未验证 提交 c79ec9f0 编写于 作者: K Kexin Zhao 提交者: GitHub

Add create LoDTensor from list option and simplify recommender book example (#10946)

* add create lodtensor from list

* modify book example
上级 72149c16
...@@ -93,12 +93,12 @@ def _convert_lod(lod): ...@@ -93,12 +93,12 @@ def _convert_lod(lod):
def create_lod_tensor(data, lod, place): def create_lod_tensor(data, lod, place):
"""Create a lod tensor from a numpy array or an existing lod tensor. """Create a lod tensor from a numpy array, a list, or an existing lod tensor.
Create a lod tensor by doing the following: Create a lod tensor by doing the following:
1. Check that the length-based input lod is valid. 1. Check that the length-based input lod is valid.
2. Convert the length-based lod to a offset-based LoD. 2. Convert the length-based lod to a offset-based LoD.
3. Copy the data from a numpy array or a existing lod tensor to 3. Copy the data from a numpy array, a list or a existing lod tensor to
CPU or GPU device (based on input place). CPU or GPU device (based on input place).
4. Set the level of detail (LoD) using the offset-based LoD. 4. Set the level of detail (LoD) using the offset-based LoD.
...@@ -117,7 +117,7 @@ def create_lod_tensor(data, lod, place): ...@@ -117,7 +117,7 @@ def create_lod_tensor(data, lod, place):
for more details regarding LoD. for more details regarding LoD.
Args: Args:
data: a numpy array or a LoDTensor holding the data to be copied. data: a numpy array or a LoDTensor or a list holding the data to be copied.
lod: a list of lists indicating the length-based LoD info specified by the user. lod: a list of lists indicating the length-based LoD info specified by the user.
place: CPU or GPU place indicating where the data in the new LoDTensor will be stored. place: CPU or GPU place indicating where the data in the new LoDTensor will be stored.
...@@ -126,6 +126,18 @@ def create_lod_tensor(data, lod, place): ...@@ -126,6 +126,18 @@ def create_lod_tensor(data, lod, place):
""" """
if isinstance(data, core.LoDTensor): if isinstance(data, core.LoDTensor):
return create_lod_tensor(np.array(data), lod, place) return create_lod_tensor(np.array(data), lod, place)
elif isinstance(data, list):
# When input data is a list, it only deal with the case where the base element
# is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated
# LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number
# of words or other indexes in the sequence.
new_lod = []
for seq in data:
new_lod.append(len(seq))
assert [new_lod] == lod, "data and lod do not match"
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
return create_lod_tensor(flattened_data, lod, place)
elif isinstance(data, np.ndarray): elif isinstance(data, np.ndarray):
assert _validate_lod(lod, assert _validate_lod(lod,
data.shape[0]), "the provided lod info is invalid" data.shape[0]), "the provided lod info is invalid"
...@@ -134,9 +146,8 @@ def create_lod_tensor(data, lod, place): ...@@ -134,9 +146,8 @@ def create_lod_tensor(data, lod, place):
tensor.set_lod(_convert_lod(lod)) tensor.set_lod(_convert_lod(lod))
return tensor return tensor
else: else:
raise Exception( raise TypeError(
"data should be either a LoDTensor or a Numpy array, but you pass type %s instead" "data should be either a LoDTensor, a Numpy array or a list")
% (type(data)))
def create_random_int_lodtensor(lod, base_shape, place, low, high): def create_random_int_lodtensor(lod, base_shape, place, low, high):
......
...@@ -197,10 +197,7 @@ def train(use_cuda, train_program, save_path): ...@@ -197,10 +197,7 @@ def train(use_cuda, train_program, save_path):
num_epochs=1, num_epochs=1,
event_handler=event_handler, event_handler=event_handler,
reader=train_reader, reader=train_reader,
feed_order=[ feed_order=feed_order)
'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id',
'category_id', 'movie_title', 'score'
])
def infer(use_cuda, inference_program, save_path): def infer(use_cuda, inference_program, save_path):
...@@ -208,32 +205,22 @@ def infer(use_cuda, inference_program, save_path): ...@@ -208,32 +205,22 @@ def infer(use_cuda, inference_program, save_path):
inferencer = fluid.Inferencer( inferencer = fluid.Inferencer(
inference_program, param_path=save_path, place=place) inference_program, param_path=save_path, place=place)
def create_lod_tensor(data, lod=None): # Use the first data from paddle.dataset.movielens.test() as input.
tensor = fluid.LoDTensor() # Use create_lod_tensor(data, lod, place) API to generate LoD Tensor,
if lod is None: # where `data` is a list of sequences of index numbers, `lod` is
# Tensor, the shape is [batch_size, 1] # the level of detail (lod) info associated with `data`.
index = 0 # For example, data = [[10, 2, 3], [2, 3]] means that it contains
lod_0 = [index] # two sequences of indexes, of length 3 and 2, respectively.
for l in range(len(data)): # Correspondingly, lod = [[3, 2]] contains one level of detail info,
index += 1 # indicating that `data` consists of two sequences of length 3 and 2.
lod_0.append(index) user_id = fluid.create_lod_tensor([[1]], [[1]], place)
lod = [lod_0] gender_id = fluid.create_lod_tensor([[1]], [[1]], place)
tensor.set_lod(lod) age_id = fluid.create_lod_tensor([[0]], [[1]], place)
job_id = fluid.create_lod_tensor([[10]], [[1]], place)
flattened_data = np.concatenate(data, axis=0).astype("int64") movie_id = fluid.create_lod_tensor([[783]], [[1]], place)
flattened_data = flattened_data.reshape([len(flattened_data), 1]) category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)
tensor.set(flattened_data, place) movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]], [[5]],
return tensor place)
# Generate a random input for inference
user_id = create_lod_tensor([[1]])
gender_id = create_lod_tensor([[1]])
age_id = create_lod_tensor([[0]])
job_id = create_lod_tensor([[10]])
movie_id = create_lod_tensor([[783]])
category_id = create_lod_tensor([[10], [8], [9]], [[0, 3]])
movie_title = create_lod_tensor([[1069], [4140], [2923], [710], [988]],
[[0, 5]])
results = inferencer.infer( results = inferencer.infer(
{ {
......
...@@ -173,62 +173,32 @@ def train(use_cuda, save_dirname, is_local=True): ...@@ -173,62 +173,32 @@ def train(use_cuda, save_dirname, is_local=True):
test_reader = paddle.batch( test_reader = paddle.batch(
paddle.dataset.movielens.test(), batch_size=BATCH_SIZE) paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
feeding = { feed_order = [
'user_id': 0, 'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
'gender_id': 1, 'movie_title', 'score'
'age_id': 2, ]
'job_id': 3,
'movie_id': 4,
'category_id': 5,
'movie_title': 6,
'score': 7
}
def func_feed(feeding, data):
feed_tensors = {}
for (key, idx) in feeding.iteritems():
tensor = fluid.LoDTensor()
if key != "category_id" and key != "movie_title":
if key == "score":
numpy_data = np.array(map(lambda x: x[idx], data)).astype(
"float32")
else:
numpy_data = np.array(map(lambda x: x[idx], data)).astype(
"int64")
else:
numpy_data = map(lambda x: np.array(x[idx]).astype("int64"),
data)
lod_info = [len(item) for item in numpy_data]
offset = 0
lod = [offset]
for item in lod_info:
offset += item
lod.append(offset)
numpy_data = np.concatenate(numpy_data, axis=0)
tensor.set_lod([lod])
numpy_data = numpy_data.reshape([numpy_data.shape[0], 1])
tensor.set(numpy_data, place)
feed_tensors[key] = tensor
return feed_tensors
def train_loop(main_program): def train_loop(main_program):
exe.run(framework.default_startup_program()) exe.run(framework.default_startup_program())
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
PASS_NUM = 100 PASS_NUM = 100
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
# train a mini-batch # train a mini-batch
outs = exe.run(program=main_program, outs = exe.run(program=main_program,
feed=func_feed(feeding, data), feed=feeder.feed(data),
fetch_list=[avg_cost]) fetch_list=[avg_cost])
out = np.array(outs[0]) out = np.array(outs[0])
if (batch_id + 1) % 10 == 0: if (batch_id + 1) % 10 == 0:
avg_cost_set = [] avg_cost_set = []
for test_data in test_reader(): for test_data in test_reader():
avg_cost_np = exe.run( avg_cost_np = exe.run(program=test_program,
program=test_program, feed=feeder.feed(test_data),
feed=func_feed(feeding, test_data),
fetch_list=[avg_cost]) fetch_list=[avg_cost])
avg_cost_set.append(avg_cost_np[0]) avg_cost_set.append(avg_cost_np[0])
break # test only 1 segment for speeding up CI break # test only 1 segment for speeding up CI
...@@ -279,23 +249,6 @@ def infer(use_cuda, save_dirname=None): ...@@ -279,23 +249,6 @@ def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
def create_lod_tensor(data, lod=None):
tensor = fluid.LoDTensor()
if lod is None:
# Tensor, the shape is [batch_size, 1]
index = 0
lod_0 = [index]
for l in range(len(data)):
index += 1
lod_0.append(index)
lod = [lod_0]
tensor.set_lod(lod)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
tensor.set(flattened_data, place)
return tensor
inference_scope = fluid.core.Scope() inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope): with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc, # Use fluid.io.load_inference_model to obtain the inference program desc,
...@@ -307,26 +260,33 @@ def infer(use_cuda, save_dirname=None): ...@@ -307,26 +260,33 @@ def infer(use_cuda, save_dirname=None):
# Use the first data from paddle.dataset.movielens.test() as input # Use the first data from paddle.dataset.movielens.test() as input
assert feed_target_names[0] == "user_id" assert feed_target_names[0] == "user_id"
user_id = create_lod_tensor([[1]]) # Use create_lod_tensor(data, lod, place) API to generate LoD Tensor
# where `data` is a list of sequences of index numbers, `lod` is
# the level of detail (lod) info associated with `data`.
# For example, data = [[10, 2, 3], [2, 3]] means that it contains
# two sequences of indexes, of length 3 and 2, respectively.
# Correspondingly, lod = [[3, 2]] contains one level of detail info,
# indicating that `data` consists of two sequences of length 3 and 2.
user_id = fluid.create_lod_tensor([[1]], [[1]], place)
assert feed_target_names[1] == "gender_id" assert feed_target_names[1] == "gender_id"
gender_id = create_lod_tensor([[1]]) gender_id = fluid.create_lod_tensor([[1]], [[1]], place)
assert feed_target_names[2] == "age_id" assert feed_target_names[2] == "age_id"
age_id = create_lod_tensor([[0]]) age_id = fluid.create_lod_tensor([[0]], [[1]], place)
assert feed_target_names[3] == "job_id" assert feed_target_names[3] == "job_id"
job_id = create_lod_tensor([[10]]) job_id = fluid.create_lod_tensor([[10]], [[1]], place)
assert feed_target_names[4] == "movie_id" assert feed_target_names[4] == "movie_id"
movie_id = create_lod_tensor([[783]]) movie_id = fluid.create_lod_tensor([[783]], [[1]], place)
assert feed_target_names[5] == "category_id" assert feed_target_names[5] == "category_id"
category_id = create_lod_tensor([[10], [8], [9]], [[0, 3]]) category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)
assert feed_target_names[6] == "movie_title" assert feed_target_names[6] == "movie_title"
movie_title = create_lod_tensor([[1069], [4140], [2923], [710], [988]], movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]],
[[0, 5]]) [[5]], place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
......
...@@ -53,11 +53,14 @@ class TestLoDTensor(unittest.TestCase): ...@@ -53,11 +53,14 @@ class TestLoDTensor(unittest.TestCase):
self.assertEqual(_convert_lod(lod), converted_lod) self.assertEqual(_convert_lod(lod), converted_lod)
def test_create_lod_tensor(self): def test_create_lod_tensor(self):
# Only numpy array or a fluid LoDTensor is valid input to # Create LoDTensor from a list
# create_lod_tensor function, currently a list of lists is not. data = [[1, 2, 3], [3, 4]]
data = [[1, 2], [3, 4]] wrong_lod = [[2, 2]]
self.assertRaises(Exception, create_lod_tensor, data, [], correct_lod = [[3, 2]]
self.assertRaises(AssertionError, create_lod_tensor, data, wrong_lod,
fluid.CPUPlace()) fluid.CPUPlace())
tensor = create_lod_tensor(data, correct_lod, fluid.CPUPlace())
self.assertEqual(tensor.lod(), [[0, 3, 5]])
# Create LoDTensor from numpy array # Create LoDTensor from numpy array
data = numpy.random.random([10, 1]) data = numpy.random.random([10, 1])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册