未验证 提交 d4fb5c68 编写于 作者: Q Qi Li 提交者: GitHub

[NPU] add is_empty_op_npu, test=develop (#34234)

上级 1dfd857b
...@@ -240,6 +240,12 @@ class AllocatorFacadePrivate { ...@@ -240,6 +240,12 @@ class AllocatorFacadePrivate {
places.emplace_back(platform::XPUPlace(dev_id)); places.emplace_back(platform::XPUPlace(dev_id));
} }
#endif #endif
#ifdef PADDLE_WITH_ASCEND_CL
int device_count = platform::GetNPUDeviceCount();
for (int dev_id = 0; dev_id < device_count; ++dev_id) {
places.emplace_back(platform::NPUPlace(dev_id));
}
#endif
for (auto& p : places) { for (auto& p : places) {
zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p); zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/is_empty_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
is_empty, ops::IsEmptyOpKernel<plat::NPUDeviceContext, float>,
ops::IsEmptyOpKernel<plat::NPUDeviceContext, plat::float16>);
...@@ -192,6 +192,10 @@ void NPUMemcpySync(void *dst, const void *src, size_t count, ...@@ -192,6 +192,10 @@ void NPUMemcpySync(void *dst, const void *src, size_t count,
dst_max_count = dst_max_count ? dst_max_count : count; dst_max_count = dst_max_count ? dst_max_count : count;
VLOG(4) << dst << " " << dst_max_count << " " << src << " " << count << " " VLOG(4) << dst << " " << dst_max_count << " " << src << " " << count << " "
<< kind; << kind;
if (dst == nullptr && dst_max_count == 0) {
VLOG(4) << "Dot not call aclrtMemcpy for zero_size_allocation on NPU";
return;
}
PADDLE_ENFORCE_NPU_SUCCESS(aclrtMemcpy(dst, dst_max_count, src, count, kind)); PADDLE_ENFORCE_NPU_SUCCESS(aclrtMemcpy(dst, dst_max_count, src, count, kind));
} }
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestEmpty(OpTest):
def setUp(self):
self.set_npu()
self.init_dtype()
self.op_type = "is_empty"
self.set_data()
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def set_data(self):
self.inputs = {'X': np.array([1, 2, 3]).astype(self.dtype)}
self.outputs = {'Out': np.array([False])}
def test_check_output(self):
self.check_output_with_place(self.place)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestNotEmpty(TestEmpty):
def set_data(self):
self.inputs = {'X': np.array([])}
self.outputs = {'Out': np.array([True])}
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestIsEmptyOpError(unittest.TestCase):
def test_errors(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
input_data = np.random.random((3, 2)).astype("float32")
def test_Variable():
# the input type must be Variable
paddle.is_empty(x=input_data)
self.assertRaises(TypeError, test_Variable)
def test_type():
# dtype must be float32, float16 in NPU
x3 = paddle.static.data(
name="x3", shape=[4, 32, 32], dtype="bool")
res = paddle.is_empty(x=x3)
self.assertRaises(TypeError, test_type)
def test_name_type():
# name type must be string.
x4 = paddle.static.data(
name="x4", shape=[3, 2], dtype="float32")
res = paddle.is_empty(x=x4, name=1)
self.assertRaises(TypeError, test_name_type)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestIsEmptyOpDygraph(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static(paddle.NPUPlace(0))
input = paddle.rand(shape=[4, 32, 32], dtype='float32')
res = paddle.is_empty(x=input)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册