From d266bac9430b5e1f1aecca2b2f0f7a98ffc082c7 Mon Sep 17 00:00:00 2001 From: xuezhong Date: Fri, 22 Feb 2019 08:55:17 +0000 Subject: [PATCH] remove test temporal test=develop --- .../tests/unittests/test_sample_logits.py | 420 ------------------ .../paddle/fluid/tests/unittests/testsuite.py | 18 - 2 files changed, 438 deletions(-) delete mode 100644 python/paddle/fluid/tests/unittests/test_sample_logits.py diff --git a/python/paddle/fluid/tests/unittests/test_sample_logits.py b/python/paddle/fluid/tests/unittests/test_sample_logits.py deleted file mode 100644 index ea47a546ac1..00000000000 --- a/python/paddle/fluid/tests/unittests/test_sample_logits.py +++ /dev/null @@ -1,420 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import unittest -import numpy as np -from op_test import OpTest - - -class Sampler(object): - def __init__(self, range, seed): - self.range_ = range - self.seed_ = seed - np.random.seed(self.seed_) - - def sample(self): - rasie("No Implementation!") - - def probability(self, value): - raise ("No Implementation!") - - -class LogUniformSampler(Sampler): - def __init__(self, range, seed): - super(LogUniformSampler, self).__init__(range, seed) - self.log_range_ = np.log(self.range_ + 1) - - def sample(self): - value = int(np.exp(np.random.uniform(0.0, self.log_range_)) - 1) - return value % self.range_ - - def probability(self, value): - return np.log((value + 2.0) / (value + 1.0)) / self.log_range_ - - -def adjust_prob(prob, num_samples, num_tries): - if num_samples == num_tries: - return prob * num_samples - else: - return -np.expm1(num_tries * np.log1p(-prob)) - - -def take_along_axis1(array, index): - out = np.zeros_like(index, dtype=array.dtype) - n_row, n_col = index.shape - for i in range(n_row): - for j in range(n_col): - out[i, j] = array[i, index[i, j]] - return out - - -def sample_prob(sampler, num_samples, labels): - batch_size, num_true = labels.shape - num_sampled_classes = num_samples + num_true - - samples = np.zeros((batch_size, num_sampled_classes), dtype=np.int64) - probabilities = np.zeros( - (batch_size, num_sampled_classes), dtype=np.float64) - - tmp_samples = set() - num_tries = 0 - j = 0 - while j < num_true: - for i in range(batch_size): - samples[i, j] = labels[i, j] - probabilities[i, j] = sampler.probability(labels[i, j]) - j += 1 - while j < num_sampled_classes: - v = sampler.sample() - num_tries += 1 - if v not in tmp_samples: - tmp_samples.add(v) - for i in range(batch_size): - samples[i, j] = v - probabilities[i, j] = sampler.probability(v) - j += 1 - for k in range(num_sampled_classes): - for i in range(batch_size): - probabilities[i, k] = adjust_prob(probabilities[i, k], num_samples, - num_tries) - return (samples, probabilities) - - -def compute_remove_accidental_hits(sampled_logits, samples, num_true): - batch_size, num_sampled_classes = samples.shape - for i in range(batch_size): - true_labels = set(samples[i, np.arange(num_true)]) - for j in range(num_true, num_sampled_classes): - if samples[i, j] in true_labels: - sampled_logits[i, j] -= 1e20 - - -def sample_logits(logits, - labels, - num_samples, - seed, - remove_accidental_hits, - use_customized_samples, - customized_samples=None, - customized_probabilities=None): - batch_size, num_classes = logits.shape - num_true = labels.shape[1] - num_sampled_classes = num_true + num_samples - - if use_customized_samples: - samples = customized_samples - probabilities = customized_probabilities - else: - sampler = LogUniformSampler(num_classes, seed) - samples, probabilities = sample_prob(sampler, num_samples, labels) - sampled_logits = take_along_axis1(logits, samples) - - if remove_accidental_hits: - compute_remove_accidental_hits(sampled_logits, samples, num_true) - sampled_logits -= np.log(probabilities) - sampled_labels = np.tile(np.arange(num_true), (batch_size, 1)) - return (sampled_logits, samples, sampled_labels, probabilities) - - -class TestSampleLogitsOp(OpTest): - ''' - Test SampleLogitsOp, but with random results precomputed - in python and just test the non-random part. - ''' - - def generate_data(self, logits, labels, num_samples, seed, - remove_accidental_hits, use_customized_samples, - customized_samples, customized_probabilities): - self.attrs = { - 'num_samples': num_samples, - 'use_customized_samples': use_customized_samples, - 'remove_accidental_hits': remove_accidental_hits, - 'seed': seed - } - self.inputs = { - 'Logits': logits, - 'Labels': labels, - 'CustomizedSamples': customized_samples, - 'CustomizedProbabilities': customized_probabilities - } - - def set_data(self, batch_size, num_classes, num_true, num_samples, seed, - remove_accidental_hits): - logits = np.random.randn(batch_size, num_classes) - labels = np.stack([ - np.random.choice( - range(0, num_classes), num_true, replace=False) - for _ in range(batch_size) - ]) - sampler = LogUniformSampler(num_classes, seed) - customized_samples, customized_probabilities = \ - sample_prob(sampler, num_samples, labels) - use_customized_samples = True - remove_accidental_hits = remove_accidental_hits - self.generate_data(logits, labels, num_samples, seed, - remove_accidental_hits, use_customized_samples, - customized_samples, customized_probabilities) - - def compute(self): - out = sample_logits(self.inputs["Logits"], self.inputs["Labels"], - self.attrs["num_samples"], self.attrs["seed"], - self.attrs["remove_accidental_hits"], - self.attrs["use_customized_samples"], - self.inputs["CustomizedSamples"], - self.inputs["CustomizedProbabilities"]) - - self.outputs = { - 'SampledLogits': out[0], - 'Samples': out[1], - 'SampledLabels': out[2], - 'Probabilities': out[3] - } - - def setUp(self): - self.op_type = 'sample_logits' - batch_size = 5 - num_classes = 20 - num_true = 5 - num_samples = 10 - seed = 10 - remove_accidental_hits = True - self.set_data(batch_size, num_classes, num_true, num_samples, seed, - remove_accidental_hits) - self.compute() - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - pass - self.check_grad( - ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02) - - -class TestSampleLogitsOp2(TestSampleLogitsOp): - def setUp(self): - self.op_type = 'sample_logits' - batch_size = 5 - num_classes = 20 - num_true = 5 - num_samples = 10 - seed = 10 - remove_accidental_hits = False - self.set_data(batch_size, num_classes, num_true, num_samples, seed, - remove_accidental_hits) - self.compute() - - -class TestSampleLogitsOp3(TestSampleLogitsOp): - def setUp(self): - self.op_type = 'sample_logits' - batch_size = 5 - num_classes = 100 - num_true = 5 - num_samples = 25 - seed = 10 - remove_accidental_hits = True - self.set_data(batch_size, num_classes, num_true, num_samples, seed, - remove_accidental_hits) - self.compute() - - -class TestSampleLogitsOp4(TestSampleLogitsOp): - def setUp(self): - self.op_type = 'sample_logits' - batch_size = 5 - num_classes = 100 - num_true = 5 - num_samples = 25 - seed = 10 - remove_accidental_hits = False - self.set_data(batch_size, num_classes, num_true, num_samples, seed, - remove_accidental_hits) - self.compute() - - -class TestSampleLogitsOpV2(OpTest): - ''' - Test SampleLogitsOp, but with random results precomputed - in C++ and copied to python and just test the non-random part. - ''' - - def generate_data(self, logits, labels, num_samples, seed, - remove_accidental_hits, use_customized_samples): - self.attrs = { - 'num_samples': num_samples, - 'use_customized_samples': use_customized_samples, - 'remove_accidental_hits': remove_accidental_hits, - 'seed': seed - } - self.inputs = {'Logits': logits, 'Labels': labels.astype(np.int64)} - - def set_data(self, num_classes, num_samples, seed, remove_accidental_hits): - labels = np.array([[6, 12, 15, 5, 1], [0, 9, 4, 1, 10], - [0, 2, 10, 16, 13], [14, 4, 7, 2, 1], - [3, 18, 11, 8, 14]]) - batch_size, num_true = labels.shape - use_customized_samples = False - - num_sampled_classes = num_samples + num_true - logits = np.random.randn(batch_size, num_classes) - - remove_accidental_hits = remove_accidental_hits - self.generate_data(logits, labels, num_samples, seed, - remove_accidental_hits, use_customized_samples) - - # python and c++ use different random generator - # use fetched samples from c++ for python code - self.fetched_samples = np.array( - [[6, 12, 15, 5, 1, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], - [0, 9, 4, 1, 10, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], - [0, 2, 10, 16, 13, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], - [14, 4, 7, 2, 1, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4], - [3, 18, 11, 8, 14, 5, 15, 1, 0, 8, 3, 14, 2, 13, 4]]) - fectched_num_tries = 21 - - probabilities = np.zeros( - (batch_size, num_sampled_classes), dtype=np.float64) - - sampler = LogUniformSampler(num_classes, seed) - for j in range(num_sampled_classes): - for i in range(batch_size): - probabilities[i, j] = sampler.probability(self.fetched_samples[ - i, j]) - probabilities[i, j] = adjust_prob( - probabilities[i, j], num_samples, fectched_num_tries) - self.probabilities = probabilities - - def compute(self): - out = sample_logits(self.inputs["Logits"], self.inputs["Labels"], - self.attrs["num_samples"], self.attrs["seed"], - self.attrs["remove_accidental_hits"], True, - self.fetched_samples.astype(np.int64), - self.probabilities) - self.outputs = { - 'SampledLogits': out[0], - 'Samples': out[1], - 'SampledLabels': out[2], - 'Probabilities': out[3] - } - - def setUp(self): - self.op_type = 'sample_logits' - num_samples = 10 - num_classes = 20 - seed = 10 - remove_accidental_hits = True - - self.set_data(num_classes, num_samples, seed, remove_accidental_hits) - self.compute() - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - pass - self.check_grad( - ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02) - - -class TestSampleLogitsOpV3(OpTest): - ''' - Test SampleLogitsOp, but with random results precomputed - in C++ and copied to python and just test the non-random part. - ''' - - def generate_data(self, logits, labels, num_samples, seed, - remove_accidental_hits, use_customized_samples): - self.attrs = { - 'num_samples': num_samples, - 'use_customized_samples': use_customized_samples, - 'remove_accidental_hits': remove_accidental_hits, - 'seed': seed - } - self.inputs = {'Logits': logits, 'Labels': labels.astype(np.int64)} - - def set_data(self, num_classes, num_samples, seed, remove_accidental_hits): - labels = [52, 2, 2, 17, 96, 2, 17, 96, 37, 2] - samples = [ - 3, 12, 74, 28, 1, 79, 2, 42, 8, 13, 0, 18, 88, 49, 14, 46, 39, 57, - 26, 75, 9, 50, 16, 66, 6, 23, 5, 11, 17, 54, 35, 20, 53, 10, 47, 80, - 38, 7, 4, 31, 15, 19, 58, 22, 34, 41, 73, 62, 95, 25, 70, 37, 30, - 65, 27, 51, 43, 32, 99, 21, 56, 29, 40, 69, 55, 98, 77, 67, 33, 89, - 63, 81, 59, 48, 91, 68, 72, 61, 52, 86 - ] - - self.fetched_samples = np.array([[x] + samples for x in labels]) - fectched_num_tries = 323 - - labels = self.fetched_samples[:, 0:1] - batch_size, num_true = labels.shape - use_customized_samples = False - - num_sampled_classes = num_samples + num_true - logits = np.random.randn(batch_size, num_classes) - - remove_accidental_hits = remove_accidental_hits - self.generate_data(logits, labels, num_samples, seed, - remove_accidental_hits, use_customized_samples) - - # python and c++ use different random generator - # use fetched samples from c++ for python code - probabilities = np.zeros( - (batch_size, num_sampled_classes), dtype=np.float64) - - sampler = LogUniformSampler(num_classes, seed) - for j in range(num_sampled_classes): - for i in range(batch_size): - probabilities[i, j] = sampler.probability(self.fetched_samples[ - i, j]) - probabilities[i, j] = adjust_prob( - probabilities[i, j], num_samples, fectched_num_tries) - self.probabilities = probabilities - - def compute(self): - out = sample_logits(self.inputs["Logits"], self.inputs["Labels"], - self.attrs["num_samples"], self.attrs["seed"], - self.attrs["remove_accidental_hits"], True, - self.fetched_samples.astype(np.int64), - self.probabilities) - self.outputs = { - 'SampledLogits': out[0], - 'Samples': out[1], - 'SampledLabels': out[2], - 'Probabilities': out[3] - } - - def setUp(self): - self.op_type = 'sample_logits' - num_samples = 80 - num_classes = 100 - seed = 123 - remove_accidental_hits = True - - self.set_data(num_classes, num_samples, seed, remove_accidental_hits) - self.compute() - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - pass - self.check_grad( - ["Logits"], ["SampledLogits", "Samples"], max_relative_error=0.02) - - -if __name__ == '__main__': - unittest.main() diff --git a/python/paddle/fluid/tests/unittests/testsuite.py b/python/paddle/fluid/tests/unittests/testsuite.py index 1fe62fa4a65..c4eb26893cd 100644 --- a/python/paddle/fluid/tests/unittests/testsuite.py +++ b/python/paddle/fluid/tests/unittests/testsuite.py @@ -156,26 +156,8 @@ def append_input_output(block, op_proto, np_list, is_input, dtype): return var_dict -def var_cast(block, input): - if input.dtype == core.VarDesc.VarType.FP32 or input.dtype == core.VarDesc.VarType.FP32: - return input - out = block.create_var(dtype="float32", shape=[1]) - op = block.append_op( - inputs={"X": input}, - outputs={"Out": out}, - type='cast', - attrs={ - 'out_dtype': core.VarDesc.VarType.FP32, - 'in_dtype': input.dtype - }) - op.desc.infer_var_type(block.desc) - op.desc.infer_shape(block.desc) - return out - - def append_loss_ops(block, output_names): mean_inputs = list(map(block.var, output_names)) - mean_inputs = [var_cast(block, x) for x in mean_inputs] if len(mean_inputs) == 1: loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1]) -- GitLab