Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
cbabbe2e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cbabbe2e
编写于
9月 02, 2022
作者:
A
Aurelius84
提交者:
GitHub
9月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU]Migrate Adam XPU kernel into Phi (#45572)
* [XPU]Migrate Adam XPU kernel into Phi * test=kunlun
上级
e3e92c9a
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
703 addition
and
664 deletion
+703
-664
paddle/fluid/operators/math/selected_rows_functor.cc
paddle/fluid/operators/math/selected_rows_functor.cc
+5
-5
paddle/fluid/operators/optimizers/adam_op_xpu.cc
paddle/fluid/operators/optimizers/adam_op_xpu.cc
+0
-643
paddle/phi/kernels/CMakeLists.txt
paddle/phi/kernels/CMakeLists.txt
+4
-16
paddle/phi/kernels/funcs/adam_functors.h
paddle/phi/kernels/funcs/adam_functors.h
+134
-0
paddle/phi/kernels/selected_rows/xpu/adam_kernel.cc
paddle/phi/kernels/selected_rows/xpu/adam_kernel.cc
+308
-0
paddle/phi/kernels/xpu/adam_kernel.cc
paddle/phi/kernels/xpu/adam_kernel.cc
+252
-0
未找到文件。
paddle/fluid/operators/math/selected_rows_functor.cc
浏览文件 @
cbabbe2e
...
...
@@ -569,8 +569,8 @@ TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<double>)
#ifdef PADDLE_WITH_XPU
template
<
typename
T
>
struct
MergeAdd
<
p
latform
::
XPUDevice
Context
,
T
>
{
phi
::
SelectedRows
operator
()(
const
p
latform
::
XPUDevice
Context
&
context
,
struct
MergeAdd
<
p
hi
::
XPU
Context
,
T
>
{
phi
::
SelectedRows
operator
()(
const
p
hi
::
XPU
Context
&
context
,
const
phi
::
SelectedRows
&
input
,
const
bool
sorted_result
=
false
)
{
phi
::
SelectedRows
out
;
...
...
@@ -578,7 +578,7 @@ struct MergeAdd<platform::XPUDeviceContext, T> {
return
out
;
}
void
operator
()(
const
p
latform
::
XPUDevice
Context
&
context
,
void
operator
()(
const
p
hi
::
XPU
Context
&
context
,
const
phi
::
SelectedRows
&
input
,
phi
::
SelectedRows
*
output
,
const
bool
sorted_result
=
false
)
{
...
...
@@ -633,7 +633,7 @@ struct MergeAdd<platform::XPUDeviceContext, T> {
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"merge_dup_rows"
);
}
void
operator
()(
const
p
latform
::
XPUDevice
Context
&
context
,
void
operator
()(
const
p
hi
::
XPU
Context
&
context
,
const
std
::
vector
<
const
phi
::
SelectedRows
*>&
inputs
,
phi
::
SelectedRows
*
output
,
const
bool
sorted_result
=
false
)
{
...
...
@@ -838,7 +838,7 @@ struct MergeAverage<phi::CPUContext, T> {
};
#ifdef PADDLE_WITH_XPU
template
struct
MergeAdd
<
p
latform
::
XPUDevice
Context
,
float
>;
template
struct
MergeAdd
<
p
hi
::
XPU
Context
,
float
>;
#endif
template
struct
MergeAverage
<
phi
::
CPUContext
,
int
>;
...
...
paddle/fluid/operators/optimizers/adam_op_xpu.cc
已删除
100644 → 0
浏览文件 @
e3e92c9a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "gflags/gflags.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/optimizers/adam_op_functor.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
float16
=
paddle
::
platform
::
float16
;
#ifdef PADDLE_WITH_XPU
template
<
typename
T1
,
typename
T2
>
static
int
ConvertDataByType
(
const
T1
*
x
,
T2
**
y
,
int
len
,
bool
allocateFlag
,
const
framework
::
ExecutionContext
&
ctx
)
{
if
(
nullptr
==
x
||
nullptr
==
y
||
len
<=
0
)
return
xpu
::
Error_t
::
INVALID_PARAM
;
int
r
=
0
;
if
(
allocateFlag
)
{
r
=
xpu_malloc
(
reinterpret_cast
<
void
**>
(
y
),
sizeof
(
T2
)
*
len
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"Alloc memory in xpu for result data failed with [%d]"
,
r
));
}
T1
*
cpu_data
=
reinterpret_cast
<
T1
*>
(
malloc
(
sizeof
(
T1
)
*
len
));
paddle
::
memory
::
Copy
(
paddle
::
platform
::
CPUPlace
(),
cpu_data
,
ctx
.
GetPlace
(),
x
,
len
*
sizeof
(
T1
));
T2
*
cpu_real_data
=
reinterpret_cast
<
T2
*>
(
malloc
(
sizeof
(
T2
)
*
len
));
for
(
int
i
=
0
;
i
<
len
;
i
++
)
cpu_real_data
[
i
]
=
static_cast
<
T2
>
(
cpu_data
[
i
]);
paddle
::
memory
::
Copy
(
ctx
.
GetPlace
(),
*
y
,
paddle
::
platform
::
CPUPlace
(),
cpu_real_data
,
len
*
sizeof
(
T2
));
free
(
cpu_data
);
free
(
cpu_real_data
);
return
xpu
::
Error_t
::
SUCCESS
;
}
template
<
typename
T
>
static
void
getDataPointer
(
const
phi
::
DenseTensor
&
tensorData
,
T
**
result
,
const
framework
::
ExecutionContext
&
ctx
)
{
if
(
tensorData
.
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
const
float16
*
real_data
=
tensorData
.
template
data
<
paddle
::
platform
::
float16
>();
int
len
=
tensorData
.
numel
();
int
r
=
ConvertDataByType
<
float16
,
T
>
(
real_data
,
result
,
len
,
true
,
ctx
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"execute function ConvertDataByType failed with [%d]"
,
r
));
}
}
template
<
typename
T
>
static
void
getOutDataPointer
(
phi
::
DenseTensor
*
tensorData
,
Tensor
*
out
,
T
**
result
,
const
framework
::
ExecutionContext
&
ctx
)
{
if
(
tensorData
->
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
*
result
=
out
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
}
else
{
*
result
=
tensorData
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
}
}
template
<
typename
T
>
static
void
copyOutData
(
const
Tensor
&
srcTensor
,
phi
::
DenseTensor
*
dstTensor
,
const
framework
::
ExecutionContext
&
ctx
)
{
if
(
dstTensor
->
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
const
T
*
xpu_out_data
=
srcTensor
.
template
data
<
T
>();
float16
*
out_data
=
dstTensor
->
template
mutable_data
<
float16
>(
ctx
.
GetPlace
());
int
len
=
srcTensor
.
numel
();
int
r
=
ConvertDataByType
<
T
,
float16
>
(
xpu_out_data
,
&
out_data
,
len
,
false
,
ctx
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"execute function ConvertDataByType failed with[%d]"
,
r
));
}
}
template
<
typename
T
>
static
void
setBetaData
(
const
phi
::
DenseTensor
&
beta_pow
,
phi
::
DenseTensor
*
beta_pow_out
,
const
T
&
beta
)
{
if
(
beta_pow
.
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
const
float16
*
beta_pow_p
=
beta_pow
.
template
data
<
float16
>();
beta_pow_out
->
mutable_data
<
float16
>
(
platform
::
CPUPlace
())[
0
]
=
static_cast
<
float16
>
(
beta
)
*
beta_pow_p
[
0
];
}
else
{
const
T
*
beta_pow_p
=
beta_pow
.
template
data
<
T
>();
beta_pow_out
->
mutable_data
<
T
>
(
platform
::
CPUPlace
())[
0
]
=
beta
*
beta_pow_p
[
0
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
static
void
scale
(
phi
::
DenseTensor
*
beta_pow_out
,
const
phi
::
DenseTensor
&
beta_pow
,
T
*
beta_pow_ptr
,
const
T
&
beta
,
const
framework
::
ExecutionContext
&
ctx
)
{
float16
*
beta_pow_out_p2
=
beta_pow_out
->
mutable_data
<
float16
>
(
ctx
.
GetPlace
());
Tensor
xpu_beta_pow_out
;
const
phi
::
DenseTensorMeta
meta_beta_pow_out
(
paddle
::
experimental
::
DataType
::
FLOAT32
,
beta_pow_out
->
dims
());
xpu_beta_pow_out
.
set_meta
(
meta_beta_pow_out
);
T
*
beta_pow_out_ptr
=
xpu_beta_pow_out
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta_pow_ptr
,
beta_pow_out_ptr
,
beta_pow
.
numel
(),
false
,
beta
,
0.0
f
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adam error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
const
float
*
xpu_beta_pow_out_data
=
xpu_beta_pow_out
.
template
data
<
T
>();
int
len
=
xpu_beta_pow_out
.
numel
();
r
=
ConvertDataByType
<
T
,
float16
>
(
xpu_beta_pow_out_data
,
&
beta_pow_out_p2
,
len
,
false
,
ctx
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"execute function ConvertDataByType failed with [%d]"
,
r
));
}
template
<
typename
T
>
static
void
freeData
(
const
phi
::
DenseTensor
&
tensorData
,
T
*
dataPtr
)
{
if
(
tensorData
.
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
xpu_free
(
dataPtr
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
AdamOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
using
paddle
::
framework
::
LoDTensor
;
auto
&
param
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Param"
),
"Input"
,
"Param"
,
"Adam"
);
float
*
param_ptr
=
nullptr
;
getDataPointer
<
float
>
(
param
,
&
param_ptr
,
ctx
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
float
*
grad_c
=
nullptr
;
auto
&
mom1
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment1"
),
"Input"
,
"Moment1"
,
"Adam"
);
float
*
mom1_ptr
=
nullptr
;
getDataPointer
<
float
>
(
mom1
,
&
mom1_ptr
,
ctx
);
auto
&
mom2
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Moment2"
),
"Input"
,
"Moment2"
,
"Adam"
);
float
*
mom2_ptr
=
nullptr
;
getDataPointer
<
float
>
(
mom2
,
&
mom2_ptr
,
ctx
);
auto
&
lr
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
),
"Input"
,
"LearningRate"
,
"Adam"
);
float
*
lr_ptr
=
nullptr
;
getDataPointer
<
float
>
(
lr
,
&
lr_ptr
,
ctx
);
auto
&
beta1_pow
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Beta1Pow"
),
"Input"
,
"Beta1Pow"
,
"Adam"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
float
*
beta1_pow_ptr
=
nullptr
;
const
float
*
beta1_const_pow_ptr
=
nullptr
;
if
(
beta1_pow
.
place
()
==
platform
::
CPUPlace
())
{
Tensor
xpu_beta1_pow
;
paddle
::
framework
::
TensorCopy
(
beta1_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
&
xpu_beta1_pow
);
if
(
xpu_beta1_pow
.
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
getDataPointer
<
float
>
(
xpu_beta1_pow
,
&
beta1_pow_ptr
,
ctx
);
else
beta1_const_pow_ptr
=
xpu_beta1_pow
.
template
data
<
float
>();
}
else
{
if
(
beta1_pow
.
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
getDataPointer
<
float
>
(
beta1_pow
,
&
beta1_pow_ptr
,
ctx
);
else
beta1_const_pow_ptr
=
beta1_pow
.
template
data
<
float
>();
}
auto
&
beta2_pow
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Beta2Pow"
),
"Input"
,
"Beta2Pow"
,
"Adam"
);
float
*
beta2_pow_ptr
=
nullptr
;
const
float
*
beta2_const_pow_ptr
=
nullptr
;
if
(
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
Tensor
xpu_beta2_pow
;
paddle
::
framework
::
TensorCopy
(
beta2_pow
,
ctx
.
GetPlace
(),
dev_ctx
,
&
xpu_beta2_pow
);
if
(
xpu_beta2_pow
.
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
getDataPointer
<
float
>
(
xpu_beta2_pow
,
&
beta2_pow_ptr
,
ctx
);
else
beta2_const_pow_ptr
=
xpu_beta2_pow
.
template
data
<
float
>();
}
else
{
if
(
beta2_pow
.
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
getDataPointer
<
float
>
(
beta2_pow
,
&
beta2_pow_ptr
,
ctx
);
else
beta2_const_pow_ptr
=
beta2_pow
.
template
data
<
float
>();
}
auto
&
param_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Adam"
);
Tensor
xpu_param_out
;
float
*
param_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_param
(
paddle
::
experimental
::
DataType
::
FLOAT32
,
param_out
.
dims
());
xpu_param_out
.
set_meta
(
meta_param
);
getOutDataPointer
(
&
param_out
,
&
xpu_param_out
,
&
param_out_ptr
,
ctx
);
auto
&
mom1_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Moment1Out"
),
"Output"
,
"Moment1Out"
,
"Adam"
);
Tensor
xpu_mom1_out
;
float
*
mom1_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_mom1
(
paddle
::
experimental
::
DataType
::
FLOAT32
,
mom1_out
.
dims
());
xpu_mom1_out
.
set_meta
(
meta_mom1
);
getOutDataPointer
(
&
mom1_out
,
&
xpu_mom1_out
,
&
mom1_out_ptr
,
ctx
);
auto
&
mom2_out
=
GET_DATA_SAFELY
(
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
),
"Output"
,
"Moment2Out"
,
"Adam"
);
Tensor
xpu_mom2_out
;
float
*
mom2_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_mom2
(
paddle
::
experimental
::
DataType
::
FLOAT32
,
mom2_out
.
dims
());
xpu_mom2_out
.
set_meta
(
meta_mom2
);
getOutDataPointer
(
&
mom2_out
,
&
xpu_mom2_out
,
&
mom2_out_ptr
,
ctx
);
auto
*
beta1_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta1PowOut"
);
auto
*
beta2_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta2PowOut"
);
bool
skip_update
=
false
;
if
(
ctx
.
HasInput
(
"SkipUpdate"
))
{
auto
*
skip_update_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"SkipUpdate"
);
PADDLE_ENFORCE_EQ
(
skip_update_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(SkipUpdate) size must be 1, but get %d"
,
skip_update_tensor
->
numel
()));
std
::
vector
<
bool
>
skip_update_vec
;
paddle
::
framework
::
TensorToVector
(
*
skip_update_tensor
,
ctx
.
device_context
(),
&
skip_update_vec
);
skip_update
=
skip_update_vec
[
0
];
}
// skip_update=true, just copy input to output, and TensorCopy will call
// mutable_data
if
(
skip_update
)
{
VLOG
(
4
)
<<
"Adam skip update"
;
framework
::
TensorCopy
(
param
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
param_out
);
framework
::
TensorCopy
(
mom1
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
mom1_out
);
framework
::
TensorCopy
(
mom2
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
mom2_out
);
framework
::
TensorCopy
(
beta1_pow
,
beta1_pow
.
place
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
beta1_pow_out
);
framework
::
TensorCopy
(
beta2_pow
,
beta2_pow
.
place
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
beta2_pow_out
);
return
;
}
PADDLE_ENFORCE_EQ
(
beta1_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta1 pow "
"output size is 1, but received "
"value is:%d."
,
beta1_pow_out
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta2 pow "
"output size is 1, but received "
"value is:%d."
,
beta2_pow_out
->
numel
()));
bool
use_global_beta_pow
=
ctx
.
Attr
<
bool
>
(
"use_global_beta_pow"
);
VLOG
(
4
)
<<
"use_global_beta_pow:"
<<
use_global_beta_pow
;
float
beta1
=
static_cast
<
float
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
if
(
ctx
.
HasInput
(
"Beta1Tensor"
))
{
auto
*
beta1_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta1Tensor"
);
beta1
=
static_cast
<
float
>
(
GetAttrFromTensor
(
beta1_tensor
));
}
float
beta2
=
static_cast
<
float
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
if
(
ctx
.
HasInput
(
"Beta2Tensor"
))
{
auto
*
beta2_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta2Tensor"
);
beta2
=
static_cast
<
float
>
(
GetAttrFromTensor
(
beta2_tensor
));
}
float
epsilon
=
static_cast
<
float
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
if
(
ctx
.
HasInput
(
"EpsilonTensor"
))
{
auto
*
epsilon_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"EpsilonTensor"
);
epsilon
=
static_cast
<
float
>
(
GetAttrFromTensor
(
epsilon_tensor
));
}
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
grad
=
GET_DATA_SAFELY
(
ctx
.
Input
<
LoDTensor
>
(
"Grad"
),
"Input"
,
"Grad"
,
"Adam"
);
getDataPointer
<
float
>
(
grad
,
&
grad_c
,
ctx
);
int
r
=
xpu
::
adam
(
dev_ctx
.
x_context
(),
grad_c
!=
nullptr
?
grad_c
:
grad
.
template
data
<
float
>(),
mom1_ptr
!=
nullptr
?
mom1_ptr
:
mom1
.
template
data
<
float
>(),
mom2_ptr
!=
nullptr
?
mom2_ptr
:
mom2
.
template
data
<
float
>(),
param_ptr
!=
nullptr
?
param_ptr
:
param
.
template
data
<
float
>(),
beta1_pow_ptr
!=
nullptr
?
beta1_pow_ptr
:
beta1_const_pow_ptr
,
beta2_pow_ptr
!=
nullptr
?
beta2_pow_ptr
:
beta2_const_pow_ptr
,
lr_ptr
!=
nullptr
?
lr_ptr
:
lr
.
template
data
<
float
>(),
mom1_out_ptr
,
mom2_out_ptr
,
param_out_ptr
,
beta1
,
beta2
,
epsilon
,
param
.
numel
());
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d],"
,
r
));
freeData
<
float
>
(
grad
,
grad_c
);
copyOutData
<
float
>
(
xpu_mom1_out
,
&
mom1_out
,
ctx
);
copyOutData
<
float
>
(
xpu_mom2_out
,
&
mom2_out
,
ctx
);
copyOutData
<
float
>
(
xpu_param_out
,
&
param_out
,
ctx
);
if
(
!
use_global_beta_pow
)
{
// update in cpu and then copy to xpu
if
(
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
setBetaData
(
beta1_pow
,
beta1_pow_out
,
beta1
);
setBetaData
(
beta2_pow
,
beta2_pow_out
,
beta2
);
}
else
{
float
*
beta1_pow_out_p1
=
nullptr
;
if
(
beta1_pow_out
->
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
scale
<
DeviceContext
,
float
>
(
beta1_pow_out
,
beta1_pow
,
beta1_pow_ptr
,
beta1
,
ctx
);
}
else
{
const
float
*
beta1_pow_data
=
beta1_pow
.
template
data
<
float
>();
beta1_pow_out_p1
=
beta1_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta1_pow_data
,
beta1_pow_out_p1
,
beta1_pow
.
numel
(),
false
,
beta1
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adam error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
float
*
beta2_pow_out_p1
=
nullptr
;
if
(
beta2_pow_out
->
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
scale
<
DeviceContext
,
float
>
(
beta2_pow_out
,
beta2_pow
,
beta2_pow_ptr
,
beta2
,
ctx
);
}
else
{
const
float
*
beta2_pow_data
=
beta2_pow
.
template
data
<
float
>();
beta2_pow_out_p1
=
beta2_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta2_pow_data
,
beta2_pow_out_p1
,
beta2_pow
.
numel
(),
false
,
beta2
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adam error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
}
}
else
if
(
grad_var
->
IsType
<
phi
::
SelectedRows
>
())
{
auto
*
grad
=
ctx
.
Input
<
phi
::
SelectedRows
>
(
"Grad"
);
if
(
grad
->
rows
().
size
()
==
0
)
{
VLOG
(
3
)
<<
"grad row size is 0!!"
;
return
;
}
std
::
vector
<
int64_t
>
cpu_rows
(
grad
->
rows
().
begin
(),
grad
->
rows
().
end
());
bool
is_strict_sorted
=
true
;
for
(
size_t
i
=
1
;
i
<
cpu_rows
.
size
();
++
i
)
{
if
(
cpu_rows
[
i
-
1
]
>=
cpu_rows
[
i
])
{
is_strict_sorted
=
false
;
break
;
}
}
phi
::
SelectedRows
tmp_grad_merge
;
const
phi
::
SelectedRows
*
grad_merge_ptr
;
if
(
is_strict_sorted
)
{
grad_merge_ptr
=
grad
;
}
else
{
scatter
::
MergeAdd
<
platform
::
XPUDeviceContext
,
float
>
merge_func
;
merge_func
(
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>(),
*
grad
,
&
tmp_grad_merge
,
true
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
grad_merge_ptr
=
&
tmp_grad_merge
;
}
auto
&
grad_merge
=
*
grad_merge_ptr
;
auto
&
grad_tensor
=
grad_merge
.
value
();
getDataPointer
<
float
>
(
grad_tensor
,
&
grad_c
,
ctx
);
int
row_count
=
grad_merge
.
rows
().
size
();
std
::
vector
<
int
>
rows
(
row_count
);
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
xpu_rows
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
row_count
);
std
::
vector
<
int64_t
>
merge_rows
(
grad_merge
.
rows
().
begin
(),
grad_merge
.
rows
().
end
());
for
(
size_t
i
=
0
;
i
<
grad_merge
.
rows
().
size
();
++
i
)
{
rows
[
i
]
=
static_cast
<
int
>
(
merge_rows
[
i
]);
}
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
memory
::
Copy
(
ctx
.
GetPlace
(),
xpu_rows
,
platform
::
CPUPlace
(),
rows
.
data
(),
row_count
*
sizeof
(
int
));
auto
row_numel
=
grad_tensor
.
numel
()
/
grad_merge
.
rows
().
size
();
auto
ori_rows
=
param
.
numel
()
/
row_numel
;
int
lazy_mode
=
static_cast
<
int
>
(
ctx
.
Attr
<
bool
>
(
"lazy_mode"
));
int
r
=
xpu
::
sparse_adam
(
dev_ctx
.
x_context
(),
grad_c
!=
nullptr
?
grad_c
:
grad_tensor
.
template
data
<
float
>(),
mom1_ptr
!=
nullptr
?
mom1_ptr
:
mom1
.
template
data
<
float
>(),
mom2_ptr
!=
nullptr
?
mom2_ptr
:
mom2
.
template
data
<
float
>(),
param_ptr
!=
nullptr
?
param_ptr
:
param
.
template
data
<
float
>(),
beta1_pow_ptr
!=
nullptr
?
beta1_pow_ptr
:
beta1_const_pow_ptr
,
beta2_pow_ptr
!=
nullptr
?
beta2_pow_ptr
:
beta2_const_pow_ptr
,
lr_ptr
!=
nullptr
?
lr_ptr
:
lr
.
template
data
<
float
>(),
mom1_out_ptr
,
mom2_out_ptr
,
param_out_ptr
,
beta1
,
beta2
,
epsilon
,
ori_rows
,
xpu_rows
,
row_numel
,
grad_merge
.
rows
().
size
(),
lazy_mode
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d],"
,
r
));
freeData
<
float
>
(
grad_tensor
,
grad_c
);
copyOutData
<
float
>
(
xpu_mom1_out
,
&
mom1_out
,
ctx
);
copyOutData
<
float
>
(
xpu_mom2_out
,
&
mom2_out
,
ctx
);
copyOutData
<
float
>
(
xpu_param_out
,
&
param_out
,
ctx
);
if
(
!
use_global_beta_pow
)
{
// update in cpu and then copy to xpu
if
(
beta1_pow
.
place
()
==
platform
::
CPUPlace
()
&&
beta2_pow
.
place
()
==
platform
::
CPUPlace
())
{
setBetaData
(
beta1_pow
,
beta1_pow_out
,
beta1
);
setBetaData
(
beta2_pow
,
beta2_pow_out
,
beta2
);
}
else
{
float
*
beta1_pow_out_p1
=
nullptr
;
if
(
beta1_pow_out
->
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
scale
<
DeviceContext
,
float
>
(
beta1_pow_out
,
beta1_pow
,
beta1_pow_ptr
,
beta1
,
ctx
);
}
else
{
const
float
*
beta1_pow_data
=
beta1_pow
.
template
data
<
float
>();
beta1_pow_out_p1
=
beta1_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta1_pow_data
,
beta1_pow_out_p1
,
beta1_pow
.
numel
(),
false
,
beta1
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adam error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
float
*
beta2_pow_out_p1
=
nullptr
;
if
(
beta2_pow_out
->
dtype
()
==
paddle
::
experimental
::
DataType
::
FLOAT16
)
{
scale
<
DeviceContext
,
float
>
(
beta2_pow_out
,
beta2_pow
,
beta2_pow_ptr
,
beta2
,
ctx
);
}
else
{
const
float
*
beta2_pow_data
=
beta2_pow
.
template
data
<
float
>();
beta2_pow_out_p1
=
beta2_pow_out
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta2_pow_data
,
beta2_pow_out_p1
,
beta2_pow
.
numel
(),
false
,
beta2
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel scale occur error in adam error code "
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
}
}
else
{
PADDLE_ENFORCE_EQ
(
1
,
2
,
platform
::
errors
::
InvalidArgument
(
"Variable type not supported by adam_op"
));
}
freeData
<
float
>
(
param
,
param_ptr
);
freeData
<
float
>
(
mom1
,
mom1_ptr
);
freeData
<
float
>
(
mom2
,
mom2_ptr
);
freeData
<
float
>
(
lr
,
lr_ptr
);
}
};
#endif
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL
(
adam
,
ops
::
AdamOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
AdamOpXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/phi/kernels/CMakeLists.txt
浏览文件 @
cbabbe2e
...
...
@@ -22,6 +22,7 @@ set_property(GLOBAL PROPERTY PHI_KERNELS "")
# [ 1. Common kernel compilation dependencies ]
set
(
COMMON_KERNEL_DEPS
dense_tensor
string_tensor
sparse_coo_tensor
sparse_csr_tensor
kernel_context
...
...
@@ -30,6 +31,7 @@ set(COMMON_KERNEL_DEPS
convert_utils
lod_utils
custom_kernel
string_infermeta
phi_tensor_utils
)
set
(
COMMON_KERNEL_DEPS
${
COMMON_KERNEL_DEPS
}
...
...
@@ -67,21 +69,7 @@ set(COMMON_KERNEL_DEPS
sequence_padding
sequence_scale
fft
phi_data_layout_transform
)
set
(
COMMON_KERNEL_DEPS
${
COMMON_KERNEL_DEPS
}
dense_tensor
string_tensor
sparse_coo_tensor
sparse_csr_tensor
kernel_context
kernel_factory
arg_map_context
convert_utils
lod_utils
custom_kernel
string_infermeta
phi_data_layout_transform
gpc
utf8proc
device_memory_aligment
)
...
...
@@ -136,7 +124,7 @@ else()
"strings/cpu/*.cc"
)
endif
()
file
(
GLOB kernel_xpu
"xpu/*.cc"
)
file
(
GLOB kernel_xpu
"xpu/*.cc"
"selected_rows/xpu/*.cc"
)
add_library
(
phi_cpu
${
kernel_cc
}
)
kernel_declare
(
"
${
kernel_cc
}
"
)
...
...
paddle/phi/kernels/funcs/adam_functors.h
浏览文件 @
cbabbe2e
...
...
@@ -19,8 +19,142 @@
#include "paddle/phi/kernels/funcs/algorithm.h"
#ifdef PADDLE_WITH_XPU
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_header.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/memcpy.h"
#endif
namespace
phi
{
namespace
funcs
{
using
float16
=
dtype
::
float16
;
#ifdef PADDLE_WITH_XPU
template
<
typename
Context
,
typename
T1
,
typename
T2
>
static
int
ConvertDataByType
(
const
T1
*
x
,
T2
**
y
,
int
len
,
bool
allocateFlag
,
const
Context
&
dev_ctx
)
{
if
(
nullptr
==
x
||
nullptr
==
y
||
len
<=
0
)
return
xpu
::
Error_t
::
INVALID_PARAM
;
int
r
=
0
;
if
(
allocateFlag
)
{
r
=
xpu_malloc
(
reinterpret_cast
<
void
**>
(
y
),
sizeof
(
T2
)
*
len
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
T1
*
cpu_data
=
reinterpret_cast
<
T1
*>
(
malloc
(
sizeof
(
T1
)
*
len
));
paddle
::
memory
::
Copy
(
CPUPlace
(),
cpu_data
,
dev_ctx
.
GetPlace
(),
x
,
len
*
sizeof
(
T1
));
T2
*
cpu_real_data
=
reinterpret_cast
<
T2
*>
(
malloc
(
sizeof
(
T2
)
*
len
));
for
(
int
i
=
0
;
i
<
len
;
i
++
)
cpu_real_data
[
i
]
=
static_cast
<
T2
>
(
cpu_data
[
i
]);
paddle
::
memory
::
Copy
(
dev_ctx
.
GetPlace
(),
*
y
,
CPUPlace
(),
cpu_real_data
,
len
*
sizeof
(
T2
));
free
(
cpu_data
);
free
(
cpu_real_data
);
return
xpu
::
Error_t
::
SUCCESS
;
}
template
<
typename
Context
,
typename
T
>
static
void
GetDataPointer
(
const
phi
::
DenseTensor
&
tensorData
,
T
**
result
,
const
Context
&
dev_ctx
)
{
if
(
tensorData
.
dtype
()
==
DataType
::
FLOAT16
)
{
const
float16
*
real_data
=
tensorData
.
template
data
<
float16
>();
int
len
=
tensorData
.
numel
();
int
r
=
ConvertDataByType
<
Context
,
float16
,
T
>
(
real_data
,
result
,
len
,
true
,
dev_ctx
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
}
template
<
typename
Context
,
typename
T
>
static
void
GetOutDataPointer
(
DenseTensor
*
tensorData
,
DenseTensor
*
out
,
T
**
result
,
const
Context
&
dev_ctx
)
{
if
(
tensorData
->
dtype
()
==
DataType
::
FLOAT16
)
{
*
result
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
}
else
{
*
result
=
dev_ctx
.
template
Alloc
<
T
>(
tensorData
);
}
}
template
<
typename
Context
,
typename
T
>
static
void
CopyOutData
(
const
DenseTensor
&
srcTensor
,
phi
::
DenseTensor
*
dstTensor
,
const
Context
&
dev_ctx
)
{
if
(
dstTensor
->
dtype
()
==
DataType
::
FLOAT16
)
{
const
T
*
xpu_out_data
=
srcTensor
.
template
data
<
T
>();
float16
*
out_data
=
dev_ctx
.
template
Alloc
<
float16
>(
dstTensor
);
int
len
=
srcTensor
.
numel
();
int
r
=
ConvertDataByType
<
Context
,
T
,
float16
>
(
xpu_out_data
,
&
out_data
,
len
,
false
,
dev_ctx
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
}
template
<
typename
T
>
static
void
FreeData
(
const
phi
::
DenseTensor
&
tensorData
,
T
*
dataPtr
)
{
if
(
tensorData
.
dtype
()
==
DataType
::
FLOAT16
)
xpu_free
(
dataPtr
);
}
template
<
typename
Context
,
typename
T
>
static
void
SetBetaData
(
const
phi
::
DenseTensor
&
beta_pow
,
phi
::
DenseTensor
*
beta_pow_out
,
const
T
&
beta
,
const
Context
&
dev_ctx
)
{
if
(
beta_pow
.
dtype
()
==
DataType
::
FLOAT16
)
{
const
float16
*
beta_pow_p
=
beta_pow
.
template
data
<
float16
>();
dev_ctx
.
template
HostAlloc
<
float16
>(
beta_pow_out
)[
0
]
=
static_cast
<
float16
>
(
beta
)
*
beta_pow_p
[
0
];
}
else
{
const
T
*
beta_pow_p
=
beta_pow
.
template
data
<
T
>();
dev_ctx
.
template
HostAlloc
<
T
>(
beta_pow_out
)[
0
]
=
beta
*
beta_pow_p
[
0
];
}
}
template
<
typename
Context
,
typename
T
>
static
void
Scale
(
phi
::
DenseTensor
*
beta_pow_out
,
const
phi
::
DenseTensor
&
beta_pow
,
T
*
beta_pow_ptr
,
const
T
&
beta
,
const
Context
&
dev_ctx
)
{
float16
*
beta_pow_out_p2
=
dev_ctx
.
template
Alloc
<
float16
>(
beta_pow_out
);
DenseTensor
xpu_beta_pow_out
;
const
phi
::
DenseTensorMeta
meta_beta_pow_out
(
DataType
::
FLOAT32
,
beta_pow_out
->
dims
());
xpu_beta_pow_out
.
set_meta
(
meta_beta_pow_out
);
T
*
beta_pow_out_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
&
xpu_beta_pow_out
);
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta_pow_ptr
,
beta_pow_out_ptr
,
beta_pow
.
numel
(),
false
,
beta
,
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
const
float
*
xpu_beta_pow_out_data
=
dev_ctx
.
template
Alloc
<
T
>(
&
xpu_beta_pow_out
);
int
len
=
xpu_beta_pow_out
.
numel
();
r
=
ConvertDataByType
<
Context
,
T
,
float16
>
(
xpu_beta_pow_out_data
,
&
beta_pow_out_p2
,
len
,
false
,
dev_ctx
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
#endif
struct
GPUAdam
;
struct
CPUAdam
;
...
...
paddle/phi/kernels/selected_rows/xpu/adam_kernel.cc
0 → 100644
浏览文件 @
cbabbe2e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/selected_rows/adam_kernel.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/adam_functors.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/math/selected_rows_functor.h"
namespace
phi
{
namespace
sr
{
using
float16
=
dtype
::
float16
;
template
<
typename
T
,
typename
Context
>
void
AdamDenseParamSparseGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
SelectedRows
&
grad
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
moment1
,
const
DenseTensor
&
moment2
,
const
DenseTensor
&
beta1_pow
,
const
DenseTensor
&
beta2_pow
,
const
paddle
::
optional
<
DenseTensor
>&
master_param
,
const
paddle
::
optional
<
DenseTensor
>&
skip_update
,
const
Scalar
&
beta1
,
const
Scalar
&
beta2
,
const
Scalar
&
epsilon
,
bool
lazy_mode
,
int64_t
min_row_size_to_use_multithread
,
bool
multi_precision
,
bool
use_global_beta_pow
,
DenseTensor
*
param_out
,
DenseTensor
*
moment1_out
,
DenseTensor
*
moment2_out
,
DenseTensor
*
beta1_pow_out
,
DenseTensor
*
beta2_pow_out
,
DenseTensor
*
master_param_outs
)
{
float
*
param_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
param
,
&
param_ptr
,
dev_ctx
);
float
*
mom1_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
moment1
,
&
mom1_ptr
,
dev_ctx
);
float
*
mom2_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
moment2
,
&
mom2_ptr
,
dev_ctx
);
float
*
lr_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
learning_rate
,
&
lr_ptr
,
dev_ctx
);
float
*
beta1_pow_ptr
=
nullptr
;
const
float
*
beta1_const_pow_ptr
=
nullptr
;
if
(
beta1_pow
.
place
()
==
CPUPlace
())
{
DenseTensor
xpu_beta1_pow
;
phi
::
Copy
(
dev_ctx
,
beta1_pow
,
beta1_pow
.
place
(),
false
,
&
xpu_beta1_pow
);
if
(
xpu_beta1_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
xpu_beta1_pow
,
&
beta1_pow_ptr
,
dev_ctx
);
else
beta1_const_pow_ptr
=
xpu_beta1_pow
.
template
data
<
float
>();
}
else
{
if
(
beta1_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
beta1_pow
,
&
beta1_pow_ptr
,
dev_ctx
);
else
beta1_const_pow_ptr
=
beta1_pow
.
template
data
<
float
>();
}
float
*
beta2_pow_ptr
=
nullptr
;
const
float
*
beta2_const_pow_ptr
=
nullptr
;
if
(
beta2_pow
.
place
()
==
CPUPlace
())
{
DenseTensor
xpu_beta2_pow
;
phi
::
Copy
(
dev_ctx
,
beta2_pow
,
beta2_pow
.
place
(),
false
,
&
xpu_beta2_pow
);
if
(
xpu_beta2_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
xpu_beta2_pow
,
&
beta2_pow_ptr
,
dev_ctx
);
else
beta2_const_pow_ptr
=
xpu_beta2_pow
.
template
data
<
float
>();
}
else
{
if
(
beta2_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
beta2_pow
,
&
beta2_pow_ptr
,
dev_ctx
);
else
beta2_const_pow_ptr
=
beta2_pow
.
template
data
<
float
>();
}
DenseTensor
xpu_param_out
;
float
*
param_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_param
(
DataType
::
FLOAT32
,
param_out
->
dims
());
xpu_param_out
.
set_meta
(
meta_param
);
funcs
::
GetOutDataPointer
<
Context
,
float
>
(
param_out
,
&
xpu_param_out
,
&
param_out_ptr
,
dev_ctx
);
DenseTensor
xpu_mom1_out
;
float
*
mom1_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_mom1
(
DataType
::
FLOAT32
,
moment1_out
->
dims
());
xpu_mom1_out
.
set_meta
(
meta_mom1
);
funcs
::
GetOutDataPointer
<
Context
,
float
>
(
moment1_out
,
&
xpu_mom1_out
,
&
mom1_out_ptr
,
dev_ctx
);
DenseTensor
xpu_mom2_out
;
float
*
mom2_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_mom2
(
DataType
::
FLOAT32
,
moment2_out
->
dims
());
xpu_mom2_out
.
set_meta
(
meta_mom2
);
funcs
::
GetOutDataPointer
<
Context
,
float
>
(
moment2_out
,
&
xpu_mom2_out
,
&
mom2_out_ptr
,
dev_ctx
);
bool
skip_update_
=
false
;
if
(
skip_update
.
is_initialized
())
{
PADDLE_ENFORCE_EQ
(
skip_update
->
numel
(),
1
,
errors
::
InvalidArgument
(
"Input(SkipUpdate) size must be 1, but get %d"
,
skip_update
->
numel
()));
std
::
vector
<
bool
>
skip_update_vec
;
paddle
::
framework
::
TensorToVector
(
*
skip_update
,
dev_ctx
,
&
skip_update_vec
);
skip_update_
=
skip_update_vec
[
0
];
}
if
(
skip_update_
)
{
VLOG
(
4
)
<<
"Adam skip update"
;
phi
::
Copy
(
dev_ctx
,
param
,
dev_ctx
.
GetPlace
(),
false
,
param_out
);
phi
::
Copy
(
dev_ctx
,
moment1
,
dev_ctx
.
GetPlace
(),
false
,
moment1_out
);
phi
::
Copy
(
dev_ctx
,
moment2
,
dev_ctx
.
GetPlace
(),
false
,
moment2_out
);
phi
::
Copy
(
dev_ctx
,
beta1_pow
,
beta1_pow
.
place
(),
false
,
beta1_pow_out
);
phi
::
Copy
(
dev_ctx
,
beta2_pow
,
beta2_pow
.
place
(),
false
,
beta2_pow_out
);
return
;
}
PADDLE_ENFORCE_EQ
(
beta1_pow_out
->
numel
(),
1
,
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta1 pow "
"output size is 1, but received "
"value is:%d."
,
beta1_pow_out
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_out
->
numel
(),
1
,
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta2 pow "
"output size is 1, but received "
"value is:%d."
,
beta2_pow_out
->
numel
()));
VLOG
(
4
)
<<
"use_global_beta_pow:"
<<
use_global_beta_pow
;
auto
beta1_
=
beta1
.
to
<
float
>
();
auto
beta2_
=
beta2
.
to
<
float
>
();
auto
epsilon_
=
epsilon
.
to
<
float
>
();
float
*
grad_c
=
nullptr
;
if
(
grad
.
rows
().
size
()
==
0
)
{
VLOG
(
3
)
<<
"grad row size is 0!!"
;
return
;
}
std
::
vector
<
int64_t
>
cpu_rows
(
grad
.
rows
().
begin
(),
grad
.
rows
().
end
());
bool
is_strict_sorted
=
true
;
for
(
size_t
i
=
1
;
i
<
cpu_rows
.
size
();
++
i
)
{
if
(
cpu_rows
[
i
-
1
]
>=
cpu_rows
[
i
])
{
is_strict_sorted
=
false
;
break
;
}
}
SelectedRows
tmp_grad_merge
;
const
SelectedRows
*
grad_merge_ptr
;
if
(
is_strict_sorted
)
{
grad_merge_ptr
=
&
grad
;
}
else
{
paddle
::
operators
::
math
::
scatter
::
MergeAdd
<
Context
,
float
>
merge_func
;
merge_func
(
dev_ctx
,
grad
,
&
tmp_grad_merge
,
true
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
grad_merge_ptr
=
&
tmp_grad_merge
;
}
auto
&
grad_merge
=
*
grad_merge_ptr
;
auto
&
grad_tensor
=
grad_merge
.
value
();
funcs
::
GetDataPointer
<
Context
,
float
>
(
grad_tensor
,
&
grad_c
,
dev_ctx
);
int
row_count
=
grad_merge
.
rows
().
size
();
std
::
vector
<
int
>
rows
(
row_count
);
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
xpu_rows
=
RAII_GUARD
.
alloc_l3_or_gm
<
int
>
(
row_count
);
std
::
vector
<
int64_t
>
merge_rows
(
grad_merge
.
rows
().
begin
(),
grad_merge
.
rows
().
end
());
for
(
size_t
i
=
0
;
i
<
grad_merge
.
rows
().
size
();
++
i
)
{
rows
[
i
]
=
static_cast
<
int
>
(
merge_rows
[
i
]);
}
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
paddle
::
memory
::
Copy
(
dev_ctx
.
GetPlace
(),
xpu_rows
,
CPUPlace
(),
rows
.
data
(),
row_count
*
sizeof
(
int
));
auto
row_numel
=
grad_tensor
.
numel
()
/
grad_merge
.
rows
().
size
();
auto
ori_rows
=
param
.
numel
()
/
row_numel
;
int
r
=
xpu
::
sparse_adam
(
dev_ctx
.
x_context
(),
grad_c
!=
nullptr
?
grad_c
:
grad_tensor
.
template
data
<
float
>(),
mom1_ptr
!=
nullptr
?
mom1_ptr
:
moment1
.
template
data
<
float
>(),
mom2_ptr
!=
nullptr
?
mom2_ptr
:
moment2
.
template
data
<
float
>(),
param_ptr
!=
nullptr
?
param_ptr
:
param
.
template
data
<
float
>(),
beta1_pow_ptr
!=
nullptr
?
beta1_pow_ptr
:
beta1_const_pow_ptr
,
beta2_pow_ptr
!=
nullptr
?
beta2_pow_ptr
:
beta2_const_pow_ptr
,
lr_ptr
!=
nullptr
?
lr_ptr
:
learning_rate
.
template
data
<
float
>(),
mom1_out_ptr
,
mom2_out_ptr
,
param_out_ptr
,
beta1_
,
beta2_
,
epsilon_
,
ori_rows
,
xpu_rows
,
row_numel
,
grad_merge
.
rows
().
size
(),
lazy_mode
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
funcs
::
FreeData
<
float
>
(
grad_tensor
,
grad_c
);
funcs
::
CopyOutData
<
Context
,
float
>
(
xpu_mom1_out
,
moment1_out
,
dev_ctx
);
funcs
::
CopyOutData
<
Context
,
float
>
(
xpu_mom2_out
,
moment1_out
,
dev_ctx
);
funcs
::
CopyOutData
<
Context
,
float
>
(
xpu_param_out
,
moment1_out
,
dev_ctx
);
if
(
!
use_global_beta_pow
)
{
// update in cpu and then copy to xpu
if
(
beta1_pow
.
place
()
==
CPUPlace
()
&&
beta2_pow
.
place
()
==
CPUPlace
())
{
funcs
::
SetBetaData
<
Context
,
float
>
(
beta1_pow
,
beta1_pow_out
,
beta1_
,
dev_ctx
);
funcs
::
SetBetaData
<
Context
,
float
>
(
beta2_pow
,
beta2_pow_out
,
beta2_
,
dev_ctx
);
}
else
{
float
*
beta1_pow_out_p1
=
nullptr
;
if
(
beta1_pow_out
->
dtype
()
==
DataType
::
FLOAT16
)
{
funcs
::
Scale
<
Context
,
float
>
(
beta1_pow_out
,
beta1_pow
,
beta1_pow_ptr
,
beta1_
,
dev_ctx
);
}
else
{
const
float
*
beta1_pow_data
=
beta1_pow
.
template
data
<
float
>();
beta1_pow_out_p1
=
dev_ctx
.
template
Alloc
<
float
>(
beta1_pow_out
);
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta1_pow_data
,
beta1_pow_out_p1
,
beta1_pow
.
numel
(),
false
,
beta1_
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
float
*
beta2_pow_out_p1
=
nullptr
;
if
(
beta2_pow_out
->
dtype
()
==
DataType
::
FLOAT16
)
{
funcs
::
Scale
<
Context
,
float
>
(
beta2_pow_out
,
beta2_pow
,
beta2_pow_ptr
,
beta2_
,
dev_ctx
);
}
else
{
const
float
*
beta2_pow_data
=
beta2_pow
.
template
data
<
float
>();
beta2_pow_out_p1
=
dev_ctx
.
template
Alloc
<
float
>(
beta2_pow_out
);
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta2_pow_data
,
beta2_pow_out_p1
,
beta2_pow
.
numel
(),
false
,
beta2_
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
}
}
funcs
::
FreeData
<
float
>
(
param
,
param_ptr
);
funcs
::
FreeData
<
float
>
(
moment1
,
mom1_ptr
);
funcs
::
FreeData
<
float
>
(
moment2
,
mom2_ptr
);
funcs
::
FreeData
<
float
>
(
learning_rate
,
lr_ptr
);
}
}
// namespace sr
}
// namespace phi
PD_REGISTER_KERNEL
(
adam_dense_param_sparse_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
sr
::
AdamDenseParamSparseGradKernel
,
float
,
phi
::
dtype
::
float16
)
{
// Skip beta1_pow, beta2_pow, skip_update data transform
kernel
->
InputAt
(
5
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
kernel
->
InputAt
(
6
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
kernel
->
InputAt
(
8
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
}
paddle/phi/kernels/xpu/adam_kernel.cc
0 → 100644
浏览文件 @
cbabbe2e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/adam_kernel.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/adam_functors.h"
namespace
phi
{
using
float16
=
dtype
::
float16
;
template
<
typename
T
,
typename
Context
>
void
AdamDenseKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
moment1
,
const
DenseTensor
&
moment2
,
const
DenseTensor
&
beta1_pow
,
const
DenseTensor
&
beta2_pow
,
const
paddle
::
optional
<
DenseTensor
>&
master_param
,
const
paddle
::
optional
<
DenseTensor
>&
skip_update
,
const
Scalar
&
beta1
,
const
Scalar
&
beta2
,
const
Scalar
&
epsilon
,
bool
lazy_mode
,
int64_t
min_row_size_to_use_multithread
,
bool
multi_precision
,
bool
use_global_beta_pow
,
DenseTensor
*
param_out
,
DenseTensor
*
moment1_out
,
DenseTensor
*
moment2_out
,
DenseTensor
*
beta1_pow_out
,
DenseTensor
*
beta2_pow_out
,
DenseTensor
*
master_param_outs
)
{
float
*
param_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
param
,
&
param_ptr
,
dev_ctx
);
float
*
mom1_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
moment1
,
&
mom1_ptr
,
dev_ctx
);
float
*
mom2_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
moment2
,
&
mom2_ptr
,
dev_ctx
);
float
*
lr_ptr
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
learning_rate
,
&
lr_ptr
,
dev_ctx
);
float
*
beta1_pow_ptr
=
nullptr
;
const
float
*
beta1_const_pow_ptr
=
nullptr
;
if
(
beta1_pow
.
place
()
==
CPUPlace
())
{
DenseTensor
xpu_beta1_pow
;
phi
::
Copy
(
dev_ctx
,
beta1_pow
,
beta1_pow
.
place
(),
false
,
&
xpu_beta1_pow
);
if
(
xpu_beta1_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
xpu_beta1_pow
,
&
beta1_pow_ptr
,
dev_ctx
);
else
beta1_const_pow_ptr
=
xpu_beta1_pow
.
template
data
<
float
>();
}
else
{
if
(
beta1_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
beta1_pow
,
&
beta1_pow_ptr
,
dev_ctx
);
else
beta1_const_pow_ptr
=
beta1_pow
.
template
data
<
float
>();
}
float
*
beta2_pow_ptr
=
nullptr
;
const
float
*
beta2_const_pow_ptr
=
nullptr
;
if
(
beta2_pow
.
place
()
==
CPUPlace
())
{
DenseTensor
xpu_beta2_pow
;
phi
::
Copy
(
dev_ctx
,
beta2_pow
,
beta2_pow
.
place
(),
false
,
&
xpu_beta2_pow
);
if
(
xpu_beta2_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
xpu_beta2_pow
,
&
beta2_pow_ptr
,
dev_ctx
);
else
beta2_const_pow_ptr
=
xpu_beta2_pow
.
template
data
<
float
>();
}
else
{
if
(
beta2_pow
.
dtype
()
==
DataType
::
FLOAT16
)
funcs
::
GetDataPointer
<
Context
,
float
>
(
beta2_pow
,
&
beta2_pow_ptr
,
dev_ctx
);
else
beta2_const_pow_ptr
=
beta2_pow
.
template
data
<
float
>();
}
DenseTensor
xpu_param_out
;
float
*
param_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_param
(
DataType
::
FLOAT32
,
param_out
->
dims
());
xpu_param_out
.
set_meta
(
meta_param
);
funcs
::
GetOutDataPointer
<
Context
,
float
>
(
param_out
,
&
xpu_param_out
,
&
param_out_ptr
,
dev_ctx
);
DenseTensor
xpu_mom1_out
;
float
*
mom1_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_mom1
(
DataType
::
FLOAT32
,
moment1_out
->
dims
());
xpu_mom1_out
.
set_meta
(
meta_mom1
);
funcs
::
GetOutDataPointer
<
Context
,
float
>
(
moment1_out
,
&
xpu_mom1_out
,
&
mom1_out_ptr
,
dev_ctx
);
DenseTensor
xpu_mom2_out
;
float
*
mom2_out_ptr
=
nullptr
;
const
phi
::
DenseTensorMeta
meta_mom2
(
DataType
::
FLOAT32
,
moment2_out
->
dims
());
xpu_mom2_out
.
set_meta
(
meta_mom2
);
funcs
::
GetOutDataPointer
<
Context
,
float
>
(
moment2_out
,
&
xpu_mom2_out
,
&
mom2_out_ptr
,
dev_ctx
);
bool
skip_update_
=
false
;
if
(
skip_update
.
is_initialized
())
{
PADDLE_ENFORCE_EQ
(
skip_update
->
numel
(),
1
,
errors
::
InvalidArgument
(
"Input(SkipUpdate) size must be 1, but get %d"
,
skip_update
->
numel
()));
std
::
vector
<
bool
>
skip_update_vec
;
paddle
::
framework
::
TensorToVector
(
*
skip_update
,
dev_ctx
,
&
skip_update_vec
);
skip_update_
=
skip_update_vec
[
0
];
}
if
(
skip_update_
)
{
VLOG
(
4
)
<<
"Adam skip update"
;
phi
::
Copy
(
dev_ctx
,
param
,
dev_ctx
.
GetPlace
(),
false
,
param_out
);
phi
::
Copy
(
dev_ctx
,
moment1
,
dev_ctx
.
GetPlace
(),
false
,
moment1_out
);
phi
::
Copy
(
dev_ctx
,
moment2
,
dev_ctx
.
GetPlace
(),
false
,
moment2_out
);
phi
::
Copy
(
dev_ctx
,
beta1_pow
,
beta1_pow
.
place
(),
false
,
beta1_pow_out
);
phi
::
Copy
(
dev_ctx
,
beta2_pow
,
beta2_pow
.
place
(),
false
,
beta2_pow_out
);
return
;
}
PADDLE_ENFORCE_EQ
(
beta1_pow_out
->
numel
(),
1
,
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta1 pow "
"output size is 1, but received "
"value is:%d."
,
beta1_pow_out
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_out
->
numel
(),
1
,
errors
::
InvalidArgument
(
"Tensor holds the wrong size, Expected beta2 pow "
"output size is 1, but received "
"value is:%d."
,
beta2_pow_out
->
numel
()));
VLOG
(
4
)
<<
"use_global_beta_pow:"
<<
use_global_beta_pow
;
auto
beta1_
=
beta1
.
to
<
float
>
();
auto
beta2_
=
beta2
.
to
<
float
>
();
auto
epsilon_
=
epsilon
.
to
<
float
>
();
float
*
grad_c
=
nullptr
;
funcs
::
GetDataPointer
<
Context
,
float
>
(
grad
,
&
grad_c
,
dev_ctx
);
int
r
=
xpu
::
adam
(
dev_ctx
.
x_context
(),
grad_c
!=
nullptr
?
grad_c
:
grad
.
template
data
<
float
>(),
mom1_ptr
!=
nullptr
?
mom1_ptr
:
moment1
.
template
data
<
float
>(),
mom2_ptr
!=
nullptr
?
mom2_ptr
:
moment2
.
template
data
<
float
>(),
param_ptr
!=
nullptr
?
param_ptr
:
param
.
template
data
<
float
>(),
beta1_pow_ptr
!=
nullptr
?
beta1_pow_ptr
:
beta1_const_pow_ptr
,
beta2_pow_ptr
!=
nullptr
?
beta2_pow_ptr
:
beta2_const_pow_ptr
,
lr_ptr
!=
nullptr
?
lr_ptr
:
learning_rate
.
template
data
<
float
>(),
mom1_out_ptr
,
mom2_out_ptr
,
param_out_ptr
,
beta1_
,
beta2_
,
epsilon_
,
param
.
numel
());
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
funcs
::
FreeData
<
float
>
(
grad
,
grad_c
);
funcs
::
CopyOutData
<
Context
,
float
>
(
xpu_mom1_out
,
moment1_out
,
dev_ctx
);
funcs
::
CopyOutData
<
Context
,
float
>
(
xpu_mom2_out
,
moment2_out
,
dev_ctx
);
funcs
::
CopyOutData
<
Context
,
float
>
(
xpu_param_out
,
param_out
,
dev_ctx
);
if
(
!
use_global_beta_pow
)
{
// update in cpu and then copy to xpu
if
(
beta1_pow
.
place
()
==
CPUPlace
()
&&
beta2_pow
.
place
()
==
CPUPlace
())
{
funcs
::
SetBetaData
<
Context
,
float
>
(
beta1_pow
,
beta1_pow_out
,
beta1_
,
dev_ctx
);
funcs
::
SetBetaData
<
Context
,
float
>
(
beta2_pow
,
beta2_pow_out
,
beta2_
,
dev_ctx
);
}
else
{
float
*
beta1_pow_out_p1
=
nullptr
;
if
(
beta1_pow_out
->
dtype
()
==
DataType
::
FLOAT16
)
{
funcs
::
Scale
<
Context
,
float
>
(
beta1_pow_out
,
beta1_pow
,
beta1_pow_ptr
,
beta1_
,
dev_ctx
);
}
else
{
const
float
*
beta1_pow_data
=
beta1_pow
.
template
data
<
float
>();
beta1_pow_out_p1
=
dev_ctx
.
template
Alloc
<
float
>(
beta1_pow_out
);
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta1_pow_data
,
beta1_pow_out_p1
,
beta1_pow
.
numel
(),
false
,
beta1_
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
float
*
beta2_pow_out_p1
=
nullptr
;
if
(
beta2_pow_out
->
dtype
()
==
DataType
::
FLOAT16
)
{
funcs
::
Scale
<
Context
,
float
>
(
beta2_pow_out
,
beta2_pow
,
beta2_pow_ptr
,
beta2_
,
dev_ctx
);
}
else
{
const
float
*
beta2_pow_data
=
beta2_pow
.
template
data
<
float
>();
beta2_pow_out_p1
=
dev_ctx
.
template
Alloc
<
float
>(
beta2_pow_out
);
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
beta2_pow_data
,
beta2_pow_out_p1
,
beta2_pow
.
numel
(),
false
,
beta2_
,
0.0
f
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"adam"
);
}
}
}
funcs
::
FreeData
<
float
>
(
param
,
param_ptr
);
funcs
::
FreeData
<
float
>
(
moment1
,
mom1_ptr
);
funcs
::
FreeData
<
float
>
(
moment2
,
mom2_ptr
);
funcs
::
FreeData
<
float
>
(
learning_rate
,
lr_ptr
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
adam
,
XPU
,
ALL_LAYOUT
,
phi
::
AdamDenseKernel
,
float
,
phi
::
dtype
::
float16
)
{
// Skip beta1_pow, beta2_pow, skip_update data transform
kernel
->
InputAt
(
5
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
kernel
->
InputAt
(
6
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
kernel
->
InputAt
(
8
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录