diff --git a/python/paddle/nn/functional/pooling.py b/python/paddle/nn/functional/pooling.py index 40166f4d36e94ec74614e7c81c8c9b20f7c09a72..829056f5767d7c6ea5f29027f4974dc0ccf8dc12 100755 --- a/python/paddle/nn/functional/pooling.py +++ b/python/paddle/nn/functional/pooling.py @@ -200,7 +200,6 @@ def avg_pool1d(x, .. code-block:: python import paddle import paddle.nn.functional as F - paddle.disable_static() data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32)) out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0) # out shape: [1, 3, 16] @@ -253,7 +252,7 @@ def avg_pool1d(x, "use_cudnn": True, "ceil_mode": ceil_mode, "use_mkldnn": False, - "exclusive": not exclusive, + "exclusive": exclusive, "data_format": data_format, }) @@ -314,7 +313,6 @@ def avg_pool2d(x, import paddle import paddle.nn.functional as F import numpy as np - paddle.disable_static() # avg pool2d x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32)) out = F.avg_pool2d(x, @@ -365,7 +363,7 @@ def avg_pool2d(x, "use_cudnn": True, "ceil_mode": ceil_mode, "use_mkldnn": False, - "exclusive": not exclusive, + "exclusive": exclusive, "data_format": data_format, }) @@ -481,7 +479,7 @@ def avg_pool3d(x, "use_cudnn": True, "ceil_mode": ceil_mode, "use_mkldnn": False, - "exclusive": not exclusive, + "exclusive": exclusive, "data_format": data_format, }) @@ -538,7 +536,6 @@ def max_pool1d(x, .. code-block:: python import paddle import paddle.nn.functional as F - paddle.disable_static() data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32)) pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0) # pool_out shape: [1, 3, 16] @@ -661,7 +658,6 @@ def max_pool2d(x, import paddle import paddle.nn.functional as F import numpy as np - paddle.disable_static() # max pool2d x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32)) out = F.max_pool2d(x, @@ -791,7 +787,7 @@ def max_pool3d(x, import paddle import paddle.nn.functional as F import numpy as np - paddle.disable_static() + # max pool3d x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32)) output = F.max_pool2d(x, @@ -905,7 +901,7 @@ def adaptive_avg_pool1d(x, output_size, name=None): # import paddle import paddle.nn.functional as F - paddle.disable_static() + data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32)) pool_out = F.adaptive_average_pool1d(data, output_size=16) # pool_out shape: [1, 3, 16]) @@ -982,7 +978,7 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None): # import paddle import numpy as np - paddle.disable_static() + input_data = np.random.rand(2, 3, 32, 32) x = paddle.to_tensor(input_data) # x.shape is [2, 3, 32, 32] @@ -1086,7 +1082,7 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None): # avg(input[:, :, dstart:dend, hstart: hend, wstart: wend]) import paddle import numpy as np - paddle.disable_static() + input_data = np.random.rand(2, 3, 8, 32, 32) x = paddle.to_tensor(input_data) # x.shape is [2, 3, 8, 32, 32] @@ -1186,7 +1182,7 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None): # import paddle import paddle.nn.functional as F - paddle.disable_static() + data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32)) pool_out = F.adaptive_max_pool1d(data, output_size=16) # pool_out shape: [1, 3, 16]) @@ -1266,7 +1262,7 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None): # import paddle import numpy as np - paddle.disable_static() + input_data = np.random.rand(2, 3, 32, 32) x = paddle.to_tensor(input_data) # x.shape is [2, 3, 32, 32] @@ -1356,7 +1352,7 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None): # import paddle import numpy as np - paddle.disable_static() + input_data = np.random.rand(2, 3, 8, 32, 32) x = paddle.to_tensor(input_data) # x.shape is [2, 3, 8, 32, 32]