Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
cdd63eb4
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cdd63eb4
编写于
6月 23, 2019
作者:
H
Hong Ming
浏览文件
操作
浏览文件
下载
差异文件
fix ARM kernel of pool2d op for armv7/v8
上级
c8deaaa9
a95dcea5
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
1721 addition
and
2272 deletion
+1721
-2272
paddle/fluid/lite/arm/math/pooling.cc
paddle/fluid/lite/arm/math/pooling.cc
+1498
-1959
paddle/fluid/lite/arm/math/pooling.h
paddle/fluid/lite/arm/math/pooling.h
+23
-61
paddle/fluid/lite/kernels/arm/pool_compute.cc
paddle/fluid/lite/kernels/arm/pool_compute.cc
+79
-103
paddle/fluid/lite/kernels/arm/pool_compute.h
paddle/fluid/lite/kernels/arm/pool_compute.h
+0
-3
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
+121
-146
未找到文件。
paddle/fluid/lite/arm/math/pooling.cc
浏览文件 @
cdd63eb4
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
paddle/fluid/lite/arm/math/pooling.h
浏览文件 @
cdd63eb4
...
@@ -25,7 +25,7 @@ namespace arm {
...
@@ -25,7 +25,7 @@ namespace arm {
namespace
math
{
namespace
math
{
// !pooling fp32 Op
// !pooling fp32 Op
void
pooling_basic
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
void
pooling_basic
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
...
@@ -33,77 +33,39 @@ void pooling_basic(const void* din, void* dout, int num, int chout, int hout,
...
@@ -33,77 +33,39 @@ void pooling_basic(const void* din, void* dout, int num, int chout, int hout,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling_global
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
void
pooling_global_max
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
);
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling2x2s2_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
void
pooling_global_avg
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
);
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling2x2s2_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
int
hout
,
void
pooling2x2s2_max
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
);
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling
3x3s1p1_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
void
pooling
2x2s2_avg
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
bool
exclusive
);
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s1p1_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
void
pooling3x3s1p1_max
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
);
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s
2p1_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
void
pooling3x3s
1p1_avg
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
bool
exclusive
);
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s2p0_max
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
void
pooling3x3s2p1_max
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
);
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s2p1_av
e
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
void
pooling3x3s2p1_av
g
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
bool
exclusive
);
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
void
pooling3x3s2p0_ave
(
const
void
*
din
,
void
*
dout
,
int
num
,
int
chout
,
void
pooling3x3s2p0_max
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
);
void
pooling3x3s2p0_avg
(
const
float
*
din
,
float
*
dout
,
int
num
,
int
chout
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
int
hout
,
int
wout
,
int
chin
,
int
hin
,
int
win
,
const
std
::
vector
<
int
>&
ksize
,
bool
exclusive
);
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
bool
global_pooling
,
bool
exclusive
,
bool
adaptive
,
bool
ceil_mode
,
bool
use_quantizer
,
const
std
::
string
&
pooling_type
);
}
// namespace math
}
// namespace math
}
// namespace arm
}
// namespace arm
...
...
paddle/fluid/lite/kernels/arm/pool_compute.cc
浏览文件 @
cdd63eb4
...
@@ -48,120 +48,96 @@ void PoolCompute::Run() {
...
@@ -48,120 +48,96 @@ void PoolCompute::Run() {
bool
use_quantizer
=
param
.
use_quantizer
;
bool
use_quantizer
=
param
.
use_quantizer
;
std
::
string
&
data_format
=
param
.
data_format
;
std
::
string
&
data_format
=
param
.
data_format
;
if
(
param
.
global_pooling
)
{
bool
kps_equal
=
(
ksize
[
0
]
==
ksize
[
1
])
&&
(
strides
[
0
]
==
strides
[
1
])
&&
(
paddings
[
0
]
==
paddings
[
1
]);
if
(
global_pooling
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_dims
[
i
+
2
]);
ksize
[
i
]
=
static_cast
<
int
>
(
in_dims
[
i
+
2
]);
}
}
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling_global_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
]);
VLOG
(
3
)
<<
"invoking pooling_global_max"
;
return
;
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling_global_avg
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
]);
VLOG
(
3
)
<<
"invoking pooling_global_ave"
;
return
;
}
}
}
else
{
#if 0
if
(
ksize
[
0
]
==
2
&&
strides
[
0
]
==
2
&&
paddings
[
0
]
==
0
&&
kps_equal
)
{
for (int i = 0; i < in_dims.size(); ++i) {
LOG(INFO) << "in_dims[" << i << "]:" << in_dims[i];
}
for (int i = 0; i < out_dims.size(); ++i) {
LOG(INFO) << "out_dims[" << i << "]:" << out_dims[i];
}
for (int i = 0; i < ksize.size(); ++i) {
LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
}
for (int i = 0; i < strides.size(); ++i) {
LOG(INFO) << "strides[" << i << "]:" << strides[i];
}
for (int i = 0; i < paddings.size(); ++i) {
LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
}
LOG(INFO) << "global_pooling:" << global_pooling;
LOG(INFO) << "exclusive:" << exclusive;
LOG(INFO) << "adaptive:" << adaptive;
LOG(INFO) << "ceil_mode:" << ceil_mode;
LOG(INFO) << "use_quantizer:" << use_quantizer;
LOG(INFO) << "data_format:" << data_format;
LOG(INFO) << "din:" << din;
LOG(INFO) << "dout:" << dout;
#endif
// global
if
(
global_pooling
==
true
)
{
lite
::
arm
::
math
::
pooling_global
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
else
if
(
ksize
[
0
]
==
2
&&
ksize
[
0
]
==
ksize
[
1
]
&&
strides
[
0
]
==
2
&&
strides
[
0
]
==
strides
[
1
])
{
if
(
pooling_type
==
"max"
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling2x2s2_max
(
lite
::
arm
::
math
::
pooling2x2s2_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
2
],
in_dims
[
3
]);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"invoking pooling2x2s2_max"
;
pooling_type
)
;
return
;
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling2x2s2_ave
(
lite
::
arm
::
math
::
pooling2x2s2_avg
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
2
],
in_dims
[
3
],
exclusive
);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"invoking pooling2x2s2_avg"
;
pooling_type
)
;
return
;
}
}
}
else
if
(
ksize
[
0
]
==
3
&&
ksize
[
0
]
==
ksize
[
1
]
&&
stride
s
[
0
]
==
1
&&
}
else
if
(
ksize
[
0
]
==
3
&&
strides
[
0
]
==
1
&&
padding
s
[
0
]
==
1
&&
strides
[
0
]
==
strides
[
1
]
&&
paddings
[
0
]
==
1
)
{
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s1p1_max
(
lite
::
arm
::
math
::
pooling3x3s1p1_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
]);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"invokingpooling3x3s1p1_max"
;
pooling_type
)
;
return
;
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling3x3s1p1_ave
(
lite
::
arm
::
math
::
pooling3x3s1p1_avg
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
exclusive
);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"invoking pooling3x3s1p1_avg"
;
pooling_type
)
;
return
;
}
}
}
else
if
(
ksize
[
0
]
==
3
&&
ksize
[
0
]
==
ksize
[
1
]
&&
strides
[
0
]
==
2
&&
}
else
if
(
ksize
[
0
]
==
3
&&
strides
[
0
]
==
2
&&
paddings
[
0
]
==
0
&&
strides
[
0
]
==
strides
[
1
]
&&
paddings
[
0
]
==
0
)
{
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s2p0_max
(
lite
::
arm
::
math
::
pooling3x3s2p0_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
]);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"pooling3x3s2p0_max"
;
pooling_type
)
;
return
;
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling3x3s2p0_ave
(
lite
::
arm
::
math
::
pooling3x3s2p0_avg
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
exclusive
);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"invoking pooling3x3s2p0_avg"
;
pooling_type
)
;
return
;
}
}
}
else
if
(
ksize
[
0
]
==
3
&&
ksize
[
0
]
==
ksize
[
1
]
&&
strides
[
0
]
==
2
&&
}
else
if
(
ksize
[
0
]
==
3
&&
strides
[
0
]
==
2
&&
paddings
[
0
]
==
1
&&
strides
[
0
]
==
strides
[
1
]
&&
paddings
[
0
]
==
1
)
{
kps_equal
)
{
if
(
pooling_type
==
"max"
)
{
if
(
pooling_type
==
"max"
)
{
lite
::
arm
::
math
::
pooling3x3s2p1_max
(
lite
::
arm
::
math
::
pooling3x3s2p1_max
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
]);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"invoking pooling3x3s2p1_max"
;
pooling_type
)
;
return
;
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
lite
::
arm
::
math
::
pooling3x3s2p1_ave
(
lite
::
arm
::
math
::
pooling3x3s2p1_avg
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
exclusive
);
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
VLOG
(
3
)
<<
"invoking pooling3x3s2p1_avg"
;
pooling_type
)
;
return
;
}
}
}
else
{
lite
::
arm
::
math
::
pooling_basic
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
}
}
return
;
}
lite
::
arm
::
math
::
pooling_basic
(
din
,
dout
,
out_dims
[
0
],
out_dims
[
1
],
out_dims
[
2
],
out_dims
[
3
],
in_dims
[
1
],
in_dims
[
2
],
in_dims
[
3
],
ksize
,
strides
,
paddings
,
global_pooling
,
exclusive
,
adaptive
,
ceil_mode
,
use_quantizer
,
pooling_type
);
VLOG
(
3
)
<<
"invoking pooling_basic"
;
}
}
TargetType
PoolCompute
::
target
()
const
{
return
TARGET
(
kARM
);
}
PrecisionType
PoolCompute
::
precision
()
const
{
return
PRECISION
(
kFloat
);
}
}
// namespace arm
}
// namespace arm
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
paddle/fluid/lite/kernels/arm/pool_compute.h
浏览文件 @
cdd63eb4
...
@@ -29,9 +29,6 @@ class PoolCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
...
@@ -29,9 +29,6 @@ class PoolCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)> {
void
PrepareForRun
()
override
;
void
PrepareForRun
()
override
;
void
Run
()
override
;
void
Run
()
override
;
TargetType
target
()
const
override
;
PrecisionType
precision
()
const
override
;
virtual
~
PoolCompute
()
=
default
;
virtual
~
PoolCompute
()
=
default
;
};
};
...
...
paddle/fluid/lite/kernels/arm/pool_compute_test.cc
浏览文件 @
cdd63eb4
...
@@ -101,94 +101,65 @@ void pool_compute_ref(const operators::PoolParam& param) {
...
@@ -101,94 +101,65 @@ void pool_compute_ref(const operators::PoolParam& param) {
int
pad_w
=
paddings
[
1
];
int
pad_w
=
paddings
[
1
];
if
(
global_pooling
==
true
)
{
if
(
global_pooling
==
true
)
{
ksize
[
0
]
=
in_h
;
ksize
[
1
]
=
in_w
;
for
(
int
n
=
0
;
n
<
in_n
;
++
n
)
{
for
(
int
n
=
0
;
n
<
in_n
;
++
n
)
{
for
(
int
c
=
0
;
c
<
in_c
;
++
c
)
{
for
(
int
c
=
0
;
c
<
in_c
;
++
c
)
{
const
float
*
src
=
src_ptr
+
n
*
in_c
*
in_h
*
in_w
+
c
*
in_h
*
in_w
;
const
float
*
src
=
src_ptr
+
n
*
size_in_n
+
c
*
size_in_c
;
float
res
=
src
[
0
];
float
res
=
src
[
0
];
if
(
pooling_type
==
"max"
)
{
if
(
pooling_type
==
"max"
)
{
for
(
int
i
=
1
;
i
<
in_h
*
in_w
;
++
i
)
{
for
(
int
i
=
1
;
i
<
size_in_c
;
++
i
)
{
float
cur_val
=
src
[
i
];
float
cur_val
=
src
[
i
];
res
=
cur_val
>
res
?
cur_val
:
res
;
res
=
cur_val
>
res
?
cur_val
:
res
;
}
}
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
for
(
int
i
=
1
;
i
<
in_h
*
in_w
;
++
i
)
{
for
(
int
i
=
1
;
i
<
size_in_c
;
++
i
)
{
float
cur_val
=
src
[
i
];
float
cur_val
=
src
[
i
];
res
+=
cur_val
;
res
+=
cur_val
;
}
}
res
/=
(
in_h
*
in_w
);
res
/=
size_in_c
;
}
dst_ptr
[
n
*
in_c
*
out_h
*
out_w
+
c
]
=
res
;
}
}
dst_ptr
[
n
*
size_out_n
+
c
]
=
res
;
}
}
return
;
}
}
}
else
{
for
(
int
ind_n
=
0
;
ind_n
<
in_n
;
++
ind_
n
)
{
for
(
int
n
=
0
;
n
<
in_n
;
++
n
)
{
for
(
int
ind_c
=
0
;
ind_c
<
in_c
;
++
ind_
c
)
{
for
(
int
c
=
0
;
c
<
in_c
;
++
c
)
{
for
(
int
ind_h
=
0
;
ind_h
<
out_h
;
++
ind_
h
)
{
for
(
int
h
=
0
;
h
<
out_h
;
++
h
)
{
int
sh
=
ind_
h
*
stride_h
;
int
sh
=
h
*
stride_h
;
int
eh
=
sh
+
window_h
;
int
eh
=
sh
+
window_h
;
sh
=
(
sh
-
pad_h
)
<
0
?
0
:
sh
-
pad_h
;
sh
=
(
sh
-
pad_h
)
<
0
?
0
:
sh
-
pad_h
;
eh
=
(
eh
-
pad_h
)
>
in_h
?
in_h
:
eh
-
pad_h
;
eh
=
(
eh
-
pad_h
)
>
in_h
?
in_h
:
eh
-
pad_h
;
for
(
int
w
=
0
;
w
<
out_w
;
++
w
)
{
for
(
int
ind_w
=
0
;
ind_w
<
out_w
;
++
ind_w
)
{
int
sw
=
w
*
stride_w
;
int
sw
=
ind_w
*
stride_w
;
int
ew
=
sw
+
window_w
;
int
ew
=
sw
+
window_w
;
sw
=
(
sw
-
pad_w
)
<
0
?
0
:
sw
-
pad_w
;
sw
=
(
sw
-
pad_w
)
<
0
?
0
:
sw
-
pad_w
;
ew
=
(
ew
-
pad_w
)
>
in_w
?
in_w
:
ew
-
pad_w
;
ew
=
(
ew
-
pad_w
)
>
in_w
?
in_w
:
ew
-
pad_w
;
int
pooling_size
=
(
ew
-
sw
)
*
(
eh
-
sh
);
float
result
=
static_cast
<
float
>
(
0
);
if
(
pooling_size
==
0
)
continue
;
float
res
=
0.
f
;
int
dst_ind
=
ind_n
*
size_out_n
+
ind_c
*
size_out_c
+
ind_h
*
out_w
+
ind_w
;
for
(
int
kh
=
sh
;
kh
<
eh
;
++
kh
)
{
for
(
int
kh
=
sh
;
kh
<
eh
;
++
kh
)
{
for
(
int
kw
=
sw
;
kw
<
ew
;
++
kw
)
{
for
(
int
kw
=
sw
;
kw
<
ew
;
++
kw
)
{
int
src_ind
=
int
src_idx
=
n
*
size_in_n
+
c
*
size_in_c
+
kh
*
in_w
+
kw
;
ind_n
*
size_in_n
+
ind_c
*
size_in_c
+
kh
*
in_w
+
kw
;
if
(
kh
==
sh
&&
kw
==
sw
)
{
if
(
kh
==
sh
&&
kw
==
sw
)
{
result
=
src_ptr
[
src_ind
];
res
=
src_ptr
[
src_idx
];
}
else
{
}
else
{
if
(
pooling_type
==
"max"
)
{
if
(
pooling_type
==
"max"
)
{
result
=
res
=
res
>=
src_ptr
[
src_idx
]
?
res
:
src_ptr
[
src_idx
];
result
>=
src_ptr
[
src_ind
]
?
result
:
src_ptr
[
src_ind
];
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
false
)
{
// Pooling_average_include_padding
result
+=
src_ptr
[
src_ind
];
}
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
true
)
{
if
(
pooling_type
==
"avg"
)
{
// Pooling_average_include_padding
res
+=
src_ptr
[
src_idx
];
result
+=
src_ptr
[
src_ind
];
}
}
}
}
}
}
}
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
false
)
{
if
(
pooling_type
==
"avg"
)
{
// Pooling_average_include_padding
if
(
exclusive
)
{
// result /= param.window_h * param.window_w;
res
/=
pooling_size
;
// LOG(ERROR)<<"cpu"<<param.window_h * param.window_w;
}
else
{
int
bh
=
window_h
;
res
/=
window_h
*
window_w
;
int
bw
=
window_w
;
if
(
ew
==
in_w
)
{
bw
=
sw
+
window_w
>=
in_w
+
pad_w
?
in_w
+
pad_w
:
sw
+
window_w
;
bw
-=
sw
;
}
if
(
eh
==
in_h
)
{
bh
=
sh
+
window_h
>=
in_h
+
pad_h
?
in_h
+
pad_h
:
sh
+
window_h
;
bh
-=
sh
;
}
}
result
/=
bh
*
bw
;
}
}
if
(
pooling_type
==
"avg"
&&
exclusive
==
true
)
{
dst_ptr
[
n
*
size_out_n
+
c
*
size_out_c
+
h
*
out_w
+
w
]
=
res
;
// Pooling_average_exclude_padding
result
/=
(
ew
-
sw
)
*
(
eh
-
sh
);
}
}
dst_ptr
[
dst_ind
]
=
result
;
}
}
}
}
}
}
...
@@ -209,41 +180,54 @@ TEST(pool_arm, compute) {
...
@@ -209,41 +180,54 @@ TEST(pool_arm, compute) {
lite
::
Tensor
output
;
lite
::
Tensor
output
;
lite
::
Tensor
output_ref
;
lite
::
Tensor
output_ref
;
for
(
auto
pooling_type
:
{
"avg"
,
"max"
})
{
// speedup for ci
for
(
auto
global_pooling
:
{
true
})
{
for
(
auto
pooling_type
:
{
"max"
,
"avg"
})
{
// for (auto ksize: {3}) { // TODO(yuanshuai): ksize enable 2, 3
for
(
auto
ceil_mode
:
{
true
,
false
})
{
for
(
auto
global_pooling
:
{
true
,
false
})
{
for
(
auto
exclusive
:
{
true
,
false
})
{
for
(
auto
ksize
:
{
2
,
3
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
pad
:
{
0
,
1
})
{
for
(
auto
pad
:
{
0
,
1
})
{
for
(
auto
n
:
{
1
,
3
,
4
,
11
})
{
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
c
:
{
1
,
3
,
11
/* ,1024 */
})
{
// speedup for ci
for
(
auto
c
:
{
1
,
3
})
{
#if 1
for
(
auto
h
:
{
2
,
3
,
4
,
11
})
{
for
(
auto
h
:
{
2
,
3
,
4
,
11
})
{
for
(
auto
w
:
{
2
,
3
,
4
,
11
})
{
for
(
auto
w
:
{
2
,
3
,
4
,
11
})
{
LOG
(
INFO
)
<<
"n:"
<<
n
<<
" c:"
<<
c
<<
" h:"
<<
h
#else
<<
" w:"
<<
w
// << " ksize:" << ksize
for
(
int
h
=
2
;
h
<
25
;
h
++
)
{
for
(
int
w
=
2
;
w
<
25
;
w
++
)
{
#endif
VLOG
(
3
)
<<
"n:"
<<
n
<<
" c:"
<<
c
<<
" h:"
<<
h
<<
" w:"
<<
w
<<
" ksize:"
<<
ksize
<<
" stride:"
<<
stride
<<
" pad:"
<<
pad
<<
" stride:"
<<
stride
<<
" pad:"
<<
pad
<<
" pooling_type:"
<<
pooling_type
<<
" exclusive:"
<<
exclusive
<<
" global_pooling:"
<<
global_pooling
;
<<
" global_pooling:"
<<
global_pooling
<<
" ceil_mode: "
<<
ceil_mode
<<
" pooling_type:"
<<
pooling_type
;
// init x, output
// init x, output
x
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
x
.
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
})));
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
++
i
)
{
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
++
i
)
{
x_data
[
i
]
=
i
;
float
sign
=
i
%
3
==
0
?
-
0.03
:
0.05
f
;
x_data
[
i
]
=
sign
*
(
i
%
128
);
}
}
// fill param
// fill param
param
.
x
=
&
x
;
param
.
x
=
&
x
;
param
.
output
=
&
output
;
param
.
output
=
&
output
;
param
.
pooling_type
=
pooling_type
;
param
.
pooling_type
=
pooling_type
;
// param.ksize = {ksize, ksize}; //TODO(yuanshuai): ksize
if
(
global_pooling
)
{
// enable
param
.
ksize
=
{
h
,
w
};
param
.
ksize
=
{
h
,
w
};
}
else
{
param
.
ksize
=
{
ksize
,
ksize
};
}
param
.
global_pooling
=
global_pooling
;
param
.
global_pooling
=
global_pooling
;
param
.
strides
=
{
stride
,
stride
};
param
.
strides
=
{
stride
,
stride
};
param
.
paddings
=
{
pad
,
pad
};
param
.
paddings
=
{
pad
,
pad
};
param
.
exclusive
=
true
;
param
.
exclusive
=
exclusive
;
param
.
ceil_mode
=
ceil_mode
;
param
.
adaptive
=
false
;
param
.
adaptive
=
false
;
param
.
ceil_mode
=
false
;
param
.
use_quantizer
=
false
;
param
.
use_quantizer
=
false
;
const
std
::
vector
<
int64_t
>&
output_shape
=
const
std
::
vector
<
int64_t
>&
output_shape
=
...
@@ -251,6 +235,14 @@ TEST(pool_arm, compute) {
...
@@ -251,6 +235,14 @@ TEST(pool_arm, compute) {
output
.
Resize
(
DDim
(
output_shape
));
output
.
Resize
(
DDim
(
output_shape
));
output_ref
.
Resize
(
DDim
(
output_shape
));
output_ref
.
Resize
(
DDim
(
output_shape
));
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
++
i
)
{
output_data
[
i
]
=
-
2
;
output_ref_data
[
i
]
=
-
2
;
}
// compute
// compute
pool
.
SetParam
(
param
);
pool
.
SetParam
(
param
);
pool
.
Run
();
pool
.
Run
();
...
@@ -260,41 +252,24 @@ TEST(pool_arm, compute) {
...
@@ -260,41 +252,24 @@ TEST(pool_arm, compute) {
pool_compute_ref
(
param
);
pool_compute_ref
(
param
);
// compare
// compare
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-5
);
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-4
);
float
tmp
=
output_data
[
i
]
-
output_ref_data
[
i
];
tmp
=
tmp
<
0
?
-
tmp
:
tmp
;
if
(
tmp
>
1e-5
)
{
std
::
cout
<<
"output_data[0]:"
<<
output_data
[
0
]
<<
std
::
endl
;
std
::
cout
<<
"output_ref_data[0]:"
<<
output_ref_data
[
0
]
<<
std
::
endl
;
std
::
cout
<<
"x.dims().production():"
<<
x
.
dims
().
production
()
<<
std
::
endl
;
for
(
int
ii
=
0
;
ii
<
x
.
dims
().
production
();
++
ii
)
{
std
::
cout
<<
x_data
[
ii
]
<<
" "
;
}
std
::
cout
;
exit
(
0
);
}
}
}
VLOG
(
3
)
<<
"compare pass"
;
VLOG
(
3
)
<<
"compare pass"
;
}
}
}
}
}
}
}
}
}
// pad
}
}
// stride
}
//} // ksize TODO(yuanshuai): ksize enable
}
}
// global_pooling
}
}
// pooling_type
}
}
}
}
}
TEST
(
pool
,
retrive_op
)
{
TEST
(
pool
_arm
,
retrive_op
)
{
auto
pool
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
auto
pool
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
"pool2d"
);
"pool2d"
);
ASSERT_FALSE
(
pool
.
empty
());
ASSERT_FALSE
(
pool
.
empty
());
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录