Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
d26ff8cb
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d26ff8cb
编写于
10月 29, 2018
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into cpu-for-1.1-merge-with-shape
上级
7cd2417f
79da263b
变更
38
显示空白变更内容
内联
并排
Showing
38 changed file
with
1363 addition
and
124 deletion
+1363
-124
benchmark/fluid/args.py
benchmark/fluid/args.py
+5
-0
benchmark/fluid/fluid_benchmark.py
benchmark/fluid/fluid_benchmark.py
+1
-1
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-0
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+4
-2
paddle/fluid/framework/details/broadcast_op_handle.cc
paddle/fluid/framework/details/broadcast_op_handle.cc
+14
-7
paddle/fluid/framework/details/broadcast_op_handle.h
paddle/fluid/framework/details/broadcast_op_handle.h
+4
-1
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+1
-0
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+2
-0
paddle/fluid/framework/details/fused_broadcast_op_handle.cc
paddle/fluid/framework/details/fused_broadcast_op_handle.cc
+55
-0
paddle/fluid/framework/details/fused_broadcast_op_handle.h
paddle/fluid/framework/details/fused_broadcast_op_handle.h
+57
-0
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+52
-10
paddle/fluid/framework/details/multi_devices_graph_pass.h
paddle/fluid/framework/details/multi_devices_graph_pass.h
+6
-1
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+12
-1
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+6
-0
paddle/fluid/framework/ir/multi_batch_merge_pass.cc
paddle/fluid/framework/ir/multi_batch_merge_pass.cc
+315
-0
paddle/fluid/framework/ir/multi_batch_merge_pass.h
paddle/fluid/framework/ir/multi_batch_merge_pass.h
+44
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+13
-11
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+2
-1
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+3
-0
paddle/fluid/operators/lars_momentum_op.cc
paddle/fluid/operators/lars_momentum_op.cc
+86
-0
paddle/fluid/operators/lars_momentum_op.cu
paddle/fluid/operators/lars_momentum_op.cu
+94
-0
paddle/fluid/operators/lars_momentum_op.h
paddle/fluid/operators/lars_momentum_op.h
+72
-0
paddle/fluid/operators/momentum_op.cc
paddle/fluid/operators/momentum_op.cc
+0
-48
paddle/fluid/operators/momentum_op.h
paddle/fluid/operators/momentum_op.h
+48
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+50
-15
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+8
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-3
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+14
-12
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+89
-2
python/paddle/fluid/tests/unittests/dist_mnist.py
python/paddle/fluid/tests/unittests/dist_mnist.py
+1
-1
python/paddle/fluid/tests/unittests/dist_mnist_batch_merge.py
...on/paddle/fluid/tests/unittests/dist_mnist_batch_merge.py
+80
-0
python/paddle/fluid/tests/unittests/dist_mnist_lars.py
python/paddle/fluid/tests/unittests/dist_mnist_lars.py
+73
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+22
-5
python/paddle/fluid/tests/unittests/test_dist_mnist.py
python/paddle/fluid/tests/unittests/test_dist_mnist.py
+9
-0
python/paddle/fluid/tests/unittests/test_dist_mnist_batch_merge.py
...ddle/fluid/tests/unittests/test_dist_mnist_batch_merge.py
+67
-0
python/paddle/fluid/tests/unittests/test_momentum_op.py
python/paddle/fluid/tests/unittests/test_momentum_op.py
+39
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+5
-1
未找到文件。
benchmark/fluid/args.py
浏览文件 @
d26ff8cb
...
...
@@ -142,5 +142,10 @@ def parse_args():
choices
=
[
'reduce'
,
'all_reduce'
],
default
=
'all_reduce'
,
help
=
'Specify the reduce strategy, can be reduce, all_reduce'
)
parser
.
add_argument
(
'--fuse_broadcast_op'
,
action
=
'store_true'
,
help
=
'If set, would fuse multiple broadcast operators into one fused_broadcast operator.'
)
args
=
parser
.
parse_args
()
return
args
benchmark/fluid/fluid_benchmark.py
浏览文件 @
d26ff8cb
...
...
@@ -177,6 +177,7 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog,
else
:
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
(
).
ReduceStrategy
.
AllReduce
build_strategy
.
fuse_broadcast_op
=
args
.
fuse_broadcast_op
avg_loss
=
train_args
[
0
]
...
...
@@ -240,7 +241,6 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog,
if
args
.
use_fake_data
or
args
.
use_reader_op
:
try
:
fetch_ret
=
exe
.
run
(
fetch_list
)
except
fluid
.
core
.
EOFException
as
eof
:
break
...
...
paddle/fluid/API.spec
浏览文件 @
d26ff8cb
...
...
@@ -355,6 +355,8 @@ paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_wind
paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.LarsMomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'lars_coeff', 'lars_weight_decay', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.0005, None, None))
paddle.fluid.optimizer.LarsMomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.backward.append_backward ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,))
paddle.fluid.regularizer.L2DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,))
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
d26ff8cb
...
...
@@ -16,12 +16,14 @@ if(WITH_GPU)
dynload_cuda variable_visitor
)
nv_library
(
reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda
)
nv_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda
)
nv_library
(
fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle
)
else
()
cc_library
(
all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor
)
cc_library
(
reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim
)
cc_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle
)
endif
()
cc_library
(
data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_base scope lod_tensor
)
...
...
@@ -34,7 +36,7 @@ if(WITH_GPU)
endif
()
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle
)
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle
fused_broadcast_op_handle
)
if
(
WITH_GPU
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto reference_count_pass
)
...
...
@@ -58,4 +60,4 @@ cc_library(fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executo
cc_library
(
build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass
)
fuse_elewise_add_act_pass
multi_batch_merge_pass
)
paddle/fluid/framework/details/broadcast_op_handle.cc
浏览文件 @
d26ff8cb
...
...
@@ -48,8 +48,15 @@ void BroadcastOpHandle::RunImpl() {
var_scopes
.
emplace_back
(
s
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
());
}
BroadcastOneVar
(
*
in_var_handle
,
out_var_handles
,
var_scopes
);
}
void
BroadcastOpHandle
::
BroadcastOneVar
(
const
VarHandle
&
in_var_handle
,
const
std
::
vector
<
VarHandle
*>
&
out_var_handles
,
const
std
::
vector
<
const
Scope
*>
&
var_scopes
)
{
auto
*
in_var
=
var_scopes
.
at
(
in_var_handle
->
scope_idx_
)
->
FindVar
(
in_var_handle
->
name_
);
var_scopes
.
at
(
in_var_handle
.
scope_idx_
)
->
FindVar
(
in_var_handle
.
name_
);
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
Tensor
&
in_tensor
=
VariableVisitor
::
GetMutableTensor
(
in_var
);
if
(
!
in_tensor
.
IsInitialized
())
{
...
...
@@ -57,11 +64,11 @@ void BroadcastOpHandle::RunImpl() {
return
;
}
InitOutputValue
(
*
in_var_handle
,
out_var_handles
);
InitOutputValue
(
in_var_handle
,
out_var_handles
);
if
(
platform
::
is_cpu_place
(
in_tensor
.
place
()))
{
for
(
auto
*
out_var_handle
:
out_var_handles
)
{
if
(
out_var_handle
->
IsTheSameVar
(
*
in_var_handle
))
{
if
(
out_var_handle
->
IsTheSameVar
(
in_var_handle
))
{
continue
;
}
auto
&
out_p
=
out_var_handle
->
place_
;
...
...
@@ -118,12 +125,12 @@ void BroadcastOpHandle::RunImpl() {
}
}
if
(
!
out_handle
->
IsTheSameVar
(
*
in_var_handle
))
{
auto
out_var
=
var_scopes
.
at
(
in_var_handle
->
scope_idx_
)
if
(
!
out_handle
->
IsTheSameVar
(
in_var_handle
))
{
auto
out_var
=
var_scopes
.
at
(
in_var_handle
.
scope_idx_
)
->
FindVar
(
out_var_handles
[
0
]
->
name_
);
paddle
::
framework
::
TensorCopy
(
in_tensor
,
in_var_handle
->
place_
,
*
(
dev_ctxes_
.
at
(
in_var_handle
->
place_
)),
in_tensor
,
in_var_handle
.
place_
,
*
(
dev_ctxes_
.
at
(
in_var_handle
.
place_
)),
&
VariableVisitor
::
GetMutableTensor
(
out_var
));
}
});
...
...
paddle/fluid/framework/details/broadcast_op_handle.h
浏览文件 @
d26ff8cb
...
...
@@ -61,7 +61,10 @@ struct BroadcastOpHandle : public OpHandleBase {
protected:
void
RunImpl
()
override
;
private:
void
BroadcastOneVar
(
const
VarHandle
&
in_var_handle
,
const
std
::
vector
<
VarHandle
*>
&
out_var_handles
,
const
std
::
vector
<
const
Scope
*>
&
var_scopes
);
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
d26ff8cb
...
...
@@ -121,6 +121,7 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
USE_PASS
(
fuse_elewise_add_act_pass
);
USE_PASS
(
graph_viz_pass
);
USE_PASS
(
multi_batch_merge_pass
);
USE_PASS
(
multi_devices_pass
);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_print_pass
);
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
d26ff8cb
...
...
@@ -69,6 +69,8 @@ struct BuildStrategy {
bool
enable_data_balance_
{
false
};
bool
fuse_broadcast_op_
{
false
};
// User normally doesn't need to call this API.
// The PassBuilder allows for more customized insert, remove of passes
// from python side.
...
...
paddle/fluid/framework/details/fused_broadcast_op_handle.cc
0 → 100644
浏览文件 @
d26ff8cb
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
void
FusedBroadcastOpHandle
::
RunImpl
()
{
platform
::
RecordEvent
record_event
(
Name
(),
dev_ctxes_
.
begin
()
->
second
);
if
(
places_
.
size
()
==
1UL
)
return
;
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
inputs_
);
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
outputs_
);
WaitInputVarGenerated
();
std
::
vector
<
const
Scope
*>
var_scopes
;
for
(
auto
*
s
:
local_scopes_
)
{
var_scopes
.
emplace_back
(
s
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
());
}
size_t
place_num
=
places_
.
size
();
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
()
*
place_num
,
out_var_handles
.
size
());
for
(
size_t
i
=
0
;
i
<
in_var_handles
.
size
();
++
i
)
{
BroadcastOneVar
(
*
in_var_handles
[
i
],
std
::
vector
<
VarHandle
*>
(
out_var_handles
.
begin
()
+
i
*
place_num
,
out_var_handles
.
begin
()
+
(
i
+
1
)
*
place_num
),
var_scopes
);
}
}
std
::
string
FusedBroadcastOpHandle
::
Name
()
const
{
return
"fused_broadcast"
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fused_broadcast_op_handle.h
0 → 100644
浏览文件 @
d26ff8cb
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
FusedBroadcastOpHandle
:
public
BroadcastOpHandle
{
public:
#ifdef PADDLE_WITH_CUDA
FusedBroadcastOpHandle
(
ir
::
Node
*
node
,
const
std
::
vector
<
Scope
*>
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
platform
::
NCCLContextMap
*
nccl_ctx
)
:
BroadcastOpHandle
(
node
,
local_scopes
,
places
,
nccl_ctx
)
{}
#else
FusedBroadcastOpHandle
(
ir
::
Node
*
node
,
const
std
::
vector
<
Scope
*>
local_scopes
,
const
std
::
vector
<
platform
::
Place
>&
places
)
:
BroadcastOpHandle
(
node
,
local_scopes
,
places
)
{}
#endif
std
::
string
Name
()
const
override
;
protected:
void
RunImpl
()
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
d26ff8cb
...
...
@@ -21,6 +21,7 @@
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h"
...
...
@@ -347,7 +348,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
BuildStrategy
::
GradientScaleStrategy
::
kCustomized
)
{
// TODO(paddle-dev): Why is there no input for this op_handle?
auto
loss_grad_name
=
node
->
Op
()
->
OutputArgumentNames
()[
0
];
CreateScaleLossGradOp
(
&
result
,
loss_grad_name
);
CreateScaleLossGradOp
(
&
result
,
loss_grad_name
,
node
->
outputs
[
0
]
);
}
// This assumes the backward generating code will ensure IsScaleLossOp
// is true only for the op that scale the final scalar loss.
...
...
@@ -436,6 +437,9 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
if
((
use_gpu
&&
strategy_
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kReduce
)
||
is_dist_train
)
{
if
(
strategy_
.
fuse_broadcast_op_
)
{
CreateFusedBroadcastOp
(
&
result
,
bcast_var_name_set
);
}
else
{
for
(
size_t
dev_id
=
0
;
dev_id
<
bcast_var_name_set
.
size
();
++
dev_id
)
{
auto
&
to_bcast_set
=
bcast_var_name_set
[
dev_id
];
for
(
auto
&
bcast_name
:
to_bcast_set
)
{
...
...
@@ -443,6 +447,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
}
}
}
}
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
...
...
@@ -508,6 +513,44 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
}
}
void
MultiDevSSAGraphBuilder
::
CreateFusedBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
&
bcast_varnames
)
const
{
#ifdef PADDLE_WITH_CUDA
auto
*
op_handle
=
new
FusedBroadcastOpHandle
(
result
->
CreateEmptyNode
(
"fused_broadcast"
,
ir
::
Node
::
Type
::
kOperation
),
local_scopes_
,
places_
,
nccl_ctxs_
);
#else
auto
*
op_handle
=
new
FusedBroadcastOpHandle
(
result
->
CreateEmptyNode
(
"fused_broadcast"
,
ir
::
Node
::
Type
::
kOperation
),
local_scopes_
,
places_
);
#endif
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
op_handle
);
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
p
=
places_
[
i
];
SetCommunicationContext
(
op_handle
,
p
);
}
for
(
size_t
dev_id
=
0
;
dev_id
<
bcast_varnames
.
size
();
++
dev_id
)
{
for
(
auto
&
p_name
:
bcast_varnames
[
dev_id
])
{
auto
*
in
=
result
->
Get
<
GraphVars
>
(
kGraphVars
).
at
(
dev_id
).
at
(
p_name
).
back
().
get
();
op_handle
->
AddInput
(
in
);
for
(
size_t
out_dev_id
=
0
;
out_dev_id
<
places_
.
size
();
++
out_dev_id
)
{
auto
&
p
=
places_
[
out_dev_id
];
auto
&
vars
=
result
->
Get
<
GraphVars
>
(
kGraphVars
).
at
(
out_dev_id
).
at
(
p_name
);
auto
*
out_var
=
new
VarHandle
(
result
->
CreateEmptyNode
(
p_name
,
ir
::
Node
::
Type
::
kVariable
),
vars
.
size
(),
out_dev_id
,
p_name
,
p
);
vars
.
emplace_back
(
out_var
);
op_handle
->
AddOutput
(
out_var
);
}
}
}
}
void
MultiDevSSAGraphBuilder
::
CreateComputationalOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
{
...
...
@@ -602,7 +645,8 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(const ir::Graph &graph,
}
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
loss_grad_name
)
const
{
ir
::
Graph
*
result
,
const
std
::
string
&
loss_grad_name
,
ir
::
Node
*
out_var_node
)
const
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
// Insert ScaleCost OpHandle
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
places_
[
i
]);
...
...
@@ -617,10 +661,8 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
CreateOpOutput
(
result
,
op_handle
,
result
->
CreateEmptyNode
(
loss_grad_name
,
ir
::
Node
::
Type
::
kVariable
),
places_
[
i
],
i
);
CreateOpOutput
(
result
,
op_handle
,
result
->
CreateVarNode
(
out_var_node
->
Var
()),
places_
[
i
],
i
);
}
}
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.h
浏览文件 @
d26ff8cb
...
...
@@ -61,7 +61,8 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
size_t
num_places
)
const
;
void
CreateScaleLossGradOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
loss_grad_name
)
const
;
const
std
::
string
&
loss_grad_name
,
ir
::
Node
*
out_var_node
)
const
;
VarHandle
*
CreateReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
,
int
dst_dev_id
)
const
;
...
...
@@ -78,6 +79,10 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
void
CreateBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
;
void
CreateFusedBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
&
bcast_varnames
)
const
;
bool
IsSparseGradient
(
const
std
::
string
&
og
)
const
;
size_t
GetAppropriateDeviceID
(
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
d26ff8cb
...
...
@@ -36,6 +36,7 @@ pass_library(fc_lstm_fuse_pass inference)
pass_library
(
embedding_fc_lstm_fuse_pass inference
)
pass_library
(
fc_gru_fuse_pass inference
)
pass_library
(
seq_concat_fc_fuse_pass inference
)
pass_library
(
multi_batch_merge_pass base
)
pass_library
(
conv_bn_fuse_pass inference
)
pass_library
(
seqconv_eltadd_relu_fuse_pass inference
)
if
(
WITH_MKLDNN
)
...
...
paddle/fluid/framework/ir/graph.cc
浏览文件 @
d26ff8cb
...
...
@@ -27,14 +27,20 @@ namespace ir {
Graph
::
Graph
(
const
ProgramDesc
&
program
)
:
program_
(
program
)
{
// Make the nodes id start from 0.
Node
::
ResetId
();
auto
var_nodes
=
InitFromProgram
(
program_
);
ResolveHazard
(
var_nodes
);
}
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
Graph
::
InitFromProgram
(
const
ProgramDesc
&
program
)
{
VLOG
(
3
)
<<
"block in program:"
<<
program_
.
Size
();
std
::
unordered_map
<
std
::
string
,
VarDesc
*>
all_vars
;
// var nodes for each var name, will have multiple versions in SSA
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
var_nodes
;
for
(
auto
*
var
:
program
.
Block
(
0
).
AllVars
())
{
all_vars
.
emplace
(
var
->
Name
(),
var
);
}
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
var_nodes
;
for
(
auto
*
op
:
program
.
Block
(
0
).
AllOps
())
{
ir
::
Node
*
node
=
CreateOpNode
(
op
);
// For input args, reuse the same var name if it was created before.
...
...
@@ -72,7 +78,11 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
var
->
inputs
.
push_back
(
node
);
}
}
return
std
::
move
(
var_nodes
);
}
void
Graph
::
ResolveHazard
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
&
var_nodes
)
{
/**
* We should handle write after read(WAR) and write after write(WAW) here.
* Because some of the operators of the program can be executed parallelly.
...
...
@@ -91,6 +101,7 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
auto
it_old
=
versions
.
rbegin
();
++
it_old
;
for
(;
it_old
!=
versions
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
VLOG
(
3
)
<<
"deal with var: "
<<
(
*
it_new
)
->
Name
();
ir
::
Node
*
write_op
=
(
*
it_new
)
->
inputs
.
empty
()
?
nullptr
:
(
*
it_new
)
->
inputs
[
0
];
const
auto
&
read_ops
=
(
*
it_old
)
->
outputs
;
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
d26ff8cb
...
...
@@ -160,6 +160,12 @@ class Graph {
return
nullptr
;
}
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
InitFromProgram
(
const
ProgramDesc
&
program
);
void
ResolveHazard
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
&
var_nodes
);
private:
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
...
...
paddle/fluid/framework/ir/multi_batch_merge_pass.cc
0 → 100644
浏览文件 @
d26ff8cb
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/multi_batch_merge_pass.h"
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_proto_maker.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
static
const
char
kNumRepeats
[]
=
"num_repeats"
;
typedef
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
SSAVarList
;
ir
::
Node
*
SameNameVar
(
std
::
unordered_set
<
ir
::
Node
*>
all
,
ir
::
Node
*
target
)
{
for
(
auto
n
:
all
)
{
if
(
target
->
IsVar
()
&&
target
->
Name
()
==
n
->
Name
())
{
return
n
;
}
}
return
nullptr
;
}
VarDesc
CopyVarDesc
(
VarDesc
*
var_desc
)
{
VarDesc
repeated_var
(
var_desc
->
Name
());
// copy other variable attributes
if
(
var_desc
->
GetType
()
!=
proto
::
VarType
::
READER
)
{
repeated_var
.
SetType
(
var_desc
->
GetType
());
repeated_var
.
SetShape
(
var_desc
->
GetShape
());
repeated_var
.
SetDataType
(
var_desc
->
GetDataType
());
repeated_var
.
SetLoDLevel
(
var_desc
->
GetLoDLevel
());
repeated_var
.
SetPersistable
(
var_desc
->
Persistable
());
}
else
{
// TODO(typhoonzero): copy reader var
}
return
repeated_var
;
}
VarDesc
UpdateGradVarDesc
(
VarDesc
*
var_desc
,
int
repeat
,
const
std
::
unordered_set
<
std
::
string
>&
grad_names
,
const
std
::
unordered_set
<
std
::
string
>&
bn_vars_need_rename
)
{
if
(
grad_names
.
find
(
var_desc
->
Name
())
!=
grad_names
.
end
()
||
bn_vars_need_rename
.
find
(
var_desc
->
Name
())
!=
bn_vars_need_rename
.
end
())
{
std
::
string
new_gname
=
string
::
Sprintf
(
"%s.repeat.%d"
,
var_desc
->
Name
(),
repeat
);
VarDesc
repeated_var
=
CopyVarDesc
(
var_desc
);
repeated_var
.
SetName
(
new_gname
);
VLOG
(
3
)
<<
"update "
<<
var_desc
->
Name
()
<<
" to repeat "
<<
repeat
;
return
repeated_var
;
}
return
*
var_desc
;
}
std
::
unique_ptr
<
Graph
>
BatchMergePass
::
ApplyImpl
(
std
::
unique_ptr
<
Graph
>
graph
)
const
{
int
num_repeats
=
Get
<
const
int
>
(
kNumRepeats
);
std
::
vector
<
Node
*>
forward_backward_ops
;
std
::
vector
<
Node
*>
optimize_ops
;
std
::
vector
<
Node
*>
lr_ops
;
// ops other than forward/backward/optimize
std
::
unordered_set
<
std
::
string
>
grad_names
;
std
::
vector
<
ir
::
Node
*>
nodes
=
TopologySortOperations
(
*
graph
);
auto
origin_nodes
=
graph
->
ReleaseNodes
();
VLOG
(
3
)
<<
"origin nodes count: "
<<
origin_nodes
.
size
();
ir
::
Graph
&
result
=
*
graph
;
// 1. record op nodes of different roles
for
(
auto
node
:
nodes
)
{
if
(
node
->
IsVar
())
continue
;
int
op_role
=
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleAttrName
()));
if
((
op_role
==
static_cast
<
int
>
(
framework
::
OpRole
::
kForward
))
||
(
op_role
&
static_cast
<
int
>
(
framework
::
OpRole
::
kBackward
))
||
(
op_role
&
static_cast
<
int
>
(
framework
::
OpRole
::
kLoss
)))
{
forward_backward_ops
.
push_back
(
node
);
}
else
if
((
op_role
&
static_cast
<
int
>
(
framework
::
OpRole
::
kOptimize
))
||
(
op_role
&
static_cast
<
int
>
(
framework
::
OpRole
::
kDist
))
||
(
op_role
&
static_cast
<
int
>
(
framework
::
OpRole
::
kRPC
)))
{
optimize_ops
.
push_back
(
node
);
auto
op_role_var
=
node
->
Op
()
->
GetNullableAttr
(
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
());
auto
op_role_vars
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
op_role_var
);
for
(
size_t
i
=
0
;
i
<
op_role_vars
.
size
();
i
+=
2
)
{
grad_names
.
insert
(
op_role_vars
[
i
+
1
]);
}
}
else
if
(
op_role
&
static_cast
<
int
>
(
framework
::
OpRole
::
kLRSched
))
{
lr_ops
.
push_back
(
node
);
}
else
{
// NOLINT
PADDLE_THROW
(
"Invalid op_role: %d"
,
static_cast
<
int
>
(
op_role
));
}
}
// 2. copy forward backward
ir
::
Node
*
prev_repeat_last_op_node
=
nullptr
;
// record origin_grad -> repeated grad list map.
std
::
map
<
ir
::
Node
*
,
std
::
vector
<
ir
::
Node
*>>
grad_repeated_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
created
;
std
::
unordered_set
<
std
::
string
>
bn_vars_need_rename
;
for
(
int
i
=
0
;
i
<
num_repeats
;
++
i
)
{
std
::
unordered_set
<
ir
::
Node
*>
copied
;
for
(
size_t
node_idx
=
0
;
node_idx
<
forward_backward_ops
.
size
();
++
node_idx
)
{
auto
node
=
forward_backward_ops
[
node_idx
];
OpDesc
repeated_op
(
*
(
node
->
Op
()),
node
->
Op
()
->
Block
());
// 3. rename grad outputs to current repeat.
for
(
auto
outname
:
repeated_op
.
OutputArgumentNames
())
{
if
(
grad_names
.
find
(
outname
)
!=
grad_names
.
end
())
{
std
::
string
new_gname
=
string
::
Sprintf
(
"%s.repeat.%d"
,
outname
,
i
);
repeated_op
.
RenameOutput
(
outname
,
new_gname
);
}
}
// 3.5 let batch_norm ops use independent vars, note batch_norm_grad do
// not need this update
if
(
node
->
Name
()
==
"batch_norm"
)
{
// NOTE: assume bn op created by layers use save var as output mean and
// variance
std
::
string
new_mean_name
=
string
::
Sprintf
(
"%s.repeat.%d"
,
repeated_op
.
Input
(
"Mean"
)[
0
],
i
);
std
::
string
new_var_name
=
string
::
Sprintf
(
"%s.repeat.%d"
,
repeated_op
.
Input
(
"Variance"
)[
0
],
i
);
bn_vars_need_rename
.
insert
(
repeated_op
.
Input
(
"Mean"
)[
0
]);
bn_vars_need_rename
.
insert
(
repeated_op
.
Input
(
"Variance"
)[
0
]);
VLOG
(
3
)
<<
"renaming "
<<
repeated_op
.
Input
(
"Mean"
)[
0
]
<<
" to "
<<
new_mean_name
;
repeated_op
.
RenameInput
(
repeated_op
.
Input
(
"Mean"
)[
0
],
new_mean_name
);
repeated_op
.
RenameInput
(
repeated_op
.
Input
(
"Variance"
)[
0
],
new_var_name
);
repeated_op
.
RenameOutput
(
repeated_op
.
Output
(
"MeanOut"
)[
0
],
new_mean_name
);
repeated_op
.
RenameOutput
(
repeated_op
.
Output
(
"VarianceOut"
)[
0
],
new_var_name
);
}
// 3.9 do copy
auto
repeated_node
=
result
.
CreateOpNode
(
&
repeated_op
);
copied
.
insert
(
node
);
// 4. add deps between repeats
if
(
node_idx
==
forward_backward_ops
.
size
()
-
1
)
{
prev_repeat_last_op_node
=
repeated_node
;
}
if
(
node_idx
==
0
&&
prev_repeat_last_op_node
)
{
auto
*
depvar
=
result
.
CreateControlDepVar
();
prev_repeat_last_op_node
->
outputs
.
push_back
(
depvar
);
depvar
->
inputs
.
push_back
(
prev_repeat_last_op_node
);
repeated_node
->
inputs
.
push_back
(
depvar
);
depvar
->
outputs
.
push_back
(
repeated_node
);
}
for
(
auto
in_node
:
node
->
inputs
)
{
if
(
in_node
->
IsCtrlVar
())
{
continue
;
}
ir
::
Node
*
var
=
nullptr
;
auto
updated_var
=
UpdateGradVarDesc
(
in_node
->
Var
(),
i
,
grad_names
,
bn_vars_need_rename
);
// should be initialized by startup, how to initilize tensor in the
// scope?
if
(
node
->
Name
()
==
"batch_norm"
&&
bn_vars_need_rename
.
find
(
in_node
->
Name
())
!=
bn_vars_need_rename
.
end
())
{
// Create bn mean/variance for each repeat
var
=
result
.
CreateVarNode
(
&
updated_var
);
created
[
updated_var
.
Name
()].
push_back
(
var
);
copied
.
insert
(
in_node
);
repeated_node
->
inputs
.
push_back
(
var
);
var
->
outputs
.
push_back
(
repeated_node
);
continue
;
}
// for other ops
if
(
in_node
->
inputs
.
empty
()
&&
i
>
0
)
{
// do not copy head vars (inputs, params) in repeats > 0
var
=
created
.
at
(
in_node
->
Name
()).
back
();
}
else
{
if
(
copied
.
find
(
in_node
)
==
copied
.
end
())
{
var
=
result
.
CreateVarNode
(
&
updated_var
);
if
(
grad_names
.
find
(
in_node
->
Var
()
->
Name
())
!=
grad_names
.
end
())
{
grad_repeated_map
[
in_node
].
push_back
(
var
);
}
copied
.
insert
(
in_node
);
created
[
updated_var
.
Name
()].
push_back
(
var
);
}
else
{
var
=
created
.
at
(
updated_var
.
Name
()).
back
();
}
}
repeated_node
->
inputs
.
push_back
(
var
);
var
->
outputs
.
push_back
(
repeated_node
);
}
for
(
auto
out_node
:
node
->
outputs
)
{
if
(
out_node
->
IsCtrlVar
())
{
continue
;
}
ir
::
Node
*
var
=
nullptr
;
auto
updated_var
=
UpdateGradVarDesc
(
out_node
->
Var
(),
i
,
grad_names
,
bn_vars_need_rename
);
if
(
copied
.
find
(
out_node
)
==
copied
.
end
())
{
var
=
result
.
CreateVarNode
(
&
updated_var
);
if
(
grad_names
.
find
(
out_node
->
Var
()
->
Name
())
!=
grad_names
.
end
())
{
grad_repeated_map
[
out_node
].
push_back
(
var
);
}
copied
.
insert
(
out_node
);
created
[
updated_var
.
Name
()].
push_back
(
var
);
}
else
{
var
=
created
.
at
(
updated_var
.
Name
()).
back
();
}
repeated_node
->
outputs
.
push_back
(
var
);
var
->
inputs
.
push_back
(
repeated_node
);
}
}
}
// 5. create GRAD merge op node
for
(
auto
kv
:
grad_repeated_map
)
{
OpDesc
sum_op
;
sum_op
.
SetType
(
"sum"
);
std
::
vector
<
std
::
string
>
repeated_grad_names
;
for
(
auto
r
:
kv
.
second
)
{
repeated_grad_names
.
push_back
(
r
->
Var
()
->
Name
());
}
sum_op
.
SetInput
(
"X"
,
repeated_grad_names
);
sum_op
.
SetOutput
(
"Out"
,
{
kv
.
first
->
Var
()
->
Name
()});
sum_op
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
static_cast
<
int
>
(
OpRole
::
kBackward
));
auto
sum_op_node
=
result
.
CreateOpNode
(
&
sum_op
);
for
(
auto
r
:
kv
.
second
)
{
sum_op_node
->
inputs
.
push_back
(
r
);
r
->
outputs
.
push_back
(
sum_op_node
);
}
auto
sum_out_var_node
=
result
.
CreateVarNode
(
kv
.
first
->
Var
());
sum_op_node
->
outputs
.
push_back
(
sum_out_var_node
);
sum_out_var_node
->
inputs
.
push_back
(
sum_op_node
);
created
[
sum_out_var_node
->
Name
()].
push_back
(
sum_out_var_node
);
OpDesc
scale_op
;
scale_op
.
SetType
(
"scale"
);
scale_op
.
SetInput
(
"X"
,
{
sum_out_var_node
->
Var
()
->
Name
()});
// NOTE: inplace scale.
scale_op
.
SetOutput
(
"Out"
,
{
sum_out_var_node
->
Var
()
->
Name
()});
scale_op
.
SetAttr
(
"scale"
,
static_cast
<
float
>
(
1.0
f
/
num_repeats
));
scale_op
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
static_cast
<
int
>
(
OpRole
::
kBackward
));
auto
scale_op_node
=
result
.
CreateOpNode
(
&
scale_op
);
scale_op_node
->
inputs
.
push_back
(
sum_out_var_node
);
sum_out_var_node
->
outputs
.
push_back
(
scale_op_node
);
auto
scale_out_var_node
=
result
.
CreateVarNode
(
sum_out_var_node
->
Var
());
scale_op_node
->
outputs
.
push_back
(
scale_out_var_node
);
scale_out_var_node
->
inputs
.
push_back
(
scale_op_node
);
created
[
scale_out_var_node
->
Name
()].
push_back
(
scale_out_var_node
);
}
// 6. add optimize ops
{
auto
copy_node
=
[
&
result
,
&
created
](
ir
::
Node
*
node
)
{
auto
op_node
=
result
.
CreateOpNode
(
node
->
Op
());
// copy op ins/outs
// NOTE: for send/recv ops, the OpDesc uses ctrldepvar to describe
// dependencies, so create those depvars if OpDesc have in/outs.
for
(
auto
in_node
:
node
->
inputs
)
{
if
(
in_node
->
IsCtrlVar
()
&&
!
in_node
->
Var
())
{
continue
;
}
ir
::
Node
*
var
=
nullptr
;
if
(
created
.
find
(
in_node
->
Name
())
==
created
.
end
())
{
var
=
result
.
CreateVarNode
(
in_node
->
Var
());
created
[
in_node
->
Name
()].
push_back
(
var
);
}
else
{
var
=
created
.
at
(
in_node
->
Name
()).
back
();
}
op_node
->
inputs
.
push_back
(
var
);
var
->
outputs
.
push_back
(
op_node
);
}
for
(
auto
out_node
:
node
->
outputs
)
{
if
(
out_node
->
IsCtrlVar
()
&&
!
out_node
->
Var
())
{
continue
;
}
auto
var
=
result
.
CreateVarNode
(
out_node
->
Var
());
created
[
out_node
->
Name
()].
push_back
(
var
);
op_node
->
outputs
.
push_back
(
var
);
var
->
inputs
.
push_back
(
op_node
);
}
};
for
(
auto
node
:
lr_ops
)
{
copy_node
(
node
);
}
for
(
auto
node
:
optimize_ops
)
{
copy_node
(
node
);
}
}
result
.
ResolveHazard
(
created
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
multi_batch_merge_pass
,
paddle
::
framework
::
ir
::
BatchMergePass
)
.
RequirePassAttr
(
paddle
::
framework
::
ir
::
kNumRepeats
);
paddle/fluid/framework/ir/multi_batch_merge_pass.h
0 → 100644
浏览文件 @
d26ff8cb
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// BatchMergePass is used to copy forward and backward ops for several
// times to run several batches to simulate large batch size training
// as if we have more than 1 GPUs.
// User can define how many batches to run, gradients will be merged
// through those repeats, and then do optimization using merged gradients.
// This pass is extremely useful when doing large batch-size distributed
// sync training, we can simulate even large batch size as if we have more
// GPUs.
class
BatchMergePass
:
public
Pass
{
public:
virtual
~
BatchMergePass
()
{}
protected:
std
::
unique_ptr
<
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
Graph
>
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
d26ff8cb
...
...
@@ -109,18 +109,9 @@ ParallelExecutor::ParallelExecutor(
if
(
member_
->
local_scopes_
.
size
()
!=
1
&&
local_scopes
.
empty
())
{
BCastParamsToDevices
(
bcast_vars
);
}
// Startup Program has been run. All local scopes has correct parameters.
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Create vars in each scope;
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
*
var
:
main_program
.
Block
(
0
).
AllVars
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
var
->
Name
();
var_infos
.
back
().
type_
=
var
->
GetType
();
var_infos
.
back
().
persistable_
=
var
->
Persistable
();
}
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
...
...
@@ -156,6 +147,17 @@ ParallelExecutor::ParallelExecutor(
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
);
#endif
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
}
}
// If the loss_var_name is given, the number of graph should be only one.
if
(
loss_var_name
.
size
())
{
PADDLE_ENFORCE_EQ
(
ir
::
GraphNum
(
*
graph
),
1
,
...
...
paddle/fluid/inference/api/helper.h
浏览文件 @
d26ff8cb
...
...
@@ -160,7 +160,8 @@ static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
double
latency
,
int
epoch
=
1
)
{
LOG
(
INFO
)
<<
"====== batch_size: "
<<
batch_size
<<
", repeat: "
<<
repeat
<<
", threads: "
<<
num_threads
<<
", thread id: "
<<
tid
<<
", latency: "
<<
latency
<<
"ms ======"
;
<<
", latency: "
<<
latency
<<
"ms, fps: "
<<
1
/
(
latency
/
1000.
f
)
<<
" ======"
;
if
(
epoch
>
1
)
{
int
samples
=
batch_size
*
epoch
;
LOG
(
INFO
)
<<
"====== sample number: "
<<
samples
...
...
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
d26ff8cb
...
...
@@ -139,6 +139,9 @@ void TestMultiThreadPrediction(
}
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
#ifdef PADDLE_WITH_MKLDNN
platform
::
set_cur_thread_id
(
static_cast
<
int
>
(
tid
)
+
1
);
#endif
// Each thread should have local inputs and outputs.
// The inputs of each thread are all the same.
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs_tid
=
inputs
;
...
...
paddle/fluid/operators/lars_momentum_op.cc
0 → 100644
浏览文件 @
d26ff8cb
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/lars_momentum_op.h"
#include "paddle/fluid/operators/momentum_op.h"
namespace
paddle
{
namespace
operators
{
class
LarsMomentumOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Param"
,
"(LoDTensor, default LoDTensor<float>) "
"Input parameter that has to be updated"
);
AddInput
(
"Grad"
,
"(LoDTensor, default LoDTensor<float>) "
"Input gradient of the parameter"
);
AddInput
(
"Velocity"
,
"(LoDTensor, default LoDTensor<float>) "
"Input velocity (corresponding to the parameter) "
"that has to be updated"
);
AddInput
(
"LearningRate"
,
"(LoDTensor, default LoDTensor<float>) "
"Input learning rate"
);
AddOutput
(
"ParamOut"
,
"(LoDTensor) This output is updated parameter. "
"It shared memory with Input(Param)."
);
AddOutput
(
"VelocityOut"
,
"(LoDTensor) This output is updated velocity. "
"It shared memory with Input(Velocity)."
);
AddAttr
<
float
>
(
"mu"
,
"(float) Momentum coefficient"
);
AddAttr
<
float
>
(
"lars_coeff"
,
"(float, default 0.001) LARS coefficient."
)
.
SetDefault
(
0.001
);
AddAttr
<
float
>
(
"lars_weight_decay"
,
"(float, default 0.0005) LARS weight decay"
)
.
SetDefault
(
0.0005
);
AddComment
(
R"DOC(
Lars Momentum Optimizer.
This optimizer use LARS (https://arxiv.org/abs/1708.03888) to optimize each
weight using a local learning rate:
$$
local\_lr = \eta *
\frac{\left \| param \right \|}{\left \| grad \right \| + \beta *\left \| param \right \|} \\
velocity = mu * velocity +
local\_lr * (grad + \beta * param) \\
param = param - velocity. \\
$$
Note that we use lars_weight_decay here to decay weights, you may need not to
use L2 regularizers in case of using LARS.
)DOC"
);
}
};
class
LarsMomentumOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lars_momentum
,
ops
::
MomentumOp
,
ops
::
LarsMomentumOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
LarsMomentumOpVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
lars_momentum
,
ops
::
LarsMomentumOpKernel
<
float
>
,
ops
::
LarsMomentumOpKernel
<
double
>
);
paddle/fluid/operators/lars_momentum_op.cu
0 → 100644
浏览文件 @
d26ff8cb
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lars_momentum_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
MomentumLarsKernel
(
const
T
*
p
,
const
T
*
g
,
const
T
*
v
,
const
T
*
learning_rate
,
const
T
mu
,
const
int64_t
num
,
const
T
lars_coeff
,
const
T
lars_weight_decay
,
const
T
*
p_norm
,
const
T
*
g_norm
,
T
*
p_out
,
T
*
v_out
)
{
T
lr
=
learning_rate
[
0
];
T
local_lr
=
learning_rate
[
0
];
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
num
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
p_norm
[
0
]
>
0
&&
g_norm
[
0
]
>
0
)
{
local_lr
=
lr
*
lars_coeff
*
p_norm
[
0
]
/
(
g_norm
[
0
]
+
lars_weight_decay
*
p_norm
[
0
]);
}
T
v_new
=
v
[
i
]
*
mu
+
local_lr
*
(
g
[
i
]
+
lars_weight_decay
*
p
[
i
]);
v_out
[
i
]
=
v_new
;
p_out
[
i
]
=
p
[
i
]
-
v_new
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
LarsMomentumOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"ParamOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"VelocityOut"
);
auto
param
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Param"
);
auto
velocity
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Velocity"
);
auto
grad
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Grad"
);
auto
learning_rate
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"LearningRate"
);
T
*
p_out
=
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
v_out
=
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
T
lars_coeff
=
ctx
.
Attr
<
float
>
(
"lars_coeff"
);
T
lars_weight_decay
=
ctx
.
Attr
<
float
>
(
"lars_weight_decay"
);
auto
*
p
=
param
->
data
<
T
>
();
auto
*
v
=
velocity
->
data
<
T
>
();
auto
*
g
=
grad
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
int
block
=
512
;
int
grid
=
(
param
->
numel
()
+
block
-
1
)
/
block
;
auto
eigen_p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
eigen_g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
// calculate norms using eigein and launch the kernel.
framework
::
Tensor
p_norm_t
,
g_norm_t
;
p_norm_t
.
Resize
({
1
});
g_norm_t
.
Resize
({
1
});
auto
*
p_norm_data
=
p_norm_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
g_norm_data
=
g_norm_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
ep_norm
=
framework
::
EigenScalar
<
T
>::
From
(
p_norm_t
);
auto
eg_norm
=
framework
::
EigenScalar
<
T
>::
From
(
g_norm_t
);
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
ep_norm
.
device
(
*
place
)
=
eigen_p
.
square
().
sum
().
sqrt
();
eg_norm
.
device
(
*
place
)
=
eigen_g
.
square
().
sum
().
sqrt
();
MomentumLarsKernel
<<<
grid
,
block
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
p
,
g
,
v
,
lr
,
mu
,
param
->
numel
(),
lars_coeff
,
lars_weight_decay
,
p_norm_data
,
g_norm_data
,
p_out
,
v_out
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
lars_momentum
,
ops
::
LarsMomentumOpCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LarsMomentumOpCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/lars_momentum_op.h
0 → 100644
浏览文件 @
d26ff8cb
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
LarsMomentumOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"ParamOut"
);
auto
velocity_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"VelocityOut"
);
auto
param
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Param"
);
auto
velocity
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Velocity"
);
auto
learning_rate
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"LearningRate"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
// only support dense for now.
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
());
auto
grad
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Grad"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
velocity_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
T
lars_coeff
=
ctx
.
Attr
<
float
>
(
"lars_coeff"
);
T
lars_weight_decay
=
ctx
.
Attr
<
float
>
(
"lars_weight_decay"
);
auto
p_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
v_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity_out
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
v
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
velocity
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
framework
::
Tensor
p_norm_t
,
g_norm_t
;
p_norm_t
.
Resize
({
1
});
g_norm_t
.
Resize
({
1
});
p_norm_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
g_norm_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
ep_norm
=
framework
::
EigenScalar
<
T
>::
From
(
p_norm_t
);
auto
eg_norm
=
framework
::
EigenScalar
<
T
>::
From
(
g_norm_t
);
ep_norm
=
p
.
square
().
sum
().
sqrt
();
eg_norm
=
g
.
square
().
sum
().
sqrt
();
T
local_lr
=
lr
[
0
];
if
(
ep_norm
(
0
)
>
0
&&
eg_norm
(
0
)
>
0
)
{
local_lr
=
lr
[
0
]
*
lars_coeff
*
ep_norm
(
0
)
/
(
eg_norm
(
0
)
+
lars_weight_decay
*
ep_norm
(
0
));
}
v_out
=
v
*
mu
+
local_lr
*
(
g
+
lars_weight_decay
*
p
);
p_out
=
p
-
v_out
;
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/momentum_op.cc
浏览文件 @
d26ff8cb
...
...
@@ -19,54 +19,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
class
MomentumOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(param) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(grad) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Velocity"
),
"Input(velocity) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"VelocityOut"
),
"Output(VelocityOut) of Momentum should not be null."
);
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
if
(
ctx
->
GetInputsVarType
(
"Grad"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad input of MomentumOp should have the same dimension."
);
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Velocity"
),
"Param and Velocity of MomentumOp should have the same dimension."
);
}
PADDLE_ENFORCE_EQ
(
framework
::
product
(
ctx
->
GetInputDim
(
"LearningRate"
)),
1
,
"Learning_rate should be a scalar"
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"VelocityOut"
,
param_dim
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
class
MomentumOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
...
...
paddle/fluid/operators/momentum_op.h
浏览文件 @
d26ff8cb
...
...
@@ -28,6 +28,54 @@ using framework::SelectedRows;
struct
NoNesterov
;
struct
UseNesterov
;
class
MomentumOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(param) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(grad) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Velocity"
),
"Input(velocity) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"VelocityOut"
),
"Output(VelocityOut) of Momentum should not be null."
);
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
if
(
ctx
->
GetInputsVarType
(
"Grad"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad input of MomentumOp should have the same dimension."
);
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Velocity"
),
"Param and Velocity of MomentumOp should have the same dimension."
);
}
PADDLE_ENFORCE_EQ
(
framework
::
product
(
ctx
->
GetInputDim
(
"LearningRate"
)),
1
,
"Learning_rate should be a scalar"
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"VelocityOut"
,
param_dim
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Param"
));
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
CPUDenseMomentumFunctor
{
private:
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
d26ff8cb
...
...
@@ -296,38 +296,73 @@ Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext
::
MKLDNNDeviceContext
(
CPUPlace
place
)
:
CPUDeviceContext
(
place
),
engine_
(
mkldnn
::
engine
::
cpu
,
0
),
p_blobs_
()
{
p_blobs_
.
reset
(
new
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
void
>>
());
:
CPUDeviceContext
(
place
),
engine_
(
mkldnn
::
engine
::
cpu
,
0
),
p_blobmap_
()
{
p_blobmap_
.
reset
(
new
BlobMap
());
p_mutex_
.
reset
(
new
std
::
mutex
());
}
namespace
{
// Current thread's id.
thread_local
int
cur_thread_id
=
0
;
}
void
set_cur_thread_id
(
int
tid
)
{
cur_thread_id
=
tid
;
}
int
get_cur_thread_id
(
void
)
{
return
cur_thread_id
;
}
void
MKLDNNDeviceContext
::
SetBlob
(
const
std
::
string
&
name
,
std
::
shared_ptr
<
void
>
data
)
const
{
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
void
>>*
p
;
p
=
p_blobs_
.
get
();
BlobMap
*
pMap
=
p_blobmap_
.
get
();
std
::
shared_ptr
<
KeyBlob
>
pBlob
=
nullptr
;
int
tid
=
platform
::
get_cur_thread_id
();
auto
it
=
p
->
find
(
name
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
p_mutex_
.
get
()
);
if
(
it
==
p
->
end
())
{
(
*
p
)[
name
]
=
data
;
// create new blob
// Find KeyBlob for current thread
auto
map_it
=
pMap
->
find
(
tid
);
if
(
map_it
==
pMap
->
end
())
{
// 1st time to set blob in current thread
pBlob
=
std
::
shared_ptr
<
KeyBlob
>
(
new
KeyBlob
());
(
*
pMap
)[
tid
]
=
pBlob
;
}
else
{
it
->
second
=
data
;
// set data to existing blob
pBlob
=
map_it
->
second
;
}
// Find Key in found (or newly created) KeyBlob
auto
key_it
=
pBlob
->
find
(
name
);
if
(
key_it
==
pBlob
->
end
())
{
(
*
pBlob
)[
name
]
=
data
;
// create new blob
}
else
{
key_it
->
second
=
data
;
// set data to existing blob
}
// lock will be automatically released when out of scope
return
;
}
std
::
shared_ptr
<
void
>
MKLDNNDeviceContext
::
GetBlob
(
const
std
::
string
&
name
)
const
{
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
void
>>*
p
;
p
=
p_blobs_
.
get
()
;
BlobMap
*
pMap
=
p_blobmap_
.
get
()
;
std
::
shared_ptr
<
KeyBlob
>
pBlob
=
nullptr
;
auto
it
=
p
->
find
(
name
);
int
tid
=
platform
::
get_cur_thread_id
(
);
if
(
it
!=
p
->
end
())
{
return
it
->
second
;
}
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
p_mutex_
.
get
());
// Find KeyBlob for current thread firstly
auto
map_it
=
pMap
->
find
(
tid
);
if
(
map_it
==
pMap
->
end
())
return
nullptr
;
pBlob
=
map_it
->
second
;
// Find Blob via name
auto
key_it
=
pBlob
->
find
(
name
);
if
(
key_it
==
pBlob
->
end
())
return
nullptr
;
return
nullptr
;
// lock will be automatically released when out of scope
return
key_it
->
second
;
}
#endif
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
d26ff8cb
...
...
@@ -176,6 +176,12 @@ struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
#endif
#ifdef PADDLE_WITH_MKLDNN
using
KeyBlob
=
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
void
>>
;
using
BlobMap
=
std
::
unordered_map
<
int
,
std
::
shared_ptr
<
KeyBlob
>>
;
void
set_cur_thread_id
(
int
);
int
get_cur_thread_id
(
void
);
class
MKLDNNDeviceContext
:
public
CPUDeviceContext
{
public:
explicit
MKLDNNDeviceContext
(
CPUPlace
place
);
...
...
@@ -191,8 +197,8 @@ class MKLDNNDeviceContext : public CPUDeviceContext {
private:
mkldnn
::
engine
engine_
;
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
void
>>>
p_blobs
_
;
std
::
shared_ptr
<
BlobMap
>
p_blobmap_
;
std
::
shared_ptr
<
std
::
mutex
>
p_mutex
_
;
};
#endif
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
d26ff8cb
...
...
@@ -645,9 +645,13 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
ir
::
Pass
,
std
::
shared_ptr
<
ir
::
Pass
>>
pass
(
m
,
"Pass"
);
pass
.
def
(
py
::
init
())
.
def
(
"set_str"
,
[](
ir
::
Pass
&
self
,
const
std
::
string
&
name
,
const
std
::
string
&
attr
)
{
.
def
(
"set_str"
,
[](
ir
::
Pass
&
self
,
const
std
::
string
&
name
,
const
std
::
string
&
attr
)
{
self
.
Set
<
std
::
string
>
(
name
,
new
std
::
string
(
attr
));
})
.
def
(
"set_int"
,
[](
ir
::
Pass
&
self
,
const
std
::
string
&
name
,
int
val
)
{
self
.
Set
<
const
int
>
(
name
,
new
int
(
val
));
});
py
::
class_
<
ir
::
PassBuilder
,
std
::
shared_ptr
<
ir
::
PassBuilder
>>
pb
(
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
d26ff8cb
...
...
@@ -27,7 +27,7 @@ from . import nn
from
.
import
ops
from
.
import
tensor
from
..initializer
import
init_on_cpu
from
..framework
import
default_main_program
,
Parameter
,
unique_name
from
..framework
import
default_main_program
,
Parameter
,
unique_name
,
name_scope
__all__
=
[
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
...
...
@@ -332,6 +332,8 @@ def append_LARS(params_grads, learning_rate, weight_decay):
return
grad_norm
+
weight_decay
*
param_norm
for
param
,
grad
in
params_grads
:
with
param
.
block
.
program
.
optimized_guard
(
[
param
,
grad
]),
name_scope
(
"optimizer"
):
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
param_norm
=
ops
.
sqrt
(
nn
.
reduce_sum
(
input
=
ops
.
square
(
param
)))
grad_norm
=
ops
.
sqrt
(
nn
.
reduce_sum
(
input
=
ops
.
square
(
grad
)))
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
d26ff8cb
...
...
@@ -14,6 +14,7 @@
from
__future__
import
print_function
import
re
import
sys
from
collections
import
defaultdict
from
paddle.fluid.framework
import
Program
,
Variable
,
name_scope
,
default_main_program
from
.
import
framework
...
...
@@ -32,7 +33,8 @@ __all__ = [
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'Ftrl'
,
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
,
'AdamaxOptimizer'
,
'DecayedAdagradOptimizer'
,
'RMSPropOptimizer'
,
'FtrlOptimizer'
,
'Adadelta'
,
'ModelAverage'
,
'RMSPropOptimizer'
'FtrlOptimizer'
,
'Adadelta'
,
'ModelAverage'
,
'LarsMomentum'
,
'LarsMomentumOptimizer'
]
...
...
@@ -105,7 +107,6 @@ class Optimizer(object):
param
=
param_and_grad
[
0
]
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
if
type
(
param_lr
)
==
Variable
:
print
(
"returns updated param lr "
,
param_lr
)
return
param_lr
else
:
if
param_lr
==
1.0
:
...
...
@@ -400,6 +401,91 @@ class MomentumOptimizer(Optimizer):
return
momentum_op
class
LarsMomentumOptimizer
(
Optimizer
):
"""
Momentum optimizer with LARS support
The update equations are as follows:
.. math::
& local\_learning\_rate = learning\_rate * lars\_coeff *
\\
\\
frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}
& velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)
& param = param - velocity
Args:
learning_rate (float|Variable): the learning rate used to update parameters.
\
Can be a float value or a Variable with one float value as data element.
momentum (float): momentum factor
lars_coeff (float): defines how much we trust the layer to change its weights.
lars_weight_decay (float): weight decay coefficient for decaying using LARS.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
optimizer.minimize(cost)
"""
_velocity_acc_str
=
"velocity"
def
__init__
(
self
,
learning_rate
,
momentum
,
lars_coeff
=
0.001
,
lars_weight_decay
=
0.0005
,
regularization
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
momentum
is
not
None
super
(
LarsMomentumOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"lars_momentum"
self
.
_momentum
=
momentum
self
.
_lars_coeff
=
float
(
lars_coeff
)
self
.
_lars_weight_decay
=
float
(
lars_weight_decay
)
def
_create_accumulators
(
self
,
block
,
parameters
):
assert
isinstance
(
block
,
framework
.
Block
)
for
p
in
parameters
:
self
.
_add_accumulator
(
self
.
_velocity_acc_str
,
p
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
assert
isinstance
(
block
,
framework
.
Block
)
velocity_acc
=
self
.
_get_accumulator
(
self
.
_velocity_acc_str
,
param_and_grad
[
0
])
# create the momentum optimize op
momentum_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"Velocity"
:
velocity_acc
,
"LearningRate"
:
self
.
_create_param_lr
(
param_and_grad
)
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"VelocityOut"
:
velocity_acc
},
attrs
=
{
"mu"
:
self
.
_momentum
,
"lars_coeff"
:
self
.
_lars_coeff
,
"lars_weight_decay"
:
self
.
_lars_weight_decay
})
return
momentum_op
class
AdagradOptimizer
(
Optimizer
):
"""
**Adaptive Gradient Algorithm (Adagrad)**
...
...
@@ -1221,6 +1307,7 @@ DecayedAdagrad = DecayedAdagradOptimizer
Adadelta
=
AdadeltaOptimizer
RMSProp
=
RMSPropOptimizer
Ftrl
=
FtrlOptimizer
LarsMomentum
=
LarsMomentumOptimizer
class
ModelAverage
(
Optimizer
):
...
...
python/paddle/fluid/tests/unittests/dist_mnist.py
浏览文件 @
d26ff8cb
...
...
@@ -95,7 +95,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
t
rain
(),
batch_size
=
batch_size
)
paddle
.
dataset
.
mnist
.
t
est
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
...
...
python/paddle/fluid/tests/unittests/dist_mnist_batch_merge.py
0 → 100644
浏览文件 @
d26ff8cb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
from
dist_mnist
import
cnn_model
DTYPE
=
"float32"
def
test_merge_reader
(
repeat_batch_size
=
8
):
orig_reader
=
paddle
.
dataset
.
mnist
.
test
()
record_batch
=
[]
b
=
0
for
d
in
orig_reader
():
if
b
>=
repeat_batch_size
:
break
record_batch
.
append
(
d
)
b
+=
1
while
True
:
for
d
in
record_batch
:
yield
d
class
TestDistMnist2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
)
# Reader
train_reader
=
paddle
.
batch
(
test_merge_reader
,
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
if
__name__
==
"__main__"
:
runtime_main
(
TestDistMnist2x2
)
python/paddle/fluid/tests/unittests/dist_mnist_lars.py
0 → 100644
浏览文件 @
d26ff8cb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
from
dist_mnist
import
cnn_model
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
class
TestDistMnist2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
LarsMomentumOptimizer
(
learning_rate
=
0.001
,
momentum
=
0.9
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
if
__name__
==
"__main__"
:
runtime_main
(
TestDistMnist2x2
)
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
d26ff8cb
...
...
@@ -26,10 +26,11 @@ import argparse
import
paddle.fluid
as
fluid
RUN_STEP
=
10
DEFAULT_BATCH_SIZE
=
2
class
TestDistRunnerBase
(
object
):
def
get_model
(
self
,
batch_size
=
2
):
def
get_model
(
self
,
batch_size
=
DEFAULT_BATCH_SIZE
):
raise
NotImplementedError
(
"get_model should be implemented by child classes."
)
...
...
@@ -48,8 +49,7 @@ class TestDistRunnerBase(object):
return
t
def
run_pserver
(
self
,
args
):
self
.
get_model
(
batch_size
=
2
)
self
.
get_model
(
batch_size
=
args
.
batch_size
)
# NOTE: pserver should not call memory optimize
t
=
self
.
get_transpiler
(
args
.
trainer_id
,
fluid
.
default_main_program
(),
args
.
endpoints
,
...
...
@@ -65,7 +65,7 @@ class TestDistRunnerBase(object):
def
run_trainer
(
self
,
args
):
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
\
self
.
get_model
(
batch_size
=
2
)
self
.
get_model
(
batch_size
=
args
.
batch_size
)
if
args
.
mem_opt
:
fluid
.
memory_optimize
(
fluid
.
default_main_program
(),
skip_grads
=
True
)
...
...
@@ -92,6 +92,11 @@ class TestDistRunnerBase(object):
strategy
.
allow_op_delay
=
False
build_stra
=
fluid
.
BuildStrategy
()
if
args
.
batch_merge_repeat
>
1
:
pass_builder
=
build_stra
.
_create_passes_from_strategy
()
mypass
=
pass_builder
.
insert_pass
(
len
(
pass_builder
.
all_passes
())
-
2
,
"multi_batch_merge_pass"
)
mypass
.
set_int
(
"num_repeats"
,
args
.
batch_merge_repeat
)
if
args
.
use_reduce
:
build_stra
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
...
...
@@ -145,6 +150,9 @@ def runtime_main(test_class):
parser
.
add_argument
(
'--use_reduce'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_reader_alloc'
,
action
=
'store_true'
,
required
=
False
,
default
=
True
)
parser
.
add_argument
(
'--batch_size'
,
required
=
False
,
type
=
int
,
default
=
2
)
parser
.
add_argument
(
'--batch_merge_repeat'
,
required
=
False
,
type
=
int
,
default
=
1
)
args
=
parser
.
parse_args
()
...
...
@@ -244,9 +252,18 @@ class TestDistBase(unittest.TestCase):
(
e
,
retry_times
))
retry_times
-=
1
def
_run_local
(
self
,
model
,
envs
,
check_error_log
):
def
_run_local
(
self
,
model
,
envs
,
check_error_log
=
False
,
batch_size
=
DEFAULT_BATCH_SIZE
,
batch_merge_repeat
=
1
):
cmd
=
"%s %s --role trainer"
%
(
self
.
_python_interp
,
model
)
if
batch_size
!=
DEFAULT_BATCH_SIZE
:
cmd
+=
" --batch_size %d"
%
batch_size
if
batch_merge_repeat
>
1
:
cmd
+=
" --batch_merge_repeat %d"
%
batch_merge_repeat
if
self
.
__use_cuda
:
cmd
+=
" --use_cuda"
...
...
python/paddle/fluid/tests/unittests/test_dist_mnist.py
浏览文件 @
d26ff8cb
...
...
@@ -26,6 +26,15 @@ class TestDistMnist2x2(TestDistBase):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-5
)
class
TestDistMnist2x2Lars
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_mnist_lars.py"
,
delta
=
1e-5
)
class
TestDistMnist2x2WithMemopt
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
...
...
python/paddle/fluid/tests/unittests/test_dist_mnist_batch_merge.py
0 → 100644
浏览文件 @
d26ff8cb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
test_dist_base
import
TestDistBase
import
os
class
TestDistMnist2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_mnist_batch_merge.py"
,
delta
=
1e-5
)
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
,
need_envs
=
{}):
# TODO(typhoonzero): should auto adapt GPU count on the machine.
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_cudnn_deterministic"
:
"1"
,
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"7"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
no_merge_losses
=
self
.
_run_local
(
model_file
,
required_envs
,
check_error_log
=
check_error_log
,
batch_size
=
4
)
batch_merge_losses
=
self
.
_run_local
(
model_file
,
required_envs
,
check_error_log
=
check_error_log
,
batch_size
=
2
,
batch_merge_repeat
=
2
)
# Ensure both result have values.
self
.
assertGreater
(
len
(
no_merge_losses
),
1
)
self
.
assertEqual
(
len
(
no_merge_losses
),
len
(
batch_merge_losses
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_momentum_op.py
浏览文件 @
d26ff8cb
...
...
@@ -90,6 +90,45 @@ class TestMomentumOp2(OpTest):
self
.
check_output
()
class
TestLarsMomentumOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"lars_momentum"
param
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
velocity
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
learning_rate
=
np
.
array
([
0.001
]).
astype
(
"float32"
)
mu
=
0.0001
lars_coeff
=
0.001
lars_weight_decay
=
0.0005
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Velocity'
:
velocity
,
'LearningRate'
:
learning_rate
}
self
.
attrs
=
{
'mu'
:
mu
,
'lars_coeff'
:
lars_coeff
,
'lars_weight_decay'
:
lars_weight_decay
}
pnorm
=
np
.
sqrt
(
np
.
square
(
param
).
sum
())
gnorm
=
np
.
sqrt
(
np
.
square
(
grad
).
sum
())
local_lr
=
learning_rate
*
lars_coeff
*
pnorm
/
(
gnorm
+
lars_weight_decay
*
param
)
velocity_out
=
mu
*
velocity
+
local_lr
*
(
grad
+
lars_weight_decay
*
param
)
param_out
=
param
-
velocity_out
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'VelocityOut'
:
velocity_out
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSparseMomentumOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
use_nesterov
=
False
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
d26ff8cb
...
...
@@ -1433,7 +1433,7 @@ to transpile() call.")
elif
op_type
==
"adamax"
:
if
varkey
in
[
"Moment"
,
"InfNorm"
]:
return
param_shape
elif
op_type
==
"momentum"
:
elif
op_type
in
[
"momentum"
,
"lars_momentum"
]
:
if
varkey
==
"Velocity"
:
return
param_shape
elif
op_type
==
"rmsprop"
:
...
...
@@ -1444,6 +1444,10 @@ to transpile() call.")
return
param_shape
elif
op_type
==
"sgd"
:
pass
else
:
raise
ValueError
(
"Not supported optimizer for distributed training: %s"
%
op_type
)
return
orig_shape
def
_get_varname_parts
(
self
,
varname
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录