未验证 提交 cc1239ff 编写于 作者: Q qingqing01 提交者: GitHub

Update some doc about API reference. (#11495)

* Update some doc about layers' API.

* Fix format.

* Fix example bug in random_data_generator.

* Fix example bug in dropout.

* Follow comments and some small fix for some examples.
上级 fd771269
...@@ -112,7 +112,7 @@ $$out = \frac{1}{1 + e^{-x}}$$ ...@@ -112,7 +112,7 @@ $$out = \frac{1}{1 + e^{-x}}$$
__attribute__((unused)) constexpr char LogSigmoidDoc[] = R"DOC( __attribute__((unused)) constexpr char LogSigmoidDoc[] = R"DOC(
Logsigmoid Activation Operator Logsigmoid Activation Operator
$$out = \log \frac{1}{1 + e^{-x}}$$ $$out = \\log \\frac{1}{1 + e^{-x}}$$
)DOC"; )DOC";
......
...@@ -106,23 +106,36 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -106,23 +106,36 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"and M represents the number of deocded boxes."); "and M represents the number of deocded boxes.");
AddComment(R"DOC( AddComment(R"DOC(
Bounding Box Coder Operator.
Bounding Box Coder.
Encode/Decode the target bounding box with the priorbox information. Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below: The Encoding schema described below:
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv ox = (tx - px) / pw / pxv
ow = log(abs(tw / pw)) / pwv
oh = log(abs(th / ph)) / phv oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv
oh = log(abs(th / ph)) / phv
The Decoding schema described below: The Decoding schema described below:
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2 ox = (pw * pxv * tx * + px) - tw / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2 oy = (ph * pyv * ty * + py) - th / 2
where tx, ty, tw, th denote the target box's center coordinates, width and
height respectively. Similarly, px, py, pw, ph denote the priorbox's(anchor) ow = exp(pwv * tw) * pw + tw / 2
center coordinates, width and height. pxv, pyv, pwv, phv denote the variance
of the priorbox and ox, oy, ow, oh denote the encoded/decoded coordinates, oh = exp(phv * th) * ph + th / 2
width and height.
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
priorbox's (anchor) center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the priorbox and `ox`, `oy`, `ow`, `oh` denote the
encoded/decoded coordinates, width and height.
)DOC"); )DOC");
} }
}; };
......
...@@ -36,11 +36,12 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker { ...@@ -36,11 +36,12 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
void Apply() override { void Apply() override {
AddAttr<float>("mean", AddAttr<float>("mean",
"(float, default 0.0) " "(float, default 0.0) "
"mean of random tensor.") "The mean (or center) of the gaussian distribution.")
.SetDefault(.0f); .SetDefault(.0f);
AddAttr<float>("std", AddAttr<float>("std",
"(float, default 1.0) " "(float, default 1.0) "
"std of random tensor.") "The standard deviation (std, or spread) of the "
"gaussian distribution.")
.SetDefault(1.0f); .SetDefault(1.0f);
AddAttr<int>("seed", AddAttr<int>("seed",
"(int, default 0) " "(int, default 0) "
...@@ -55,9 +56,11 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker { ...@@ -55,9 +56,11 @@ class GaussianRandomBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
.SetDefault(framework::proto::VarType::FP32); .SetDefault(framework::proto::VarType::FP32);
AddComment(R"DOC( AddComment(R"DOC(
GaussianRandom Operator.
Used to initialize tensors with gaussian random generator. Used to initialize tensors with gaussian random generator.
The defalut mean of the distribution is 0. and defalut standard
deviation (std) of the distribution is 1.. Uers can set mean and std
by input arguments.
)DOC"); )DOC");
} }
}; };
......
...@@ -378,16 +378,16 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True): ...@@ -378,16 +378,16 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
Variable: A Reader Variable from which we can get random data. Variable: A Reader Variable from which we can get random data.
Examples: Examples:
.. code-block:: python .. code-block:: python
reader = fluid.layers.io.random_data_generator( reader = fluid.layers.random_data_generator(
low=0.0, low=0.0,
high=1.0, high=1.0,
shapes=[(3,224,224), (1)], shapes=[[3,224,224], [1]],
lod_levels=[0, 0]) lod_levels=[0, 0])
# Via the reader, we can use 'read_file' layer to get data: # Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader) image, label = fluid.layers.read_file(reader)
""" """
dtypes = [core.VarDesc.VarType.FP32] * len(shapes) dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
shape_concat = [] shape_concat = []
......
...@@ -364,8 +364,7 @@ def dynamic_lstm(input, ...@@ -364,8 +364,7 @@ def dynamic_lstm(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid", cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh". "tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state. candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", Choices = ["sigmoid", "tanh", "relu", "identity"],
"relu", "identity"],
default "tanh". default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32". dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
...@@ -540,27 +539,31 @@ def dynamic_lstmp(input, ...@@ -540,27 +539,31 @@ def dynamic_lstmp(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid", cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh". "tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state. candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", Choices = ["sigmoid", "tanh", "relu", "identity"],
"relu", "identity"],
default "tanh". default "tanh".
proj_activation(str): The activation for projection output. proj_activation(str): The activation for projection output.
Choices = ["sigmoid", "tanh", Choices = ["sigmoid", "tanh", "relu", "identity"],
"relu", "identity"],
default "tanh". default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32". dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
Returns: Returns:
tuple: The projection of hidden state, and cell state of LSTMP. The \ tuple: A tuple of two output variable: the projection of hidden state, \
shape of projection is (T x P), for the cell state which is \ and cell state of LSTMP. The shape of projection is (T x P), \
(T x D), and both LoD is the same with the `input`. for the cell state which is (T x D), and both LoD is the same \
with the `input`.
Examples: Examples:
.. code-block:: python .. code-block:: python
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim, proj_dim = 512, 256 hidden_dim, proj_dim = 512, 256
fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4, fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
act=None, bias_attr=None) act=None, bias_attr=None)
proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out, proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
size=hidden_dim * 4, size=hidden_dim * 4,
...@@ -626,10 +629,10 @@ def dynamic_gru(input, ...@@ -626,10 +629,10 @@ def dynamic_gru(input,
candidate_activation='tanh', candidate_activation='tanh',
h_0=None): h_0=None):
""" """
**Dynamic GRU Layer** **Gated Recurrent Unit (GRU) Layer**
Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
The formula is as follows: The formula is as follows:
...@@ -676,17 +679,25 @@ def dynamic_gru(input, ...@@ -676,17 +679,25 @@ def dynamic_gru(input,
Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid". Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
candidate_activation(str): The activation for candidate hidden state. candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh". Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
h_0 (Variable): The hidden output of the first time step. h_0 (Variable): This is initial hidden state. If not set, default is
zero. This is a tensor with shape (N x D), where N is the number of
total time steps of input mini-batch feature and D is the hidden
size.
Returns: Returns:
Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \ Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
and lod is the same with the input. and sequence length is the same with the input.
Examples: Examples:
.. code-block:: python .. code-block:: python
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512 hidden_dim = 512
x = fluid.layers.fc(input=data, size=hidden_dim * 3) x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim) hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
""" """
...@@ -924,12 +935,12 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None): ...@@ -924,12 +935,12 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
Drop or keep each element of `x` independently. Dropout is a regularization Drop or keep each element of `x` independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during technique for reducing overfitting by preventing neuron co-adaption during
training. The dropout operator randomly set (according to the given dropout training. The dropout operator randomly sets (according to the given dropout
probability) the outputs of some units to zero, while others are remain probability) the outputs of some units to zero, while others are remain
unchanged. unchanged.
Args: Args:
x (Variable): The input tensor. x (Variable): The input tensor variable.
dropout_prob (float): Probability of setting units to zero. dropout_prob (float): Probability of setting units to zero.
is_test (bool): A flag indicating whether it is in test phrase or not. is_test (bool): A flag indicating whether it is in test phrase or not.
seed (int): A Python integer used to create random seeds. If this seed (int): A Python integer used to create random seeds. If this
...@@ -940,13 +951,14 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None): ...@@ -940,13 +951,14 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
will be named automatically. will be named automatically.
Returns: Returns:
Variable: A tensor variable. Variable: A tensor variable is the shape with `x`.
Examples: Examples:
.. code-block:: python .. code-block:: python
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32") x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
droped = fluid.layers.dropout(input=x, dropout_rate=0.5) droped = fluid.layers.dropout(x, dropout_prob=0.5)
""" """
helper = LayerHelper('dropout', **locals()) helper = LayerHelper('dropout', **locals())
...@@ -2990,26 +3002,27 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): ...@@ -2990,26 +3002,27 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes
.. math:: .. math::
y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
For `x` with more dimensions, this layer independently normalizes each 1-D For `x` with more dimensions, this layer independently normalizes each 1-D
slice along dimension `axis`. slice along dimension `axis`.
Args: Args:
x(Variable|list): The input tensor to l2_normalize layer. x(Variable|list): The input tensor to l2_normalize layer.
axis(int): The axis on which to apply normalization. If `axis < 0`, axis(int): The axis on which to apply normalization. If `axis < 0`, \
the dimension to normalization is rank(X) + axis. -1 is the the dimension to normalization is rank(X) + axis. -1 is the
last dimension. last dimension.
epsilon(float): The epsilon value is used to avoid division by zero, epsilon(float): The epsilon value is used to avoid division by zero, \
the defalut value is 1e-10. the defalut value is 1e-10.
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer \
will be named automatically. will be named automatically.
Returns: Returns:
Variable: The output tensor variable. Variable: The output tensor variable is the same shape with `x`.
Examples: Examples:
.. code-block:: python .. code-block:: python
data = fluid.layers.data(name="data", data = fluid.layers.data(name="data",
......
...@@ -497,11 +497,27 @@ def save_combine(x, file_path, overwrite=True): ...@@ -497,11 +497,27 @@ def save_combine(x, file_path, overwrite=True):
Saves a list of variables into a single file. Saves a list of variables into a single file.
Args: Args:
x(list): A list of Tensor/LoDTensor to be saved together in a single file. x(list): A list of Tensor/LoDTensor variables to be saved together in
a single file.
file_path(str): The file path where variables will be saved. file_path(str): The file path where variables will be saved.
overwrite(bool): Whether or not cover the given file when it has already overwrite(bool): Whether or not cover the given file when it has already
existed. If it's set 'False' and the file is existed, a runtime existed. If it's set 'False' and the file is existed, a runtime
error will be thrown. error will be thrown.
Returns:
There is no return value.
Examples:
.. code-block:: python
v1 = fluid.layers.data(name="data",
shape=(4, 6),
dtype="float32")
v2 = fluid.layers.data(name="data",
shape=(6, 8, 4),
dtype="float32")
normed = fluid.layers.save_combine([v1, v2], file_path="output")
""" """
helper = LayerHelper("save_combine", **locals()) helper = LayerHelper("save_combine", **locals())
helper.append_op( helper.append_op(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册