未验证 提交 d5245a35 编写于 作者: B baoachun 提交者: GitHub

add matmul_v2 to v1 CPU pass and fix matmul dim error (#36731)

* fix matmul dim error

* fix wrong dim check in matmul
上级 34b6860e
......@@ -206,7 +206,7 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
"reshape2_matmul_fuse_pass", //
"flatten2_matmul_fuse_pass", //
"map_matmul_v2_to_mul_pass", //
// "map_matmul_v2_to_matmul_pass", //
"map_matmul_v2_to_matmul_pass", //
"map_matmul_to_mul_pass", //
"fc_fuse_pass", //
"repeated_fc_relu_fuse_pass", //
......
......@@ -336,6 +336,8 @@ framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
"The Input(%s) has not been initialized properly. The "
"shape of Input(%s) = [%s].",
dim));
// if mkldnn reshape+transpose+matmul fuse activated
if (!shape.empty() && !axis.empty()) {
PADDLE_ENFORCE_GE(
shape.size(), 2,
......@@ -355,6 +357,43 @@ framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
"Ranks of shape_%s and axis_%s attributes of MatMulOp "
"must be equal.",
input_name, input_name));
int num_negative = std::count(shape.begin(), shape.end(), -1);
PADDLE_ENFORCE_LE(num_negative, 1,
platform::errors::InvalidArgument(
"The max number of -1 in fused_reshape_%s is 1 "
"but received %d.",
input_name, num_negative));
auto it_zero = std::find(shape.begin(), shape.end(), 0);
if (it_zero != shape.end()) {
for (uint64_t i = 0; i < shape.size(); i++) {
if (shape[i] == 0) {
PADDLE_ENFORCE_LT(i, dim.size(),
platform::errors::InvalidArgument(
"The index of 0 in fused_reshape_%s ",
"should be less than output dim size, ",
"but the index is %d and output dim size is %d",
input_name, i, dim.size()));
shape[i] = dim.at(i);
}
}
}
// if "-1" is present then one of reshape dims must be infered
auto it_negative = std::find(shape.begin(), shape.end(), -1);
if (it_negative != shape.end()) {
int64_t dim_product = 1;
for (int i = 0; i < dim.size(); i++) {
dim_product *= dim.at(i);
}
int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
std::multiplies<int>());
int index = std::distance(shape.begin(), it_negative);
shape[index] = dim_product / shape_product;
}
dim = dim.reshape(shape).transpose(axis);
}
return dim;
......
......@@ -245,6 +245,36 @@ class MatMulMKLDNNHandler
auto input_dims = ctx.Input<Tensor>(input_name)->dims();
auto new_dims = input_dims;
if (!shape.empty() && !axis.empty()) {
auto it_zero = std::find(shape.begin(), shape.end(), 0);
if (it_zero != shape.end()) {
for (uint64_t i = 0; i < shape.size(); i++) {
if (shape[i] == 0) {
PADDLE_ENFORCE_LT(
i, input_dims.size(),
paddle::platform::errors::InvalidArgument(
"The index of 0 in fused_reshape_%s ",
"should be less than output dim size, ",
"but the index is %d and output dim size is %d", input_name,
i, input_dims.size()));
shape[i] = input_dims.at(i);
}
}
}
// if "-1" is present then one of reshape dims must be infered
auto it_negative = std::find(shape.begin(), shape.end(), -1);
if (it_negative != shape.end()) {
int64_t dim_product = 1;
for (int i = 0; i < input_dims.size(); i++) {
dim_product *= input_dims.at(i);
}
int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
std::multiplies<int>());
int index = std::distance(shape.begin(), it_negative);
shape[index] = dim_product / shape_product;
}
new_dims = input_dims.reshape(shape).transpose(axis);
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册