未验证 提交 d0fdcb2f 编写于 作者: Q Qiyang Min 提交者: GitHub

Merge pull request #14048 from velconia/change_sequence_pool_to_cpu

Accelerate Sequence Pool Grad Op
......@@ -68,6 +68,7 @@ cc_test(selected_rows_functor_test SRCS selected_rows_functor_test.cc DEPS selec
cc_test(im2col_test SRCS im2col_test.cc DEPS im2col)
cc_test(vol2col_test SRCS vol2col_test.cc DEPS vol2col)
cc_test(sequence_padding_test SRCS sequence_padding_test.cc DEPS sequence_padding)
cc_test(sequence_pooling_test SRCS sequence_pooling_test.cc DEPS sequence_pooling)
if(WITH_GPU)
nv_test(math_function_gpu_test SRCS math_function_test.cu DEPS math_function)
nv_test(selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function)
......
......@@ -157,6 +157,31 @@ class FirstSeqPoolFunctor {
}
};
template <typename T>
class SumSeqPoolGradFunctor {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& out_grad,
framework::LoDTensor* in_grad) {
auto lod = in_grad->lod()[0];
int64_t out_w = out_grad.numel() / out_grad.dims()[0];
int64_t in_w = in_grad->numel() / in_grad->dims()[0];
PADDLE_ENFORCE(in_w == out_w);
const T* out_g_data = out_grad.data<T>();
T* in_g_data = in_grad->mutable_data<T>(context.GetPlace());
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
int64_t in_offset = lod[i] * in_w;
const T* out_pos = out_g_data + i * out_w;
T* in_pos = in_g_data + in_offset;
for (int r = 0; r != h; ++r) {
blas.VCOPY(in_w, out_pos, in_pos + r * in_w);
}
}
}
};
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
public:
......@@ -231,9 +256,15 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
math::SetConstant<platform::CPUDeviceContext, T> functor;
functor(context, in_grad, 0);
}
if (pooltype == "SUM") {
math::SumSeqPoolGradFunctor<T> sum_pool_grad;
sum_pool_grad(context, out_grad, in_grad);
return;
}
auto lod = in_grad->lod()[0];
auto& place = *context.eigen_device();
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
static_cast<int>(lod[i + 1]));
......@@ -247,12 +278,6 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
if (pooltype == "AVERAGE") {
in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
} else if (pooltype == "SUM") {
const T* out_g_data = out_g_t.data<T>();
T* in_g_data = in_g_t.mutable_data<T>(context.GetPlace());
for (int r = 0; r != h; ++r) {
blas.VCOPY(w, out_g_data, in_g_data + r * w);
}
} else if (pooltype == "SQRT") {
in_g_e.device(place) =
(out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include <gtest/gtest.h>
#include <vector>
template <typename DeviceContext, typename Place, typename T>
void TestSequencePoolingSum(const paddle::framework::LoD& lod) {
paddle::framework::LoDTensor cpu_out_grad;
paddle::framework::LoDTensor cpu_in_grad;
paddle::framework::LoDTensor out_grad;
paddle::framework::LoDTensor in_grad;
const size_t second_dim = 128u;
// construct out_grad's tensor in cpu
const size_t out_first_dim = lod[0].size() - 1;
auto out_dims = paddle::framework::make_ddim(
{static_cast<int64_t>(out_first_dim), static_cast<int64_t>(second_dim)});
cpu_out_grad.mutable_data<T>(out_dims, paddle::platform::CPUPlace());
for (int64_t i = 0; i < cpu_out_grad.numel(); ++i) {
cpu_out_grad.data<T>()[i] = static_cast<T>(i);
}
// copy to dst out_grad
auto* place = new Place();
DeviceContext* context = new DeviceContext(*place);
if (paddle::platform::is_cpu_place(*place)) {
out_grad = cpu_out_grad;
} else {
TensorCopySync(cpu_out_grad, *place, &out_grad);
}
// construct in_grad
in_grad.set_lod(lod);
auto in_dims = paddle::framework::make_ddim(
{static_cast<int64_t>(lod[0].back()), static_cast<int64_t>(second_dim)});
in_grad.mutable_data<T>(in_dims, context->GetPlace());
// check tensor contruction result
PADDLE_ENFORCE_EQ(in_grad.dims().size(), out_grad.dims().size());
for (int64_t i = 1; i < out_grad.dims().size(); ++i) {
PADDLE_ENFORCE_EQ(in_grad.dims()[i], out_grad.dims()[i]);
}
// call functor
paddle::operators::math::SequencePoolGradFunctor<DeviceContext, T>()(
*context, "SUM", out_grad, &in_grad);
if (paddle::platform::is_cpu_place(*place)) {
cpu_in_grad = in_grad;
} else {
TensorCopySync(in_grad, paddle::platform::CPUPlace(), &cpu_in_grad);
cpu_in_grad.set_lod(in_grad.lod());
}
EXPECT_EQ(in_grad.numel(), lod[0].back() * second_dim);
EXPECT_EQ(in_grad.lod(), lod);
if (paddle::platform::is_cpu_place(*place)) {
for (int64_t i = 0; i < in_grad.lod()[0].size() - 1; ++i) {
int64_t begin = in_grad.lod()[0][i];
int64_t end = in_grad.lod()[0][i + 1];
paddle::framework::Tensor tmp = in_grad.Slice(begin, end);
for (int64_t j = 0; j != tmp.numel() / second_dim; ++j) {
for (int64_t m = 0; m != second_dim; ++m) {
EXPECT_EQ(tmp.data<T>()[m + j * second_dim],
out_grad.data<T>()[m + i * second_dim]);
}
}
}
} else {
for (int64_t i = 0; i < cpu_in_grad.lod()[0].size() - 1; ++i) {
int64_t begin = cpu_in_grad.lod()[0][i];
int64_t end = cpu_in_grad.lod()[0][i + 1];
paddle::framework::Tensor tmp = cpu_in_grad.Slice(begin, end);
for (int64_t j = 0; j != tmp.numel() / second_dim; ++j) {
for (int64_t m = 0; m != second_dim; ++m) {
EXPECT_EQ(tmp.data<T>()[m + j * second_dim],
cpu_out_grad.data<T>()[m + i * second_dim]);
}
}
}
}
delete place;
delete context;
}
TEST(SequencePoolingGrad, CPU_SUM) {
paddle::framework::LoD lod1;
lod1.push_back(std::vector<size_t>{0, 10});
TestSequencePoolingSum<paddle::platform::CPUDeviceContext,
paddle::platform::CPUPlace, float>(lod1);
paddle::framework::LoD lod2;
lod2.push_back(std::vector<size_t>{0, 2, 7, 10});
TestSequencePoolingSum<paddle::platform::CPUDeviceContext,
paddle::platform::CPUPlace, float>(lod2);
}
#ifdef PADDLE_WITH_CUDA
TEST(SequencePoolingGrad, CUDA_SUM) {
paddle::framework::LoD lod1;
lod1.push_back(std::vector<size_t>{0, 10});
TestSequencePoolingSum<paddle::platform::CUDADeviceContext,
paddle::platform::CUDAPlace, float>(lod1);
paddle::framework::LoD lod2;
lod2.push_back(std::vector<size_t>{0, 2, 7, 10});
TestSequencePoolingSum<paddle::platform::CUDADeviceContext,
paddle::platform::CUDAPlace, float>(lod2);
}
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册