提交 c99a8742 编写于 作者: T Travis CI

Deploy to GitHub Pages: 1b8d2e65

上级 1afebc51
......@@ -59,6 +59,11 @@ context_projection
.. autoclass:: paddle.v2.layer.context_projection
:noindex:
row_conv
--------
.. autoclass:: paddle.v2.layer.row_conv
:noindex:
Image Pooling Layer
===================
......@@ -346,6 +351,12 @@ sampling_id
.. autoclass:: paddle.v2.layer.sampling_id
:noindex:
multiplex
---------
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Slicing and Joining Layers
==========================
......
......@@ -558,6 +558,62 @@ parameter attribute is set by this parameter.</li>
</table>
</dd></dl>
</div>
<div class="section" id="row-conv">
<h3>row_conv<a class="headerlink" href="#row-conv" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">row_conv</code></dt>
<dd><p>The row convolution is called lookahead convolution. It is firstly
introduced in paper of <a class="reference external" href="https://arxiv.org/pdf/1512.02595v1.pdf">Deep Speech 2: End-toEnd Speech Recognition
in English and Mandarin</a> .</p>
<p>The bidirectional RNN that learns representation for a sequence by
performing a forward and a backward pass through the entire sequence.
However, unlike unidirectional RNNs, bidirectional RNNs are challenging
to deploy in an online and low-latency setting. The lookahead convolution
incorporates information from future subsequences in a computationally
efficient manner to improve unidirectional recurrent neural networks.</p>
<p>The connection of row convolution is different form the 1D sequence
convolution. Assumed that, the future context-length is k, that is to say,
it can get the output at timestep t by using the the input feature from t-th
timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
activations are d, the activations r_t for the new layer at time-step t are:</p>
<div class="math">
\[r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
\quad ext{for} \quad (1 \leq i \leq d)\]</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The <cite>context_len</cite> is <cite>k + 1</cite>. That is to say, the lookahead step
number plus one equals context_len.</p>
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">row_conv</span> <span class="o">=</span> <span class="n">row_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">context_len</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input layer.</li>
<li><strong>context_len</strong> (<em>int</em>) &#8211; The context length equals the lookahead step number
plus one.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation Type. Default is linear activation.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The Parameter Attribute. If None, the parameter will be
initialized smartly. It&#8217;s better set it by yourself.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) &#8211; Extra Layer config.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
<div class="section" id="image-pooling-layer">
......@@ -2726,6 +2782,50 @@ Sampling one id for one sample.</p>
</table>
</dd></dl>
</div>
<div class="section" id="multiplex">
<h3>multiplex<a class="headerlink" href="#multiplex" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">multiplex</code></dt>
<dd><p>This layer multiplex multiple layers according to the index,
which is provided by the first input layer.
inputs[0]: the index of the layer to output of size batchSize.
inputs[1:N]; the candidate output data.
For each index i from 0 to batchSize -1, the output is the i-th row of the
(index[i] + 1)-th layer.</p>
<p>For each i-th row of output:
.. math:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">y</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">x_</span><span class="p">{</span><span class="n">x_</span><span class="p">{</span><span class="mi">0</span><span class="p">}[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="mi">1</span><span class="p">}[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">],</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span> <span class="o">...</span> <span class="p">,</span> <span class="p">(</span><span class="n">x_</span><span class="p">{</span><span class="mi">1</span><span class="p">}</span><span class="o">.</span><span class="n">width</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<p>where, y is output. <span class="math">\(x_{k}\)</span> is the k-th input layer and
<span class="math">\(k = x_{0}[i] + 1\)</span>.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxid</span> <span class="o">=</span> <span class="n">multiplex</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layers</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>list of paddle.v2.config_base.Layer</em>) &#8211; Input layers.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
<div class="section" id="slicing-and-joining-layers">
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
......@@ -59,6 +59,11 @@ context_projection
.. autoclass:: paddle.v2.layer.context_projection
:noindex:
row_conv
--------
.. autoclass:: paddle.v2.layer.row_conv
:noindex:
Image Pooling Layer
===================
......@@ -346,6 +351,12 @@ sampling_id
.. autoclass:: paddle.v2.layer.sampling_id
:noindex:
multiplex
---------
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Slicing and Joining Layers
==========================
......
......@@ -565,6 +565,62 @@ parameter attribute is set by this parameter.</li>
</table>
</dd></dl>
</div>
<div class="section" id="row-conv">
<h3>row_conv<a class="headerlink" href="#row-conv" title="永久链接至标题"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">row_conv</code></dt>
<dd><p>The row convolution is called lookahead convolution. It is firstly
introduced in paper of <a class="reference external" href="https://arxiv.org/pdf/1512.02595v1.pdf">Deep Speech 2: End-toEnd Speech Recognition
in English and Mandarin</a> .</p>
<p>The bidirectional RNN that learns representation for a sequence by
performing a forward and a backward pass through the entire sequence.
However, unlike unidirectional RNNs, bidirectional RNNs are challenging
to deploy in an online and low-latency setting. The lookahead convolution
incorporates information from future subsequences in a computationally
efficient manner to improve unidirectional recurrent neural networks.</p>
<p>The connection of row convolution is different form the 1D sequence
convolution. Assumed that, the future context-length is k, that is to say,
it can get the output at timestep t by using the the input feature from t-th
timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
activations are d, the activations r_t for the new layer at time-step t are:</p>
<div class="math">
\[r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
\quad ext{for} \quad (1 \leq i \leq d)\]</div>
<div class="admonition note">
<p class="first admonition-title">注解</p>
<p class="last">The <cite>context_len</cite> is <cite>k + 1</cite>. That is to say, the lookahead step
number plus one equals context_len.</p>
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">row_conv</span> <span class="o">=</span> <span class="n">row_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">context_len</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input layer.</li>
<li><strong>context_len</strong> (<em>int</em>) &#8211; The context length equals the lookahead step number
plus one.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation Type. Default is linear activation.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The Parameter Attribute. If None, the parameter will be
initialized smartly. It&#8217;s better set it by yourself.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttributeNone</em>) &#8211; Extra Layer config.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
<div class="section" id="image-pooling-layer">
......@@ -2733,6 +2789,50 @@ Sampling one id for one sample.</p>
</table>
</dd></dl>
</div>
<div class="section" id="multiplex">
<h3>multiplex<a class="headerlink" href="#multiplex" title="永久链接至标题"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">multiplex</code></dt>
<dd><p>This layer multiplex multiple layers according to the index,
which is provided by the first input layer.
inputs[0]: the index of the layer to output of size batchSize.
inputs[1:N]; the candidate output data.
For each index i from 0 to batchSize -1, the output is the i-th row of the
(index[i] + 1)-th layer.</p>
<p>For each i-th row of output:
.. math:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">y</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">x_</span><span class="p">{</span><span class="n">x_</span><span class="p">{</span><span class="mi">0</span><span class="p">}[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="mi">1</span><span class="p">}[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">],</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span> <span class="o">...</span> <span class="p">,</span> <span class="p">(</span><span class="n">x_</span><span class="p">{</span><span class="mi">1</span><span class="p">}</span><span class="o">.</span><span class="n">width</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<p>where, y is output. <span class="math">\(x_{k}\)</span> is the k-th input layer and
<span class="math">\(k = x_{0}[i] + 1\)</span>.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxid</span> <span class="o">=</span> <span class="n">multiplex</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layers</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>list of paddle.v2.config_base.Layer</em>) &#8211; Input layers.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; Layer name.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
<div class="section" id="slicing-and-joining-layers">
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册