ProtoMaker类](#定义ProtoMaker类)
- [定义Operator类](#定义Operator类)
- [定义`OpKernel`类](#定义`OpKernel`)
- [定义OpKernel类](#定义OpKernel)
- [注册类](#注册类)
- [编译](#编译)
- [绑定Python](#绑定Python)
- [实现单元测试](#实现单元测试)
- [前向Operator单测](#前向Operator单测)
- [反向Operator单测](#反向Operator单测)
## 概念简介
......@@ -41,12 +43,10 @@ Forward Op需要包含:
### 1. 定义ProtoMaker类
矩阵乘的公式:$$Out = X * Y$$ ,可见该计算由两个输入,一个输出组成。首先定义`ProtoMaker`来描述该Op的输入、输出及注释:
矩阵乘的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。首先定义`ProtoMaker`来描述该Op的输入、输出及注释:
```
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
```
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
......@@ -54,12 +54,12 @@ Forward Op需要包含:
AddInput("Y", "The second input of mul op");
AddOutput("Out", "The output of mul op");
AddComment(R"DOC(
Two Element Mul Operator.
The equation is: Out = X * Y
)DOC");
Two Element Mul Operator.
The equation is: Out = X * Y
)DOC");
}
};
```
};
```
[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)继承自`framework::OpProtoAndCheckerMaker`,构造函数包括2个:
......@@ -73,8 +73,8 @@ Forward Op需要包含:
再举个[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)的例子:
```C++
template <typename AttrType>
```
template <typename AttrType>
class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
......@@ -98,8 +98,8 @@ The equation is: Out = scale*X
### 2. 定义Operator类
```C++
class MulOp : public framework::OperatorWithKernel {
```c++
class MulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -118,19 +118,19 @@ The equation is: Out = scale*X
"First matrix's width must be equal with second matrix's height.");
ctx.Output<Tensor>("Out")->Resize({dim0[0], dim1[1]});
}
};
```
};
```
[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22)继承自`OperatorWithKernel``public`成员:
```C++
```c++
using framework::OperatorWithKernel::OperatorWithKernel;
```
这句表示使用基类`OperatorWithKernel`的构造函数,也可写成:
```C++
MulOp(const std::string &type, const framework::VariableNameMap &inputs,
```c++
MulOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
......@@ -142,7 +142,7 @@ using framework::OperatorWithKernel::OperatorWithKernel;
通常`OpProtoMaker``Op`类的定义写在`.cc`文件中,和要讲到的注册函数一起放在`.cc`
### 3. 定义`OpKernel`
### 3. 定义OpKernel
```C++
template <typename Place, typename T>
......@@ -176,13 +176,13 @@ class MulKernel : public framework::OpKernel {
`.cc`文件中注册前向、反向Op类,注册CPU Kernel。
```C++
namespace ops = paddle::operators;
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
```c++
namespace ops = paddle::operators;
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::CPUPlace, float>);
```
```
- `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker``ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`
- `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。
......@@ -190,30 +190,30 @@ class MulKernel : public framework::OpKernel {
`.cu`文件中注册GPU Kernel。
```
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(mul_grad,
```c++
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::GPUPlace, float>);
```
```
### 5. 编译
[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)文件中添加编译。
```
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function)
```
```
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function)
```
下面命令可以编译:
```
make mul_op
```
```
make mul_op
```
## 绑定Python
- 绑定Python
- 绑定Python
[`paddle/pybind/pybind.cc
`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc)文件中添加该类:
......@@ -232,23 +232,23 @@ class MulKernel : public framework::OpKernel {
- 生成库
[`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件添加类到`DEPS`中。
[`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件添加类到`DEPS`,使得该Op可以链接到生成的lib库中
```
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
mul_op
minus_op)
endif(WITH_PYTHON)
endif(WITH_PYTHON)
```
## 实现单元测试
单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单测](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)
- 前向Op单测
### 前向Operator单测
前向Op单测继承自`unittest.TestCase`,并定义元类`__metaclass__ = OpTestMeta`,具体单测流程在`OpTestMeta`里完成。需在`setUp`函数定义输入输出和属性参数,以及Python对比的输出值。
......@@ -276,7 +276,7 @@ class TestMulOp(unittest.TestCase):
- `self.outputs` : 定义输出,并得到Python结算结果。
- 反向Op单测
### 反向Operator单测
反向Op单测继承自`GradientChecker`,而`GradientChecker`集成自`unittest.TestCase`,所以反向单测函数需要`test_`开头。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册