Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
c7de7440
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c7de7440
编写于
1月 19, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
1月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add conv2d_transpose and conv2d_transpose_grad for XPU,test=kunlun (#38956)
上级
1d18bc2c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
450 addition
and
1 deletion
+450
-1
paddle/fluid/operators/conv_transpose_op_xpu.cc
paddle/fluid/operators/conv_transpose_op_xpu.cc
+175
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+4
-1
python/paddle/fluid/tests/unittests/xpu/test_conv2d_transpose_op_xpu.py
...fluid/tests/unittests/xpu/test_conv2d_transpose_op_xpu.py
+271
-0
未找到文件。
paddle/fluid/operators/conv_transpose_op_xpu.cc
0 → 100644
浏览文件 @
c7de7440
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_transpose_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/platform/device/device_wrapper.h"
#ifdef PADDLE_WITH_XPU
namespace
paddle
{
namespace
operators
{
// target_len == 2 || target_len == 4
inline
std
::
vector
<
int
>
vector_extend
(
const
std
::
vector
<
int
>&
src
,
int
target_len
)
{
if
(
target_len
==
2
&&
src
.
size
()
==
1
)
{
return
{
src
[
0
],
src
[
0
]};
}
if
(
target_len
==
4
&&
src
.
size
()
==
1
)
{
return
{
src
[
0
],
src
[
0
],
src
[
0
],
src
[
0
]};
}
if
(
target_len
==
4
&&
src
.
size
()
==
2
)
{
return
{
src
[
0
],
src
[
0
],
src
[
1
],
src
[
1
]};
}
return
src
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
Conv2DTransposeXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
const
std
::
string
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
const
std
::
string
padding_algorithm
=
context
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
PADDLE_ENFORCE_EQ
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
,
false
,
platform
::
errors
::
InvalidArgument
(
(
"XPU do support data_format is NCHW in conv_transpose op."
)));
framework
::
DDim
in_data_dims
=
framework
::
slice_ddim
(
input
->
dims
(),
2
,
input
->
dims
().
size
());
framework
::
DDim
filter_data_dims
=
framework
::
slice_ddim
(
filter
.
dims
(),
2
,
filter
.
dims
().
size
());
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
img_yc
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
img_yh
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_yw
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
img_xc
=
static_cast
<
int
>
(
output
->
dims
()[
1
]);
const
int
img_xh
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
img_xw
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
{
std
::
vector
<
int
>
ksize_check
=
vector_extend
(
ksize
,
2
);
std
::
vector
<
int
>
stride_check
=
vector_extend
(
strides
,
2
);
std
::
vector
<
int
>
pad_check
=
vector_extend
(
paddings
,
4
);
std
::
vector
<
int
>
dilation_check
=
vector_extend
(
dilations
,
2
);
int
xh_check
=
(
img_yh
-
1
)
*
stride_check
[
0
]
-
pad_check
[
0
]
-
pad_check
[
1
]
+
(
dilation_check
[
0
]
*
(
ksize_check
[
0
]
-
1
)
+
1
);
int
xw_check
=
(
img_yw
-
1
)
*
stride_check
[
1
]
-
pad_check
[
2
]
-
pad_check
[
3
]
+
(
dilation_check
[
1
]
*
(
ksize_check
[
1
]
-
1
)
+
1
);
PADDLE_ENFORCE_EQ
(
xh_check
==
img_xh
&&
xw_check
==
img_xw
,
true
,
platform
::
errors
::
InvalidArgument
(
(
"XPU output size check error in conv_transpose op."
)));
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d_transpose
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
output
->
data
<
float
>
(),
batch_size
,
img_yc
,
img_yh
,
img_yw
,
img_xc
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_transpose"
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
Conv2DTransposeGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
if
(
!
input_grad
&&
!
filter_grad
)
return
;
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
const
std
::
string
data_format
=
context
.
Attr
<
std
::
string
>
(
"data_format"
);
const
std
::
string
padding_algorithm
=
context
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
PADDLE_ENFORCE_EQ
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
,
false
,
platform
::
errors
::
InvalidArgument
(
(
"XPU do support data_format is NCHW in conv grad op."
)));
framework
::
DDim
in_data_dims
=
framework
::
slice_ddim
(
input
->
dims
(),
2
,
input
->
dims
().
size
());
framework
::
DDim
filter_data_dims
=
framework
::
slice_ddim
(
filter
.
dims
(),
2
,
filter
.
dims
().
size
());
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
img_yc
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
img_yh
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_yw
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
img_xc
=
static_cast
<
int
>
(
output_grad
->
dims
()[
1
]);
const
int
img_xh
=
static_cast
<
int
>
(
output_grad
->
dims
()[
2
]);
const
int
img_xw
=
static_cast
<
int
>
(
output_grad
->
dims
()[
3
]);
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
if
(
filter_grad
)
{
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d_transpose_grad
<
float
,
float
,
float
,
int16_t
>
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
filter
.
data
<
T
>
(),
output_grad
->
data
<
T
>
(),
input_grad
?
input_grad
->
data
<
T
>
()
:
nullptr
,
filter_grad
?
filter_grad
->
data
<
T
>
()
:
nullptr
,
batch_size
,
img_yc
,
img_yh
,
img_yw
,
img_xc
,
img_xh
,
img_xw
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_transpose_grad"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
conv2d_transpose
,
ops
::
Conv2DTransposeXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
conv2d_transpose_grad
,
ops
::
Conv2DTransposeGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
c7de7440
...
...
@@ -53,6 +53,10 @@ XPUOpMap& get_kl2_ops() {
{
"concat"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_transpose_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_transpose"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d"
,
...
...
@@ -283,7 +287,6 @@ XPUOpMap& get_kl2_ops() {
{
"roi_align"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"roi_align_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"scale"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"scale"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/xpu/test_conv2d_transpose_op_xpu.py
0 → 100644
浏览文件 @
c7de7440
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test_xpu
import
XPUOpTest
import
paddle
import
paddle.nn
as
nn
from
paddle.fluid
import
Program
,
program_guard
def
conv2dtranspose_forward_naive
(
input_
,
filter_
,
attrs
):
padding_algorithm
=
attrs
[
'padding_algorithm'
]
if
padding_algorithm
not
in
[
"SAME"
,
"VALID"
,
"EXPLICIT"
]:
raise
ValueError
(
"Unknown Attr(padding_algorithm): '%s'. "
"It can only be 'SAME' or 'VALID'."
%
str
(
padding_algorithm
))
if
attrs
[
'data_format'
]
==
'NHWC'
:
input_
=
np
.
transpose
(
input_
,
[
0
,
3
,
1
,
2
])
in_n
,
in_c
,
in_h
,
in_w
=
input_
.
shape
f_c
,
f_out_c
,
f_h
,
f_w
=
filter_
.
shape
groups
=
attrs
[
'groups'
]
assert
in_c
==
f_c
out_c
=
f_out_c
*
groups
sub_in_c
=
in_c
//
groups
stride
,
pad
,
dilations
=
attrs
[
'strides'
],
attrs
[
'paddings'
],
attrs
[
'dilations'
]
# update pad and dilation
def
_get_padding_with_SAME
(
input_shape
,
kernel_size
,
kernel_stride
):
padding
=
[]
for
input_size
,
filter_size
,
stride_size
in
zip
(
input_shape
,
kernel_size
,
kernel_stride
):
out_size
=
int
((
input_size
+
stride_size
-
1
)
/
stride_size
)
pad_sum
=
np
.
max
((
(
out_size
-
1
)
*
stride_size
+
filter_size
-
input_size
,
0
))
pad_0
=
int
(
pad_sum
/
2
)
pad_1
=
int
(
pad_sum
-
pad_0
)
padding
.
append
(
pad_0
)
padding
.
append
(
pad_1
)
return
padding
ksize
=
filter_
.
shape
[
2
:
4
]
if
padding_algorithm
==
"VALID"
:
pad
=
[
0
,
0
,
0
,
0
]
elif
padding_algorithm
==
"SAME"
:
dilations
=
[
1
,
1
]
input_data_shape
=
input_
.
shape
[
2
:
4
]
pad
=
_get_padding_with_SAME
(
input_data_shape
,
ksize
,
stride
)
pad_h_0
,
pad_h_1
=
pad
[
0
],
pad
[
0
]
pad_w_0
,
pad_w_1
=
pad
[
1
],
pad
[
1
]
if
len
(
pad
)
==
4
:
pad_h_0
,
pad_h_1
=
pad
[
0
],
pad
[
1
]
pad_w_0
,
pad_w_1
=
pad
[
2
],
pad
[
3
]
d_bolck_h
=
dilations
[
0
]
*
(
f_h
-
1
)
+
1
d_bolck_w
=
dilations
[
1
]
*
(
f_w
-
1
)
+
1
out_h
=
(
in_h
-
1
)
*
stride
[
0
]
+
d_bolck_h
out_w
=
(
in_w
-
1
)
*
stride
[
1
]
+
d_bolck_w
if
'output_size'
in
attrs
:
output_size
=
attrs
[
'output_size'
]
out_h
=
output_size
[
0
]
+
pad_h_0
+
pad_h_1
out_w
=
output_size
[
1
]
+
pad_w_0
+
pad_w_1
out_pad_h
=
0
out_pad_w
=
0
if
'output_padding'
in
attrs
:
out_pad_h
=
attrs
[
'output_padding'
][
0
]
out_pad_w
=
attrs
[
'output_padding'
][
1
]
out
=
np
.
zeros
(
(
in_n
,
out_c
,
out_h
+
out_pad_h
,
out_w
+
out_pad_w
),
dtype
=
input_
.
dtype
)
for
n
in
range
(
in_n
):
for
i
in
range
(
in_h
):
for
j
in
range
(
in_w
):
for
g
in
range
(
groups
):
input_masked
=
input_
[
n
,
g
*
sub_in_c
:(
g
+
1
)
*
sub_in_c
,
i
,
j
]
# (c)
input_masked
=
np
.
reshape
(
input_masked
,
(
sub_in_c
,
1
,
1
))
input_masked
=
np
.
tile
(
input_masked
,
(
1
,
f_h
,
f_w
))
for
k
in
range
(
f_out_c
):
tmp_out
=
np
.
sum
(
input_masked
*
filter_
[
g
*
sub_in_c
:(
g
+
1
)
*
sub_in_c
,
k
,
:,
:],
axis
=
0
)
i1
,
i2
=
i
*
stride
[
0
],
i
*
stride
[
0
]
+
d_bolck_h
j1
,
j2
=
j
*
stride
[
1
],
j
*
stride
[
1
]
+
d_bolck_w
out
[
n
,
g
*
f_out_c
+
k
,
i1
:
i2
:
dilations
[
0
],
j1
:
j2
:
dilations
[
1
]]
+=
tmp_out
out
=
out
[:,
:,
pad_h_0
:
out_h
-
pad_h_1
+
out_pad_h
,
pad_w_0
:
out_w
-
pad_w_1
+
out_pad_w
]
if
attrs
[
'data_format'
]
==
'NHWC'
:
out
=
np
.
transpose
(
out
,
[
0
,
2
,
3
,
1
])
return
out
class
TestConv2DTransposeOp
(
XPUOpTest
):
def
setUp
(
self
):
# init as conv transpose
self
.
dtype
=
np
.
float32
self
.
need_check_grad
=
True
self
.
is_test
=
False
self
.
use_cudnn
=
False
self
.
use_mkldnn
=
False
self
.
output_size
=
None
self
.
output_padding
=
[]
self
.
data_format
=
"NCHW"
self
.
pad
=
[
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
self
.
init_op_type
()
self
.
init_test_case
()
self
.
__class__
.
op_type
=
"conv2d_transpose"
input_
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
filter_
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'Input'
:
input_
,
'Filter'
:
filter_
}
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'padding_algorithm'
:
self
.
padding_algorithm
,
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'use_cudnn'
:
self
.
use_cudnn
,
'is_test'
:
self
.
is_test
,
'use_mkldnn'
:
self
.
use_mkldnn
,
'data_format'
:
self
.
data_format
}
if
self
.
output_size
is
not
None
:
self
.
attrs
[
'output_size'
]
=
self
.
output_size
if
len
(
self
.
output_padding
)
>
0
:
self
.
attrs
[
'output_padding'
]
=
self
.
output_padding
output
=
conv2dtranspose_forward_naive
(
input_
,
filter_
,
self
.
attrs
).
astype
(
self
.
dtype
)
self
.
outputs
=
{
'Output'
:
output
}
def
test_check_output
(
self
):
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_no_input
(
self
):
if
self
.
need_check_grad
:
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
def
test_check_grad_no_filter
(
self
):
if
self
.
need_check_grad
:
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad
(
self
):
if
self
.
need_check_grad
:
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
'Filter'
]),
'Output'
)
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
def
init_op_type
(
self
):
self
.
op_type
=
"conv2d_transpose"
class
TestWithSymmetricPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
class
TestWithAsymmetricPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
0
,
1
,
2
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
class
TestWithSAMEPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
stride
=
[
2
,
1
]
self
.
dilations
=
[
1
,
2
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
6
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
4
,
3
]
self
.
padding_algorithm
=
'SAME'
class
TestWithVALIDPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
padding_algorithm
=
'VALID'
class
TestWithGroups
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
2
self
.
input_size
=
[
2
,
4
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
3
,
3
,
3
]
class
TestWithStride
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录