From cafdeb0a403b7a62ddebccf559489520afe5b972 Mon Sep 17 00:00:00 2001 From: Yibing Liu Date: Fri, 15 Jun 2018 02:24:17 -0700 Subject: [PATCH] Fix docs for detection_output & target_assign --- python/paddle/fluid/layers/detection.py | 53 ++++++++++++++++--------- python/paddle/fluid/layers/nn.py | 13 +++--- 2 files changed, 42 insertions(+), 24 deletions(-) diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index edf528a5950..f46ca7f1321 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -97,7 +97,9 @@ def detection_output(loc, nms_eta(float): The parameter for adaptive NMS. Returns: - Variable: The detection outputs is a LoDTensor with shape [No, 6]. + Variable: + + The detection outputs is a LoDTensor with shape [No, 6]. Each row has six values: [label, confidence, xmin, ymin, xmax, ymax]. `No` is the total number of detections in this mini-batch. For each instance, the offsets in first dimension are called LoD, the offset @@ -110,15 +112,15 @@ def detection_output(loc, Examples: .. code-block:: python - pb = layers.data(name='prior_box', shape=[10, 4], + pb = layers.data(name='prior_box', shape=[10, 4], append_batch_size=False, dtype='float32') - pbv = layers.data(name='prior_box_var', shape=[10, 4], + pbv = layers.data(name='prior_box_var', shape=[10, 4], append_batch_size=False, dtype='float32') - loc = layers.data(name='target_box', shape=[2, 21, 4], + loc = layers.data(name='target_box', shape=[2, 21, 4], append_batch_size=False, dtype='float32') - scores = layers.data(name='scores', shape=[2, 21, 10], + scores = layers.data(name='scores', shape=[2, 21, 10], append_batch_size=False, dtype='float32') - nmsed_outs = fluid.layers.detection_output(scores=scores, + nmsed_outs = fluid.layers.detection_output(scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv) @@ -296,8 +298,6 @@ def target_assign(input, mismatch_value=None, name=None): """ - **Target assigner operator** - This operator can be, for given the target bounding boxes or labels, to assign classification and regression targets to each prediction as well as weights to prediction. The weights is used to specify which prediction would @@ -311,20 +311,24 @@ def target_assign(input, 1. Assigning all outpts based on `match_indices`: - If id = match_indices[i][j] > 0, + .. code-block:: text + + If id = match_indices[i][j] > 0, - out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K] - out_weight[i][j] = 1. + out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K] + out_weight[i][j] = 1. - Otherwise, + Otherwise, - out[j][j][0 : K] = {mismatch_value, mismatch_value, ...} - out_weight[i][j] = 0. + out[j][j][0 : K] = {mismatch_value, mismatch_value, ...} + out_weight[i][j] = 0. 2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided: Assumed that the row offset for each instance in `neg_indices` is called neg_lod, for i-th instance and each `id` of neg_indices in this instance: + + .. code-block:: text out[i][id][0 : K] = {mismatch_value, mismatch_value, ...} out_weight[i][id] = 1.0 @@ -341,10 +345,23 @@ def target_assign(input, mismatch_value (float32): Fill this value to the mismatched location. Returns: - out (Variable): The output is a 3D Tensor with shape [N, P, K], - N and P is the same as they are in `neg_indices`, K is the - same as it in input of X. If `match_indices[i][j]`. - out_weight (Variable): The weight for output with the shape of [N, P, 1]. + tuple: + + A tuple(out, out_weight) is returned. out is a 3D Tensor with + shape [N, P, K], N and P is the same as they are in + `neg_indices`, K is the same as it in input of X. If + `match_indices[i][j]`. out_weight is the weight for output with + the shape of [N, P, 1]. + + Examples: + + .. code-block:: python + + matched_indices, matched_dist = fluid.layers.bipartite_match(iou) + gt = layers.data( + name='gt', shape=[1, 1], dtype='int32', lod_level=1) + trg, trg_weight = layers.target_assign( + gt, matched_indices, mismatch_value=0) """ helper = LayerHelper('target_assign', **locals()) out = helper.create_tmp_variable(dtype=input.dtype) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 0a45098bda8..5d417daea17 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -3466,7 +3466,9 @@ def nce(input, input (Variable): input variable. label (Variable): label. num_total_classes (int):${num_total_classes_comment} - sample_weight (int): ${sample_weight_comment} + sample_weight (Variable|None): A Variable of shape [batch_size, 1] + storing a weight for each sample. The default weight for each + sample is 1.0. param_attr (ParamAttr|None): attributes for parameter bias_attr (ParamAttr|None): attributes for bias num_neg_samples (int): ${num_neg_samples_comment} @@ -4638,10 +4640,6 @@ def random_crop(x, shape, seed=None): """ ${comment} - Examples: - >>> img = fluid.layers.data("img", [3, 256, 256]) - >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224]) - Args: x(${x_type}): ${x_comment} shape(${shape_type}): ${shape_comment} @@ -4650,7 +4648,10 @@ def random_crop(x, shape, seed=None): Returns: ${out_comment} - + + Examples: + >>> img = fluid.layers.data("img", [3, 256, 256]) + >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224]) """ helper = LayerHelper("random_crop", **locals()) dtype = helper.input_dtype() -- GitLab