diff --git a/paddle/fluid/operators/slice_op.cc b/paddle/fluid/operators/slice_op.cc index 61bb445e8b4c6a71e9b1a6a0bcf02a31ab271d0a..4bd23d594134f227e86b01fd75b7e202dd76c11b 100644 --- a/paddle/fluid/operators/slice_op.cc +++ b/paddle/fluid/operators/slice_op.cc @@ -95,23 +95,26 @@ of that dimension. If the value passed to start or end is larger than the n (the number of elements in this dimension), it represents n. For slicing to the end of a dimension with unknown size, it is recommended to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1]. - - Example 1: - Given: - data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] - axes = [0, 1] - starts = [1, 0] - ends = [2, 3] - Then: - result = [ [5, 6, 7], ] - - Example 2: - Given: - data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] - starts = [0, 1] - ends = [-1, 1000] - Then: - result = [ [2, 3, 4], ] +Following examples will explain how slice works: + + .. code-block:: text + + Cast1: + Given: + data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] + axes = [0, 1] + starts = [1, 0] + ends = [2, 3] + Then: + result = [ [5, 6, 7], ] + + Cast2: + Given: + data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] + starts = [0, 1] + ends = [-1, 1000] + Then: + result = [ [2, 3, 4], ] )DOC"); } }; diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 8c663bee7cbde66a793d2457f5fa7d3ae553e183..a3b2d2b777fdae6a24c77636f823576b3f5ca718 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1373,10 +1373,8 @@ def conv2d(input, Examples: .. code-block:: python - data = fluid.layers.data( - name='data', shape=[3, 32, 32], dtype='float32') - conv2d = fluid.layers.conv2d( - input=data, num_filters=2, filter_size=3, act="relu") + data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') + conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu") """ num_channels = input.shape[1] @@ -1478,8 +1476,7 @@ def conv3d(input, * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. - * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be - different. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: @@ -1541,10 +1538,8 @@ def conv3d(input, Examples: .. code-block:: python - data = fluid.layers.data( - name='data', shape=[3, 12, 32, 32], dtype='float32') - conv2d = fluid.layers.conv3d( - input=data, num_filters=2, filter_size=3, act="relu") + data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32') + conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu") """ l_type = 'conv3d' @@ -2182,32 +2177,36 @@ def conv2d_transpose(input, represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein `_. + If bias attribution and activation type are provided, bias is added to + the output of the convolution, and the corresponding activation function + is applied to the final result. For each input :math:`X`, the equation is: .. math:: - Out = W \\ast X + Out = \sigma (W \\ast X + b) - In the above equation: + Where: * :math:`X`: Input value, a tensor with NCHW format. * :math:`W`: Filter value, a tensor with MCHW format. - * :math:`\\ast` : Convolution transpose operation. - * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be - different. + * :math:`\\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. + * :math:`\\sigma`: Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: - Input shape: $(N, C_{in}, H_{in}, W_{in})$ + Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` - Filter shape: $(C_{in}, C_{out}, H_f, W_f)$ + Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - Output: - Output shape: $(N, C_{out}, H_{out}, W_{out})$ + Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where @@ -2261,10 +2260,8 @@ def conv2d_transpose(input, Examples: .. code-block:: python - data = fluid.layers.data( - name='data', shape=[3, 32, 32], dtype='float32') - conv2d_transpose = fluid.layers.conv2d_transpose( - input=data, num_filters=2, filter_size=3) + data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') + conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3) """ helper = LayerHelper("conv2d_transpose", **locals()) if not isinstance(input, Variable): @@ -2344,32 +2341,36 @@ def conv3d_transpose(input, two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein `_. + If bias attribution and activation type are provided, bias is added to + the output of the convolution, and the corresponding activation function + is applied to the final result. For each input :math:`X`, the equation is: .. math:: - Out = W \\ast X + Out = \sigma (W \\ast X + b) In the above equation: * :math:`X`: Input value, a tensor with NCDHW format. * :math:`W`: Filter value, a tensor with MCDHW format. - * :math:`\\ast` : Convolution transpose operation. - * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be - different. + * :math:`\\ast`: Convolution operation. + * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. + * :math:`\\sigma`: Activation function. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: - Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$ + Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` - Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$ + Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)` - Output: - Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$ + Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` Where @@ -2424,10 +2425,8 @@ def conv3d_transpose(input, Examples: .. code-block:: python - data = fluid.layers.data( - name='data', shape=[3, 12, 32, 32], dtype='float32') - conv2d_transpose = fluid.layers.conv3d_transpose( - input=data, num_filters=2, filter_size=3) + data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32') + conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3) """ l_type = "conv3d_transpose" helper = LayerHelper(l_type, **locals()) @@ -4778,8 +4777,8 @@ def mean_iou(input, label, num_classes): IOU is defined as follows: .. math:: - - IOU = true_positive / (true_positive + false_positive + false_negative). + + IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}. The predictions are accumulated in a confusion matrix and mean-IOU is then calculated from it. @@ -4787,8 +4786,9 @@ def mean_iou(input, label, num_classes): Args: input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64. - label (Variable): A Tensor of ground truth labels with type int32 or int64. + label (Variable): A Tensor of ground truth labels with type int32 or int64. Its shape should be the same as input. + num_classes (int): The possible number of labels. Returns: mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].