提交 cff7a498 编写于 作者: S songyouwei 提交者: hong

Add ParameterList (#21056)

* add ParameterList container

* add unittest
test=develop

* fix container, rebase remove build_once
test=develop

* add parameters None check
test=develop

* update Sequential unittest
test=develop

* use Linear in Sequential sample code
test=develop

* fix Sequential arg type doc
test=develop
上级 5cb2c741
...@@ -12,9 +12,13 @@ ...@@ -12,9 +12,13 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from ..framework import Parameter
from .layers import Layer from .layers import Layer
__all__ = ['Sequential'] __all__ = [
'Sequential',
'ParameterList',
]
class Sequential(Layer): class Sequential(Layer):
...@@ -23,8 +27,7 @@ class Sequential(Layer): ...@@ -23,8 +27,7 @@ class Sequential(Layer):
The argument passed to the constructor can be iterable Layers or iterable name Layer pairs. The argument passed to the constructor can be iterable Layers or iterable name Layer pairs.
Parameters: Parameters:
name_scope(str): The name of this class. *layers(tuple): Layers or iterable name Layer pairs.
layers(iterable): Iterable Layers or iterable name Layer pairs.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -36,27 +39,25 @@ class Sequential(Layer): ...@@ -36,27 +39,25 @@ class Sequential(Layer):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data) data = fluid.dygraph.to_variable(data)
# create Sequential with iterable Layers # create Sequential with iterable Layers
model1 = fluid.dygraph.Sequential('model1', model1 = fluid.dygraph.Sequential(
fluid.FC('fc1', 2), fluid.Linear(10, 1), fluid.Linear(1, 2)
fluid.FC('fc2', 3)
) )
model1[0] # access fc1 layer model1[0] # access the first layer
res1 = model1(data) # sequential execution res1 = model1(data) # sequential execution
# create Sequential with name Layer pairs # create Sequential with name Layer pairs
model2 = fluid.dygraph.Sequential('model2', model2 = fluid.dygraph.Sequential(
('l1', fluid.FC('l1', 2)), ('l1', fluid.Linear(10, 2)),
('l2', fluid.FC('l2', 3)) ('l2', fluid.Linear(2, 3))
) )
model2['l1'] # access l1 layer model2['l1'] # access l1 layer
model2.add_sublayer('l3', fluid.FC('l3', 3)) # add sublayer model2.add_sublayer('l3', fluid.Linear(3, 3)) # add sublayer
print([l.full_name() for l in model2.sublayers()]) # ['l1/FC_0', 'l2/FC_0', 'l3/FC_0']
res2 = model2(data) # sequential execution res2 = model2(data) # sequential execution
""" """
def __init__(self, name_scope, *layers): def __init__(self, *layers):
super(Sequential, self).__init__(name_scope) super(Sequential, self).__init__()
if len(layers) > 0 and isinstance(layers[0], tuple): if len(layers) > 0 and isinstance(layers[0], tuple):
for name, layer in layers: for name, layer in layers:
self.add_sublayer(name, layer) self.add_sublayer(name, layer)
...@@ -83,3 +84,88 @@ class Sequential(Layer): ...@@ -83,3 +84,88 @@ class Sequential(Layer):
for layer in self._sub_layers.values(): for layer in self._sub_layers.values():
input = layer(input) input = layer(input)
return input return input
class ParameterList(Layer):
"""ParameterList Container.
This container acts like a Python list, but parameters it contains will be properly added.
Parameters:
parameters (iterable, optional): Iterable Parameters to be added
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
class MyLayer(fluid.Layer):
def __init__(self, num_stacked_param):
super(MyLayer, self).__init__()
# create ParameterList with iterable Parameters
self.params = fluid.dygraph.ParameterList(
[fluid.layers.create_parameter(
shape=[2, 2], dtype='float32')] * num_stacked_param)
def forward(self, x):
for i, p in enumerate(self.params):
tmp = self._helper.create_variable_for_type_inference('float32')
self._helper.append_op(
type="mul",
inputs={"X": x,
"Y": p},
outputs={"Out": tmp},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
x = tmp
return x
data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(data_np)
num_stacked_param = 4
model = MyLayer(num_stacked_param)
print(len(model.params)) # 4
res = model(x)
print(res.shape) # [5, 2]
replaced_param = fluid.layers.create_parameter(shape=[2, 3], dtype='float32')
model.params[num_stacked_param - 1] = replaced_param # replace last param
res = model(x)
print(res.shape) # [5, 3]
model.params.append(fluid.layers.create_parameter(shape=[3, 4], dtype='float32')) # append param
print(len(model.params)) # 5
res = model(x)
print(res.shape) # [5, 4]
"""
def __init__(self, parameters=None):
super(ParameterList, self).__init__()
if parameters is not None:
for idx, param in enumerate(parameters):
assert isinstance(param, Parameter)
self.add_parameter(str(idx), param)
def __getitem__(self, idx):
return self._parameters[str(idx)]
def __setitem__(self, idx, param):
assert isinstance(param, Parameter)
setattr(self, str(idx), param)
def __len__(self):
return len(self._parameters)
def __iter__(self):
return iter(self._parameters.values())
def append(self, parameter):
"""Appends a given parameter at the end of the list.
Parameters:
parameter (Parameter): parameter to append
"""
idx = len(self._parameters)
self.add_parameter(str(idx), parameter)
return self
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import numpy as np
class MyLayer(fluid.Layer):
def __init__(self, num_stacked_param):
super(MyLayer, self).__init__()
# create ParameterList with iterable Parameters
self.params = fluid.dygraph.ParameterList(
[fluid.layers.create_parameter(
shape=[2, 2], dtype='float32')] * num_stacked_param)
def forward(self, x):
for i, p in enumerate(self.params):
tmp = self._helper.create_variable_for_type_inference('float32')
self._helper.append_op(
type="mul",
inputs={"X": x,
"Y": p},
outputs={"Out": tmp},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
x = tmp
return x
class TestImperativeContainerParameterList(unittest.TestCase):
def test_paramter_list(self):
data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(data_np)
num_stacked_param = 4
model = MyLayer(num_stacked_param)
self.assertEqual(len(model.params), num_stacked_param)
res = model(x)
self.assertListEqual(res.shape, [5, 2])
loss = fluid.layers.reduce_mean(res)
loss.backward()
model.params[num_stacked_param - 1] = fluid.layers.create_parameter(
shape=[2, 3], dtype='float32')
res = model(x)
self.assertListEqual(res.shape, [5, 3])
model.params.append(
fluid.layers.create_parameter(
shape=[3, 4], dtype='float32'))
self.assertEqual(len(model.params), num_stacked_param + 1)
res = model(x)
self.assertListEqual(res.shape, [5, 4])
loss = fluid.layers.reduce_mean(res)
loss.backward()
if __name__ == '__main__':
unittest.main()
...@@ -24,33 +24,30 @@ class TestImperativeContainerSequential(unittest.TestCase): ...@@ -24,33 +24,30 @@ class TestImperativeContainerSequential(unittest.TestCase):
data = np.random.uniform(-1, 1, [5, 10]).astype('float32') data = np.random.uniform(-1, 1, [5, 10]).astype('float32')
with fluid.dygraph.guard(): with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data) data = fluid.dygraph.to_variable(data)
model1 = fluid.dygraph.Sequential('model1', model1 = fluid.dygraph.Sequential(
fluid.FC('fc1', 1), fluid.Linear(10, 1), fluid.Linear(1, 2))
fluid.FC('fc2', 2))
res1 = model1(data) res1 = model1(data)
self.assertListEqual(res1.shape, [5, 2]) self.assertListEqual(res1.shape, [5, 2])
self.assertTrue('fc1' in model1[0]._full_name) model1[1] = fluid.Linear(1, 3)
model1[1] = fluid.FC('fc2_new', 3)
res1 = model1(data) res1 = model1(data)
self.assertListEqual(res1.shape, [5, 3]) self.assertListEqual(res1.shape, [5, 3])
self.assertTrue('fc2_new' in name
for name in [p.name for p in model1.parameters()])
loss1 = fluid.layers.reduce_mean(res1) loss1 = fluid.layers.reduce_mean(res1)
loss1.backward() loss1.backward()
model2 = fluid.dygraph.Sequential( l1 = fluid.Linear(10, 1)
'model2', ('l1', fluid.FC('l1', 1)), ('l2', fluid.FC('l2', 3))) l2 = fluid.Linear(1, 3)
model2 = fluid.dygraph.Sequential(('l1', l1), ('l2', l2))
self.assertEqual(len(model2), 2) self.assertEqual(len(model2), 2)
res2 = model2(data) res2 = model2(data)
self.assertTrue('l1' in model2.l1.full_name()) self.assertTrue(l1 is model2.l1)
self.assertListEqual(res2.shape, res1.shape) self.assertListEqual(res2.shape, res1.shape)
self.assertEqual(len(model1.parameters()), len(model2.parameters())) self.assertEqual(len(model1.parameters()), len(model2.parameters()))
del model2['l2'] del model2['l2']
self.assertEqual(len(model2), 1) self.assertEqual(len(model2), 1)
res2 = model2(data) res2 = model2(data)
self.assertListEqual(res2.shape, [5, 1]) self.assertListEqual(res2.shape, [5, 1])
model2.add_sublayer('l3', fluid.FC('l3', 3)) model2.add_sublayer('l3', fluid.Linear(1, 3))
model2.add_sublayer('l4', fluid.FC('l4', 4)) model2.add_sublayer('l4', fluid.Linear(3, 4))
self.assertEqual(len(model2), 3) self.assertEqual(len(model2), 3)
res2 = model2(data) res2 = model2(data)
self.assertListEqual(res2.shape, [5, 4]) self.assertListEqual(res2.shape, [5, 4])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册