未验证 提交 c6c9c186 编写于 作者: N Nyakku Shigure 提交者: GitHub

[CodeStyle] remove crlf for python files (#46155)

上级 9941ec12
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import threading, time
import paddle
import numpy as np
class TestASPUtils(unittest.TestCase):
def test_get_check_method(self):
self.assertEqual(
paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method(
paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D),
paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D)
self.assertEqual(
paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method(
paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY),
paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D)
self.assertEqual(
paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method(
paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST),
paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D)
def test_density(self):
x = np.array([[1.0, 1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[1.0, 0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[0.0, 1.0, 0.0, 0.0, 1.0]])
self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.56)
x[:, 0] = 0.0
self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.4)
def test_check_mask_1d(self):
x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[0.0, 1.0, 0.0, 0.0, 1.0]])
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 4))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 4))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 5))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 5))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 6))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 4, 6))
def test_get_mask_1d(self):
for _ in range(10):
x = np.random.randint(10, size=(5, 5))
x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(
x, 2, 4))
x = np.random.randn(5, 4)
x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(
x, 2, 4))
def test_check_mask_2d(self):
x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0, 1.0]])
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 4))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 5))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 5))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 6))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 4, 6))
def test_get_mask_2d_greedy(self):
for _ in range(10):
x = np.random.randint(10, size=(5, 5))
x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
x = np.random.randn(5, 4)
x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
def test_get_mask_2d_best(self):
for _ in range(10):
x = np.random.randint(10, size=(5, 5))
x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
x = np.random.randn(5, 4)
x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
def test_threadsafe_valid_2d_patterns(self):
def get_reference(m=4, n=2):
from itertools import permutations
patterns = np.zeros(m)
patterns[:n] = 1
patterns = list(set(permutations(patterns.tolist())))
patterns = patterns + patterns
patterns = np.asarray(list(set(permutations(patterns, m))))
valid = ((patterns.sum(axis=1) <= n).sum(
axis=1) == m).nonzero()[0].reshape(-1)
valid_patterns = np.empty((valid.shape[0], m, m))
valid_patterns[:] = patterns[valid[:]]
return valid_patterns
for _ in range(4):
computing_thread = threading.Thread(
target=paddle.fluid.contrib.sparsity.utils.
_compute_valid_2d_patterns,
args=(2, 4))
computing_thread.start()
time.sleep(3)
patterns_map = paddle.fluid.contrib.sparsity.utils._valid_2d_patterns
reference_patterns = get_reference()
reference_key = '4_2'
self.assertTrue(reference_key in patterns_map)
self.assertTrue(len(patterns_map) == 1)
self.assertTrue(
(reference_patterns == patterns_map[reference_key]).all())
def test_check_sparsity(self):
for _ in range(10):
x = np.random.randint(10, size=(5))
x_2d = x.reshape(1, x.shape[0])
self.__test_1D_2D_sparsity_checking_methods(x_2d)
x = np.random.randint(10, size=(5, 5))
x_2d = x
self.__test_1D_2D_sparsity_checking_methods(x_2d)
x = np.random.randint(10, size=(5, 5, 5))
x_2d = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
self.__test_1D_2D_sparsity_checking_methods(x_2d)
x = np.random.randint(10, size=(5, 5, 5, 5))
x_2d = x.reshape(x.shape[0], x.shape[1] * x.shape[2] * x.shape[3])
self.__test_1D_2D_sparsity_checking_methods(x_2d)
def test_create_mask(self):
for _ in range(10):
x = np.random.randint(10, size=(5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
x = np.random.randint(10, size=(5, 5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
x = np.random.randint(10, size=(5, 5, 5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
x = np.random.randint(10, size=(5, 5, 5, 5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
def __test_1D_2D_sparsity_checking_methods(self, x_2d):
mask = paddle.fluid.contrib.sparsity.get_mask_1d(x_2d, 2, 4)
self.assertEqual(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D,
n=2,
m=4), paddle.fluid.contrib.sparsity.check_mask_1d(mask, 2, 4))
mask = paddle.fluid.contrib.sparsity.get_mask_2d_best(x_2d, 2, 4)
self.assertEqual(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D,
n=2,
m=4), paddle.fluid.contrib.sparsity.check_mask_2d(mask, 2, 4))
def __test_1D_2D_sparse_mask_generation_methods(self, x):
mask = paddle.fluid.contrib.sparsity.create_mask(
x,
func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D,
n=2,
m=4)
self.assertTrue(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D,
n=2,
m=4))
mask = paddle.fluid.contrib.sparsity.create_mask(
x,
func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY,
n=2,
m=4)
self.assertTrue(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D,
n=2,
m=4))
mask = paddle.fluid.contrib.sparsity.create_mask(
x,
func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST,
n=2,
m=4)
self.assertTrue(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D,
n=2,
m=4))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import threading, time
import paddle
import numpy as np
class TestASPUtils(unittest.TestCase):
def test_get_check_method(self):
self.assertEqual(
paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method(
paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D),
paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D)
self.assertEqual(
paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method(
paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY),
paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D)
self.assertEqual(
paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method(
paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST),
paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D)
def test_density(self):
x = np.array([[1.0, 1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[1.0, 0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[0.0, 1.0, 0.0, 0.0, 1.0]])
self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.56)
x[:, 0] = 0.0
self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.4)
def test_check_mask_1d(self):
x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0],
[0.0, 1.0, 0.0, 0.0, 1.0]])
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 4))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 4))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 5))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 5))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 6))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 4, 6))
def test_get_mask_1d(self):
for _ in range(10):
x = np.random.randint(10, size=(5, 5))
x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(
x, 2, 4))
x = np.random.randn(5, 4)
x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(
x, 2, 4))
def test_check_mask_2d(self):
x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0, 1.0]])
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 4))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 5))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 5))
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 6))
self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 4, 6))
def test_get_mask_2d_greedy(self):
for _ in range(10):
x = np.random.randint(10, size=(5, 5))
x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
x = np.random.randn(5, 4)
x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
def test_get_mask_2d_best(self):
for _ in range(10):
x = np.random.randint(10, size=(5, 5))
x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
x = np.random.randn(5, 4)
x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4)
self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(
x, 2, 4))
def test_threadsafe_valid_2d_patterns(self):
def get_reference(m=4, n=2):
from itertools import permutations
patterns = np.zeros(m)
patterns[:n] = 1
patterns = list(set(permutations(patterns.tolist())))
patterns = patterns + patterns
patterns = np.asarray(list(set(permutations(patterns, m))))
valid = ((patterns.sum(axis=1) <= n).sum(
axis=1) == m).nonzero()[0].reshape(-1)
valid_patterns = np.empty((valid.shape[0], m, m))
valid_patterns[:] = patterns[valid[:]]
return valid_patterns
for _ in range(4):
computing_thread = threading.Thread(
target=paddle.fluid.contrib.sparsity.utils.
_compute_valid_2d_patterns,
args=(2, 4))
computing_thread.start()
time.sleep(3)
patterns_map = paddle.fluid.contrib.sparsity.utils._valid_2d_patterns
reference_patterns = get_reference()
reference_key = '4_2'
self.assertTrue(reference_key in patterns_map)
self.assertTrue(len(patterns_map) == 1)
self.assertTrue(
(reference_patterns == patterns_map[reference_key]).all())
def test_check_sparsity(self):
for _ in range(10):
x = np.random.randint(10, size=(5))
x_2d = x.reshape(1, x.shape[0])
self.__test_1D_2D_sparsity_checking_methods(x_2d)
x = np.random.randint(10, size=(5, 5))
x_2d = x
self.__test_1D_2D_sparsity_checking_methods(x_2d)
x = np.random.randint(10, size=(5, 5, 5))
x_2d = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
self.__test_1D_2D_sparsity_checking_methods(x_2d)
x = np.random.randint(10, size=(5, 5, 5, 5))
x_2d = x.reshape(x.shape[0], x.shape[1] * x.shape[2] * x.shape[3])
self.__test_1D_2D_sparsity_checking_methods(x_2d)
def test_create_mask(self):
for _ in range(10):
x = np.random.randint(10, size=(5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
x = np.random.randint(10, size=(5, 5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
x = np.random.randint(10, size=(5, 5, 5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
x = np.random.randint(10, size=(5, 5, 5, 5))
self.__test_1D_2D_sparse_mask_generation_methods(x)
def __test_1D_2D_sparsity_checking_methods(self, x_2d):
mask = paddle.fluid.contrib.sparsity.get_mask_1d(x_2d, 2, 4)
self.assertEqual(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D,
n=2,
m=4), paddle.fluid.contrib.sparsity.check_mask_1d(mask, 2, 4))
mask = paddle.fluid.contrib.sparsity.get_mask_2d_best(x_2d, 2, 4)
self.assertEqual(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D,
n=2,
m=4), paddle.fluid.contrib.sparsity.check_mask_2d(mask, 2, 4))
def __test_1D_2D_sparse_mask_generation_methods(self, x):
mask = paddle.fluid.contrib.sparsity.create_mask(
x,
func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D,
n=2,
m=4)
self.assertTrue(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D,
n=2,
m=4))
mask = paddle.fluid.contrib.sparsity.create_mask(
x,
func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY,
n=2,
m=4)
self.assertTrue(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D,
n=2,
m=4))
mask = paddle.fluid.contrib.sparsity.create_mask(
x,
func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST,
n=2,
m=4)
self.assertTrue(
paddle.fluid.contrib.sparsity.check_sparsity(
mask,
func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D,
n=2,
m=4))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle import enable_static
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16
from paddle.fluid.framework import _current_expected_place
import paddle.fluid.core as core
@OpTestTool.skip_if(not (isinstance(_current_expected_place(), core.CPUPlace)),
"GPU is not supported")
class TestMKLDNNElementwiseSubOp(OpTest):
def setUp(self):
self.op_type = "elementwise_sub"
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': self.out}
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out')
def test_check_grad_ignore_x(self):
self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
def test_check_grad_ignore_y(self):
self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
def init_axis(self):
self.axis = -1
def init_kernel_type(self):
self.use_mkldnn = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output()
class TestMKLDNNElementwiseSubOp2(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.random((100, )).astype(self.dtype)
self.y = np.random.random((100, )).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp3(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp4(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp5(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp_broadcast(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype)
self.y = np.random.rand(10, 12).astype(self.dtype)
self.out = self.x - self.y.reshape(1, 10, 12, 1)
def init_axis(self):
self.axis = 1
class TestElementwiseSubOp_xsize_lessthan_ysize_sub(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.rand(10, 12).astype(self.dtype)
self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype)
self.out = self.x - self.y
def init_axis(self):
self.axis = 2
def test_check_grad_normal(self):
pass
def test_check_grad_ignore_y(self):
pass
def test_check_grad_ignore_x(self):
pass
@OpTestTool.skip_if_not_cpu_bf16()
class TestBf16(TestMKLDNNElementwiseSubOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.x_bf16 = convert_float_to_uint16(self.x)
self.y_bf16 = convert_float_to_uint16(self.y)
self.inputs = {'X': self.x_bf16, 'Y': self.y_bf16}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': convert_float_to_uint16(self.out)}
def init_dtype(self):
self.dtype = np.float32
self.mkldnn_data_type = "bfloat16"
def init_input_output(self):
self.x = np.random.random(100, ).astype(self.dtype)
self.y = np.random.random(100, ).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
def test_check_output(self):
self.check_output_with_place(core.CPUPlace())
def test_check_grad_normal(self):
self.check_grad_with_place(core.CPUPlace(), ["X", "Y"],
"Out",
user_defined_grads=[self.x, -self.x],
user_defined_grad_outputs=[self.x_bf16])
def test_check_grad_ignore_x(self):
self.check_grad_with_place(core.CPUPlace(), ["Y"],
"Out",
user_defined_grads=[-self.y],
user_defined_grad_outputs=[self.y_bf16])
def test_check_grad_ignore_y(self):
self.check_grad_with_place(core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[self.x],
user_defined_grad_outputs=[self.x_bf16])
class TestBf16Broadcasting(TestBf16):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
def compute_reduced_gradients(self, out_grads):
part_sum = np.add.reduceat(out_grads, [0], axis=0)
part_sum = np.add.reduceat(part_sum, [0], axis=1)
part_sum = np.add.reduceat(part_sum, [0], axis=2)
return -part_sum.flatten()
def test_check_grad_normal(self):
self.check_grad_with_place(
core.CPUPlace(), ["X", "Y"],
"Out",
user_defined_grads=[self.x,
self.compute_reduced_gradients(self.x)],
user_defined_grad_outputs=[self.x_bf16])
def test_check_grad_ignore_x(self):
self.check_grad_with_place(
core.CPUPlace(), ["Y"],
"Out",
user_defined_grads=[self.compute_reduced_gradients(self.x)],
user_defined_grad_outputs=[self.x_bf16])
class TestInt8(TestMKLDNNElementwiseSubOp):
def init_kernel_type(self):
self.use_mkldnn = True
self._cpu_only = True
def init_dtype(self):
self.dtype = np.int8
def init_input_output(self):
self.x = np.random.randint(0, 3, (12, 9)).astype("int8")
self.y = np.random.randint(0, 3, (12, 9)).astype("int8")
self.out = np.subtract(self.x, self.y)
def init_scales(self):
self.attrs['Scale_x'] = 1.0
self.attrs['Scale_y'] = 1.0
self.attrs['Scale_out'] = 1.0
def test_check_output(self):
self.init_scales()
self.check_output()
def test_check_grad_normal(self):
pass
def test_check_grad_ignore_x(self):
pass
def test_check_grad_ignore_y(self):
pass
if __name__ == '__main__':
enable_static()
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle import enable_static
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16
from paddle.fluid.framework import _current_expected_place
import paddle.fluid.core as core
@OpTestTool.skip_if(not (isinstance(_current_expected_place(), core.CPUPlace)),
"GPU is not supported")
class TestMKLDNNElementwiseSubOp(OpTest):
def setUp(self):
self.op_type = "elementwise_sub"
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': self.out}
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out')
def test_check_grad_ignore_x(self):
self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
def test_check_grad_ignore_y(self):
self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
def init_axis(self):
self.axis = -1
def init_kernel_type(self):
self.use_mkldnn = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output()
class TestMKLDNNElementwiseSubOp2(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.random((100, )).astype(self.dtype)
self.y = np.random.random((100, )).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp3(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp4(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp5(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
class TestMKLDNNElementwiseSubOp_broadcast(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype)
self.y = np.random.rand(10, 12).astype(self.dtype)
self.out = self.x - self.y.reshape(1, 10, 12, 1)
def init_axis(self):
self.axis = 1
class TestElementwiseSubOp_xsize_lessthan_ysize_sub(TestMKLDNNElementwiseSubOp):
def init_input_output(self):
self.x = np.random.rand(10, 12).astype(self.dtype)
self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype)
self.out = self.x - self.y
def init_axis(self):
self.axis = 2
def test_check_grad_normal(self):
pass
def test_check_grad_ignore_y(self):
pass
def test_check_grad_ignore_x(self):
pass
@OpTestTool.skip_if_not_cpu_bf16()
class TestBf16(TestMKLDNNElementwiseSubOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.x_bf16 = convert_float_to_uint16(self.x)
self.y_bf16 = convert_float_to_uint16(self.y)
self.inputs = {'X': self.x_bf16, 'Y': self.y_bf16}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': convert_float_to_uint16(self.out)}
def init_dtype(self):
self.dtype = np.float32
self.mkldnn_data_type = "bfloat16"
def init_input_output(self):
self.x = np.random.random(100, ).astype(self.dtype)
self.y = np.random.random(100, ).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
def test_check_output(self):
self.check_output_with_place(core.CPUPlace())
def test_check_grad_normal(self):
self.check_grad_with_place(core.CPUPlace(), ["X", "Y"],
"Out",
user_defined_grads=[self.x, -self.x],
user_defined_grad_outputs=[self.x_bf16])
def test_check_grad_ignore_x(self):
self.check_grad_with_place(core.CPUPlace(), ["Y"],
"Out",
user_defined_grads=[-self.y],
user_defined_grad_outputs=[self.y_bf16])
def test_check_grad_ignore_y(self):
self.check_grad_with_place(core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[self.x],
user_defined_grad_outputs=[self.x_bf16])
class TestBf16Broadcasting(TestBf16):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)
def compute_reduced_gradients(self, out_grads):
part_sum = np.add.reduceat(out_grads, [0], axis=0)
part_sum = np.add.reduceat(part_sum, [0], axis=1)
part_sum = np.add.reduceat(part_sum, [0], axis=2)
return -part_sum.flatten()
def test_check_grad_normal(self):
self.check_grad_with_place(
core.CPUPlace(), ["X", "Y"],
"Out",
user_defined_grads=[self.x,
self.compute_reduced_gradients(self.x)],
user_defined_grad_outputs=[self.x_bf16])
def test_check_grad_ignore_x(self):
self.check_grad_with_place(
core.CPUPlace(), ["Y"],
"Out",
user_defined_grads=[self.compute_reduced_gradients(self.x)],
user_defined_grad_outputs=[self.x_bf16])
class TestInt8(TestMKLDNNElementwiseSubOp):
def init_kernel_type(self):
self.use_mkldnn = True
self._cpu_only = True
def init_dtype(self):
self.dtype = np.int8
def init_input_output(self):
self.x = np.random.randint(0, 3, (12, 9)).astype("int8")
self.y = np.random.randint(0, 3, (12, 9)).astype("int8")
self.out = np.subtract(self.x, self.y)
def init_scales(self):
self.attrs['Scale_x'] = 1.0
self.attrs['Scale_y'] = 1.0
self.attrs['Scale_out'] = 1.0
def test_check_output(self):
self.init_scales()
self.check_output()
def test_check_grad_normal(self):
pass
def test_check_grad_ignore_x(self):
pass
def test_check_grad_ignore_y(self):
pass
if __name__ == '__main__':
enable_static()
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool
import paddle
@OpTestTool.skip_if_not_cpu_bf16()
class TestFillConstant2DOneDNNOp(OpTest):
def setUp(self):
self.op_type = "fill_constant"
self.dtype = np.float32
self.shape_tensor_list = None
self.shape_tensor = None
self.str_value = ""
real_shape = []
self.value = 0.1
self.set_inputs()
self.set_attrs()
if 'value' in self.attrs:
self.value = self.attrs['value']
if self.str_value != "":
self.value = float(self.str_value)
if 'ValueTensor' in self.inputs:
self.value = self.inputs['ValueTensor']
if 'shape' in self.attrs:
real_shape = self.attrs['shape']
if 'ShapeTensor' in self.inputs:
real_shape = list(self.inputs['ShapeTensor'])
if 'ShapeTensorList' in self.inputs:
real_shape = []
for shape_tensor in self.inputs['ShapeTensorList']:
real_shape.append(shape_tensor[1].item())
self.outputs = {'Out': np.full(real_shape, self.value)}
def set_inputs(self):
self.inputs = {}
def set_attrs(self):
self.attrs = {'shape': (3, 5), 'use_mkldnn': True, 'value': self.value}
def test_check_output(self):
self.check_output()
class TestFillZerosLike4DShapeTensorPriorityOneDNNOp(TestFillConstant2DOneDNNOp
):
def set_inputs(self):
self.inputs = {'ShapeTensor': np.array([5, 6, 7, 8]).astype("int32")}
class TestFillZerosLike4DShapeTensorListPriorityOneDNNOp(
TestFillConstant2DOneDNNOp):
def set_inputs(self):
shape = (4, 5, 6, 7)
self.shape_tensor_list = []
for index, elem in enumerate(shape):
self.shape_tensor_list.append(("x" + str(index), np.ones(
(1)).astype('int32') * elem))
self.inputs = {'ShapeTensorList': self.shape_tensor_list}
class TestFillZerosLike2DStringValueInfOneDNNOp(TestFillConstant2DOneDNNOp):
def set_attrs(self):
self.str_value = "inf"
self.attrs = {'shape': (10, 13), 'use_mkldnn': True, 'str_value': "inf"}
class TestFillZerosLike2DStringValueMinusInfOneDNNOp(TestFillConstant2DOneDNNOp
):
def set_attrs(self):
self.str_value = "-inf"
self.attrs = {
'shape': (10, 13),
'use_mkldnn': True,
'str_value': "-inf"
}
class TestFillZerosLike2DStringValueFloatOneDNNOp(TestFillConstant2DOneDNNOp):
def set_attrs(self):
self.str_value = "0.123"
self.attrs = {
'shape': (10, 13),
'use_mkldnn': True,
'str_value': "0.123"
}
class TestFillZerosLike2DValueTensorPriorityOneDNNOp(
TestFillZerosLike2DStringValueFloatOneDNNOp):
def set_inputs(self):
self.inputs = {'ValueTensor': np.atleast_1d(2.25).astype("float32")}
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool
import paddle
@OpTestTool.skip_if_not_cpu_bf16()
class TestFillConstant2DOneDNNOp(OpTest):
def setUp(self):
self.op_type = "fill_constant"
self.dtype = np.float32
self.shape_tensor_list = None
self.shape_tensor = None
self.str_value = ""
real_shape = []
self.value = 0.1
self.set_inputs()
self.set_attrs()
if 'value' in self.attrs:
self.value = self.attrs['value']
if self.str_value != "":
self.value = float(self.str_value)
if 'ValueTensor' in self.inputs:
self.value = self.inputs['ValueTensor']
if 'shape' in self.attrs:
real_shape = self.attrs['shape']
if 'ShapeTensor' in self.inputs:
real_shape = list(self.inputs['ShapeTensor'])
if 'ShapeTensorList' in self.inputs:
real_shape = []
for shape_tensor in self.inputs['ShapeTensorList']:
real_shape.append(shape_tensor[1].item())
self.outputs = {'Out': np.full(real_shape, self.value)}
def set_inputs(self):
self.inputs = {}
def set_attrs(self):
self.attrs = {'shape': (3, 5), 'use_mkldnn': True, 'value': self.value}
def test_check_output(self):
self.check_output()
class TestFillZerosLike4DShapeTensorPriorityOneDNNOp(TestFillConstant2DOneDNNOp
):
def set_inputs(self):
self.inputs = {'ShapeTensor': np.array([5, 6, 7, 8]).astype("int32")}
class TestFillZerosLike4DShapeTensorListPriorityOneDNNOp(
TestFillConstant2DOneDNNOp):
def set_inputs(self):
shape = (4, 5, 6, 7)
self.shape_tensor_list = []
for index, elem in enumerate(shape):
self.shape_tensor_list.append(("x" + str(index), np.ones(
(1)).astype('int32') * elem))
self.inputs = {'ShapeTensorList': self.shape_tensor_list}
class TestFillZerosLike2DStringValueInfOneDNNOp(TestFillConstant2DOneDNNOp):
def set_attrs(self):
self.str_value = "inf"
self.attrs = {'shape': (10, 13), 'use_mkldnn': True, 'str_value': "inf"}
class TestFillZerosLike2DStringValueMinusInfOneDNNOp(TestFillConstant2DOneDNNOp
):
def set_attrs(self):
self.str_value = "-inf"
self.attrs = {
'shape': (10, 13),
'use_mkldnn': True,
'str_value': "-inf"
}
class TestFillZerosLike2DStringValueFloatOneDNNOp(TestFillConstant2DOneDNNOp):
def set_attrs(self):
self.str_value = "0.123"
self.attrs = {
'shape': (10, 13),
'use_mkldnn': True,
'str_value': "0.123"
}
class TestFillZerosLike2DValueTensorPriorityOneDNNOp(
TestFillZerosLike2DStringValueFloatOneDNNOp):
def set_inputs(self):
self.inputs = {'ValueTensor': np.atleast_1d(2.25).astype("float32")}
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard
import paddle.fluid.core as core
import numpy as np
import copy
import unittest
import sys
sys.path.append("../")
from op_test import OpTest
class TestSequenceFirstStepOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input must be Variable
input_data = np.random.randint(1, 5, [4]).astype("int64")
fluid.layers.sequence_last_step(input_data)
self.assertRaises(TypeError, test_Variable)
def test_input_dtype():
# the dtype of input must be int64
type_data = fluid.layers.data(name='type_data',
shape=[7, 1],
append_batch_size=False,
dtype='int64',
lod_level=1)
fluid.layers.sequence_last_step(type_data)
self.assertRaises(TypeError, test_input_dtype)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard
import paddle.fluid.core as core
import numpy as np
import copy
import unittest
import sys
sys.path.append("../")
from op_test import OpTest
class TestSequenceFirstStepOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input must be Variable
input_data = np.random.randint(1, 5, [4]).astype("int64")
fluid.layers.sequence_last_step(input_data)
self.assertRaises(TypeError, test_Variable)
def test_input_dtype():
# the dtype of input must be int64
type_data = fluid.layers.data(name='type_data',
shape=[7, 1],
append_batch_size=False,
dtype='int64',
lod_level=1)
fluid.layers.sequence_last_step(type_data)
self.assertRaises(TypeError, test_input_dtype)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard
import paddle.fluid.core as core
import numpy as np
import copy
import unittest
import sys
sys.path.append("../")
from op_test import OpTest
class TestSequenceLastStepOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input must be Variable
input_data = np.random.randint(1, 5, [4]).astype("int64")
fluid.layers.sequence_last_step(input_data)
self.assertRaises(TypeError, test_Variable)
def test_input_dtype():
# the dtype of input must be int64
type_data = fluid.layers.data(name='type_data',
shape=[7, 1],
append_batch_size=False,
dtype='int64',
lod_level=1)
fluid.layers.sequence_last_step(type_data)
self.assertRaises(TypeError, test_input_dtype)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard
import paddle.fluid.core as core
import numpy as np
import copy
import unittest
import sys
sys.path.append("../")
from op_test import OpTest
class TestSequenceLastStepOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input must be Variable
input_data = np.random.randint(1, 5, [4]).astype("int64")
fluid.layers.sequence_last_step(input_data)
self.assertRaises(TypeError, test_Variable)
def test_input_dtype():
# the dtype of input must be int64
type_data = fluid.layers.data(name='type_data',
shape=[7, 1],
append_batch_size=False,
dtype='int64',
lod_level=1)
fluid.layers.sequence_last_step(type_data)
self.assertRaises(TypeError, test_input_dtype)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import random
random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
class RandomWeight:
def __init__(self):
pass
def updata_weight(self, hidden_size, input_size, dtype):
std = 1.0 / math.sqrt(hidden_size)
self.hidden_size = hidden_size
self.input_size = input_size
self.dtype = dtype
self.weight_ih = np.random.uniform(low=-std,
high=std,
size=(4 * self.hidden_size,
self.input_size)).astype(dtype)
self.weight_hh = np.random.uniform(
low=-std, high=std,
size=(4 * self.hidden_size, self.hidden_size)).astype(dtype)
self.bias_ih = np.random.uniform(low=-std,
high=std,
size=(4 *
self.hidden_size)).astype(dtype)
self.bias_hh = np.random.uniform(low=-std,
high=std,
size=(4 *
self.hidden_size)).astype(dtype)
weight = RandomWeight()
class LayerMixin(object):
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
class LayerListMixin(LayerMixin):
def __init__(self, layers=None):
self._layers = list(layers) if layers else []
def append(self, layer):
self._layers.append(layer)
def __iter__(self):
return iter(self._layers)
class LSTMCell(LayerMixin):
def __init__(self, input_size, hidden_size, bias=True):
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.dtype = np.float64
self.parameters = dict()
self.weight_ih = weight.weight_ih
self.weight_hh = weight.weight_hh
self.parameters['weight_ih'] = self.weight_ih
self.parameters['weight_hh'] = self.weight_hh
if bias:
self.bias_ih = weight.bias_ih
self.bias_hh = weight.bias_hh
self.parameters['bias_ih'] = self.bias_ih
self.parameters['bias_hh'] = self.bias_hh
else:
self.bias_ih = None
self.bias_hh = None
def init_state(self, inputs):
batch_size = inputs.shape[0]
init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
return init_h, init_c
def forward(self, inputs, hx=None):
if hx is None:
hx = self.init_state(inputs)
pre_hidden, pre_cell = hx
gates = np.matmul(inputs, self.weight_ih.T)
if self.bias_ih is not None:
gates = gates + self.bias_ih
gates += np.matmul(pre_hidden, self.weight_hh.T)
if self.bias_hh is not None:
gates = gates + self.bias_hh
chunked_gates = np.split(gates, 4, -1)
i = 1.0 / (1.0 + np.exp(-chunked_gates[0]))
f = 1.0 / (1.0 + np.exp(-chunked_gates[1]))
o = 1.0 / (1.0 + np.exp(-chunked_gates[3]))
c = f * pre_cell + i * np.tanh(chunked_gates[2])
h = o * np.tanh(c)
return h, (h, c)
def sequence_mask(lengths, max_len=None):
if max_len is None:
max_len = np.max(lengths)
else:
assert max_len >= np.max(lengths)
return np.arange(max_len) < np.expand_dims(lengths, -1)
def update_state(mask, new, old):
if not isinstance(old, (tuple, list)):
return np.where(mask, new, old)
else:
return tuple(map(lambda x, y: np.where(mask, x, y), new, old))
def rnn(cell,
inputs,
initial_states,
sequence_length=None,
time_major=False,
is_reverse=False):
if not time_major:
inputs = np.transpose(inputs, [1, 0, 2])
if is_reverse:
inputs = np.flip(inputs, 0)
if sequence_length is None:
mask = None
else:
mask = np.transpose(sequence_mask(sequence_length), [1, 0])
mask = np.expand_dims(mask, -1)
if is_reverse:
mask = np.flip(mask, 0)
time_steps = inputs.shape[0]
state = initial_states
outputs = []
for t in range(time_steps):
x_t = inputs[t]
if mask is not None:
m_t = mask[t]
y, new_state = cell(x_t, state)
y = np.where(m_t, y, 0.)
outputs.append(y)
state = update_state(m_t, new_state, state)
else:
y, new_state = cell(x_t, state)
outputs.append(y)
state = new_state
outputs = np.stack(outputs)
final_state = state
if is_reverse:
outputs = np.flip(outputs, 0)
if not time_major:
outputs = np.transpose(outputs, [1, 0, 2])
return outputs, final_state
def birnn(cell_fw,
cell_bw,
inputs,
initial_states,
sequence_length=None,
time_major=False):
states_fw, states_bw = initial_states
outputs_fw, states_fw = rnn(cell_fw,
inputs,
states_fw,
sequence_length,
time_major=time_major)
outputs_bw, states_bw = rnn(cell_bw,
inputs,
states_bw,
sequence_length,
time_major=time_major,
is_reverse=True)
outputs = np.concatenate((outputs_fw, outputs_bw), -1)
final_states = (states_fw, states_bw)
return outputs, final_states
def flatten(nested):
return list(_flatten(nested))
def _flatten(nested):
for item in nested:
if isinstance(item, (list, tuple)):
for subitem in _flatten(item):
yield subitem
else:
yield item
def unstack(array, axis=0):
num = array.shape[axis]
sub_arrays = np.split(array, num, axis)
return [np.squeeze(sub_array, axis) for sub_array in sub_arrays]
def dropout(array, p=0.0):
if p == 0.0:
return array
mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype)
return array * (mask / (1 - p))
def split_states(states, bidirectional=False, state_components=1):
if state_components == 1:
states = unstack(states)
if not bidirectional:
return states
else:
return list(zip(states[::2], states[1::2]))
else:
assert len(states) == state_components
states = tuple([unstack(item) for item in states])
if not bidirectional:
return list(zip(*states))
else:
states = list(zip(*states))
return list(zip(states[::2], states[1::2]))
def concat_states(states, bidirectional=False, state_components=1):
if state_components == 1:
return np.stack(flatten(states))
else:
states = flatten(states)
componnets = []
for i in range(state_components):
componnets.append(states[i::state_components])
return [np.stack(item) for item in componnets]
class RNN(LayerMixin):
def __init__(self, cell, is_reverse=False, time_major=False):
super(RNN, self).__init__()
self.cell = cell
if not hasattr(self.cell, "call"):
# for non-dygraph mode, `rnn` api uses cell.call
self.cell.call = self.cell.forward
self.is_reverse = is_reverse
self.time_major = time_major
def forward(self, inputs, initial_states=None, sequence_length=None):
final_outputs, final_states = rnn(self.cell,
inputs,
initial_states=initial_states,
sequence_length=sequence_length,
time_major=self.time_major,
is_reverse=self.is_reverse)
return final_outputs, final_states
class BiRNN(LayerMixin):
def __init__(self, cell_fw, cell_bw, time_major=False):
super(BiRNN, self).__init__()
self.cell_fw = cell_fw
self.cell_bw = cell_bw
self.time_major = time_major
def forward(self,
inputs,
initial_states=None,
sequence_length=None,
**kwargs):
if isinstance(initial_states, (list, tuple)):
assert len(initial_states) == 2, \
"length of initial_states should be 2 when it is a list/tuple"
else:
initial_states = [initial_states, initial_states]
outputs, final_states = birnn(self.cell_fw, self.cell_bw, inputs,
initial_states, sequence_length,
self.time_major)
return outputs, final_states
class RNNMixin(LayerListMixin):
def forward(self, inputs, initial_states=None, sequence_length=None):
batch_index = 1 if self.time_major else 0
batch_size = inputs.shape[batch_index]
dtype = inputs.dtype
if initial_states is None:
state_shape = (self.num_layers * self.num_directions, batch_size,
self.hidden_size)
if self.state_components == 1:
initial_states = np.zeros(state_shape, dtype)
else:
initial_states = tuple([
np.zeros(state_shape, dtype)
for _ in range(self.state_components)
])
states = split_states(initial_states, self.num_directions == 2,
self.state_components)
final_states = []
for i, rnn_layer in enumerate(self):
if i > 0:
inputs = dropout(inputs, self.dropout)
outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
final_states.append(final_state)
inputs = outputs
final_states = concat_states(final_states, self.num_directions == 2,
self.state_components)
return outputs, final_states
class LSTM(RNNMixin):
def __init__(self,
input_size,
hidden_size,
num_layers=1,
direction="forward",
dropout=0.,
time_major=False):
super(LSTM, self).__init__()
if direction in ["forward", "backward"]:
is_reverse = direction == "backward"
cell = LSTMCell(input_size, hidden_size)
self.append(RNN(cell, is_reverse, time_major))
for i in range(1, num_layers):
cell = LSTMCell(hidden_size, hidden_size)
self.append(RNN(cell, is_reverse, time_major))
elif direction == "bidirectional":
cell_fw = LSTMCell(input_size, hidden_size)
cell_bw = LSTMCell(input_size, hidden_size)
self.append(BiRNN(cell_fw, cell_bw, time_major))
for i in range(1, num_layers):
cell_fw = LSTMCell(2 * hidden_size, hidden_size)
cell_bw = LSTMCell(2 * hidden_size, hidden_size)
self.append(BiRNN(cell_fw, cell_bw, time_major))
else:
raise ValueError(
"direction should be forward, backward or bidirectional, "
"received direction = {}".format(direction))
self.input_size = input_size
self.hidden_size = hidden_size
self.dropout = dropout
self.num_directions = 2 if direction == "bidirectional" else 1
self.time_major = time_major
self.num_layers = num_layers
self.state_components = 2
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNLstmOp(OpTest):
def get_weight_names(self):
weight_names = []
for i in range(2 * self.num_layers):
weight_names.append('weight{}'.format(i))
for i in range(2 * self.num_layers):
weight_names.append('bias{}'.format(i))
return weight_names
def setUp(self):
self.op_type = "cudnn_lstm"
self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
self.sequence_length = None if core.is_compiled_with_rocm(
) else np.array([12, 11, 10, 9, 8], dtype=np.int32)
self.num_layers = 1
self.set_attrs()
seq_length = 12
batch_size = 5
input_size = 21
hidden_size = 21
input = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_length, batch_size,
input_size)).astype(self.dtype)
input[11][1:][:] = 0
input[10][2:][:] = 0
input[9][3:][:] = 0
input[8][4:][:] = 0
weight.updata_weight(hidden_size, input_size, self.dtype)
rnn1 = LSTM(input_size,
hidden_size,
num_layers=self.num_layers,
time_major=True,
direction="forward")
output, (last_hidden,
last_cell) = rnn1(input, sequence_length=self.sequence_length)
flat_w = []
num = 0
for i in range(self.num_layers):
if i == 0:
weight_ih = weight.weight_ih
else:
weight_ih = weight.weight_hh
flat_w.append(("weight" + str(num), weight_ih))
num += 1
for i in range(self.num_layers):
weight_hh = weight.weight_hh
flat_w.append(("weight" + str(num), weight_hh))
num += 1
num = 0
for i in range(self.num_layers):
bias_ih = weight.bias_ih
flat_w.append(("bias" + str(num), bias_ih))
num += 1
for i in range(self.num_layers):
bias_hh = weight.bias_hh
flat_w.append(("bias" + str(num), bias_hh))
num += 1
init_h = np.zeros(
(self.num_layers, batch_size, hidden_size)).astype(self.dtype)
init_c = np.zeros(
(self.num_layers, batch_size, hidden_size)).astype(self.dtype)
state_out = np.ndarray((300)).astype("uint8")
if core.is_compiled_with_rocm():
for i in range(len(flat_w)):
w = np.split(flat_w[i][1], 4, 0)
w = [w[0], w[1], w[3], w[2]]
w = np.concatenate(w)
flat_w[i] = (flat_w[i][0], w)
self.inputs = {
'Input': input,
'WeightList': flat_w,
'InitH': init_h,
'InitC': init_c,
'SequenceLength': self.sequence_length
}
if self.sequence_length is None:
self.inputs = {
'Input': input,
'WeightList': flat_w,
'InitH': init_h,
'InitC': init_c,
}
self.attrs = {
'dropout_prob': 0.0,
'is_bidirec': False,
'input_size': input_size,
'hidden_size': hidden_size,
'num_layers': self.num_layers,
}
self.outputs = {
'Out': output,
"LastH": last_hidden,
'LastC': last_cell,
'Reserve': np.ndarray((400)).astype("uint8"),
'StateOut': state_out
}
def set_attrs(self):
pass
def test_output_with_place(self):
place = core.CUDAPlace(0)
if core.is_compiled_with_rocm():
self.check_output_with_place(place,
atol=1e-5,
no_check_set=['Reserve', 'StateOut'])
else:
self.check_output_with_place(place,
no_check_set=['Reserve', 'StateOut'])
def test_grad_with_place(self):
place = core.CUDAPlace(0)
var_name_list = self.get_weight_names()
for var_name in var_name_list:
self.check_grad_with_place(
place, set(['Input', var_name, 'InitH', 'InitC']),
['Out', 'LastH', 'LastC'])
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNlstmAPI(unittest.TestCase):
def test_lstm(self):
seq_len = 20
batch_size = 5
hidden_size = 20
dropout_prob = 0.0
num_layers = 1
dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
input = fluid.data(name='input',
shape=[seq_len, batch_size, hidden_size],
dtype=dtype)
init_h = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
init_c = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len,
hidden_size, num_layers,
dropout_prob, False)
exe = fluid.Executor(fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
input_i = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_len, batch_size,
hidden_size)).astype("float64")
out = exe.run(fluid.default_main_program(),
feed={'input': input_i},
fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'])
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNlstmAPI(unittest.TestCase):
def test_lstm(self):
seq_len = 20
batch_size = 5
hidden_size = 20
dropout_prob = 0.0
num_layers = 2
dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
input = fluid.data(name='input',
shape=[seq_len, batch_size, hidden_size],
dtype=dtype)
init_h = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
init_c = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len,
hidden_size, num_layers,
dropout_prob, False, True)
exe = fluid.Executor(fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
input_i = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_len, batch_size,
hidden_size)).astype(dtype)
out = exe.run(fluid.default_main_program(),
feed={'input': input_i},
fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'])
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import random
random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
class RandomWeight:
def __init__(self):
pass
def updata_weight(self, hidden_size, input_size, dtype):
std = 1.0 / math.sqrt(hidden_size)
self.hidden_size = hidden_size
self.input_size = input_size
self.dtype = dtype
self.weight_ih = np.random.uniform(low=-std,
high=std,
size=(4 * self.hidden_size,
self.input_size)).astype(dtype)
self.weight_hh = np.random.uniform(
low=-std, high=std,
size=(4 * self.hidden_size, self.hidden_size)).astype(dtype)
self.bias_ih = np.random.uniform(low=-std,
high=std,
size=(4 *
self.hidden_size)).astype(dtype)
self.bias_hh = np.random.uniform(low=-std,
high=std,
size=(4 *
self.hidden_size)).astype(dtype)
weight = RandomWeight()
class LayerMixin(object):
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
class LayerListMixin(LayerMixin):
def __init__(self, layers=None):
self._layers = list(layers) if layers else []
def append(self, layer):
self._layers.append(layer)
def __iter__(self):
return iter(self._layers)
class LSTMCell(LayerMixin):
def __init__(self, input_size, hidden_size, bias=True):
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.dtype = np.float64
self.parameters = dict()
self.weight_ih = weight.weight_ih
self.weight_hh = weight.weight_hh
self.parameters['weight_ih'] = self.weight_ih
self.parameters['weight_hh'] = self.weight_hh
if bias:
self.bias_ih = weight.bias_ih
self.bias_hh = weight.bias_hh
self.parameters['bias_ih'] = self.bias_ih
self.parameters['bias_hh'] = self.bias_hh
else:
self.bias_ih = None
self.bias_hh = None
def init_state(self, inputs):
batch_size = inputs.shape[0]
init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
return init_h, init_c
def forward(self, inputs, hx=None):
if hx is None:
hx = self.init_state(inputs)
pre_hidden, pre_cell = hx
gates = np.matmul(inputs, self.weight_ih.T)
if self.bias_ih is not None:
gates = gates + self.bias_ih
gates += np.matmul(pre_hidden, self.weight_hh.T)
if self.bias_hh is not None:
gates = gates + self.bias_hh
chunked_gates = np.split(gates, 4, -1)
i = 1.0 / (1.0 + np.exp(-chunked_gates[0]))
f = 1.0 / (1.0 + np.exp(-chunked_gates[1]))
o = 1.0 / (1.0 + np.exp(-chunked_gates[3]))
c = f * pre_cell + i * np.tanh(chunked_gates[2])
h = o * np.tanh(c)
return h, (h, c)
def sequence_mask(lengths, max_len=None):
if max_len is None:
max_len = np.max(lengths)
else:
assert max_len >= np.max(lengths)
return np.arange(max_len) < np.expand_dims(lengths, -1)
def update_state(mask, new, old):
if not isinstance(old, (tuple, list)):
return np.where(mask, new, old)
else:
return tuple(map(lambda x, y: np.where(mask, x, y), new, old))
def rnn(cell,
inputs,
initial_states,
sequence_length=None,
time_major=False,
is_reverse=False):
if not time_major:
inputs = np.transpose(inputs, [1, 0, 2])
if is_reverse:
inputs = np.flip(inputs, 0)
if sequence_length is None:
mask = None
else:
mask = np.transpose(sequence_mask(sequence_length), [1, 0])
mask = np.expand_dims(mask, -1)
if is_reverse:
mask = np.flip(mask, 0)
time_steps = inputs.shape[0]
state = initial_states
outputs = []
for t in range(time_steps):
x_t = inputs[t]
if mask is not None:
m_t = mask[t]
y, new_state = cell(x_t, state)
y = np.where(m_t, y, 0.)
outputs.append(y)
state = update_state(m_t, new_state, state)
else:
y, new_state = cell(x_t, state)
outputs.append(y)
state = new_state
outputs = np.stack(outputs)
final_state = state
if is_reverse:
outputs = np.flip(outputs, 0)
if not time_major:
outputs = np.transpose(outputs, [1, 0, 2])
return outputs, final_state
def birnn(cell_fw,
cell_bw,
inputs,
initial_states,
sequence_length=None,
time_major=False):
states_fw, states_bw = initial_states
outputs_fw, states_fw = rnn(cell_fw,
inputs,
states_fw,
sequence_length,
time_major=time_major)
outputs_bw, states_bw = rnn(cell_bw,
inputs,
states_bw,
sequence_length,
time_major=time_major,
is_reverse=True)
outputs = np.concatenate((outputs_fw, outputs_bw), -1)
final_states = (states_fw, states_bw)
return outputs, final_states
def flatten(nested):
return list(_flatten(nested))
def _flatten(nested):
for item in nested:
if isinstance(item, (list, tuple)):
for subitem in _flatten(item):
yield subitem
else:
yield item
def unstack(array, axis=0):
num = array.shape[axis]
sub_arrays = np.split(array, num, axis)
return [np.squeeze(sub_array, axis) for sub_array in sub_arrays]
def dropout(array, p=0.0):
if p == 0.0:
return array
mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype)
return array * (mask / (1 - p))
def split_states(states, bidirectional=False, state_components=1):
if state_components == 1:
states = unstack(states)
if not bidirectional:
return states
else:
return list(zip(states[::2], states[1::2]))
else:
assert len(states) == state_components
states = tuple([unstack(item) for item in states])
if not bidirectional:
return list(zip(*states))
else:
states = list(zip(*states))
return list(zip(states[::2], states[1::2]))
def concat_states(states, bidirectional=False, state_components=1):
if state_components == 1:
return np.stack(flatten(states))
else:
states = flatten(states)
componnets = []
for i in range(state_components):
componnets.append(states[i::state_components])
return [np.stack(item) for item in componnets]
class RNN(LayerMixin):
def __init__(self, cell, is_reverse=False, time_major=False):
super(RNN, self).__init__()
self.cell = cell
if not hasattr(self.cell, "call"):
# for non-dygraph mode, `rnn` api uses cell.call
self.cell.call = self.cell.forward
self.is_reverse = is_reverse
self.time_major = time_major
def forward(self, inputs, initial_states=None, sequence_length=None):
final_outputs, final_states = rnn(self.cell,
inputs,
initial_states=initial_states,
sequence_length=sequence_length,
time_major=self.time_major,
is_reverse=self.is_reverse)
return final_outputs, final_states
class BiRNN(LayerMixin):
def __init__(self, cell_fw, cell_bw, time_major=False):
super(BiRNN, self).__init__()
self.cell_fw = cell_fw
self.cell_bw = cell_bw
self.time_major = time_major
def forward(self,
inputs,
initial_states=None,
sequence_length=None,
**kwargs):
if isinstance(initial_states, (list, tuple)):
assert len(initial_states) == 2, \
"length of initial_states should be 2 when it is a list/tuple"
else:
initial_states = [initial_states, initial_states]
outputs, final_states = birnn(self.cell_fw, self.cell_bw, inputs,
initial_states, sequence_length,
self.time_major)
return outputs, final_states
class RNNMixin(LayerListMixin):
def forward(self, inputs, initial_states=None, sequence_length=None):
batch_index = 1 if self.time_major else 0
batch_size = inputs.shape[batch_index]
dtype = inputs.dtype
if initial_states is None:
state_shape = (self.num_layers * self.num_directions, batch_size,
self.hidden_size)
if self.state_components == 1:
initial_states = np.zeros(state_shape, dtype)
else:
initial_states = tuple([
np.zeros(state_shape, dtype)
for _ in range(self.state_components)
])
states = split_states(initial_states, self.num_directions == 2,
self.state_components)
final_states = []
for i, rnn_layer in enumerate(self):
if i > 0:
inputs = dropout(inputs, self.dropout)
outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
final_states.append(final_state)
inputs = outputs
final_states = concat_states(final_states, self.num_directions == 2,
self.state_components)
return outputs, final_states
class LSTM(RNNMixin):
def __init__(self,
input_size,
hidden_size,
num_layers=1,
direction="forward",
dropout=0.,
time_major=False):
super(LSTM, self).__init__()
if direction in ["forward", "backward"]:
is_reverse = direction == "backward"
cell = LSTMCell(input_size, hidden_size)
self.append(RNN(cell, is_reverse, time_major))
for i in range(1, num_layers):
cell = LSTMCell(hidden_size, hidden_size)
self.append(RNN(cell, is_reverse, time_major))
elif direction == "bidirectional":
cell_fw = LSTMCell(input_size, hidden_size)
cell_bw = LSTMCell(input_size, hidden_size)
self.append(BiRNN(cell_fw, cell_bw, time_major))
for i in range(1, num_layers):
cell_fw = LSTMCell(2 * hidden_size, hidden_size)
cell_bw = LSTMCell(2 * hidden_size, hidden_size)
self.append(BiRNN(cell_fw, cell_bw, time_major))
else:
raise ValueError(
"direction should be forward, backward or bidirectional, "
"received direction = {}".format(direction))
self.input_size = input_size
self.hidden_size = hidden_size
self.dropout = dropout
self.num_directions = 2 if direction == "bidirectional" else 1
self.time_major = time_major
self.num_layers = num_layers
self.state_components = 2
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNLstmOp(OpTest):
def get_weight_names(self):
weight_names = []
for i in range(2 * self.num_layers):
weight_names.append('weight{}'.format(i))
for i in range(2 * self.num_layers):
weight_names.append('bias{}'.format(i))
return weight_names
def setUp(self):
self.op_type = "cudnn_lstm"
self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
self.sequence_length = None if core.is_compiled_with_rocm(
) else np.array([12, 11, 10, 9, 8], dtype=np.int32)
self.num_layers = 1
self.set_attrs()
seq_length = 12
batch_size = 5
input_size = 21
hidden_size = 21
input = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_length, batch_size,
input_size)).astype(self.dtype)
input[11][1:][:] = 0
input[10][2:][:] = 0
input[9][3:][:] = 0
input[8][4:][:] = 0
weight.updata_weight(hidden_size, input_size, self.dtype)
rnn1 = LSTM(input_size,
hidden_size,
num_layers=self.num_layers,
time_major=True,
direction="forward")
output, (last_hidden,
last_cell) = rnn1(input, sequence_length=self.sequence_length)
flat_w = []
num = 0
for i in range(self.num_layers):
if i == 0:
weight_ih = weight.weight_ih
else:
weight_ih = weight.weight_hh
flat_w.append(("weight" + str(num), weight_ih))
num += 1
for i in range(self.num_layers):
weight_hh = weight.weight_hh
flat_w.append(("weight" + str(num), weight_hh))
num += 1
num = 0
for i in range(self.num_layers):
bias_ih = weight.bias_ih
flat_w.append(("bias" + str(num), bias_ih))
num += 1
for i in range(self.num_layers):
bias_hh = weight.bias_hh
flat_w.append(("bias" + str(num), bias_hh))
num += 1
init_h = np.zeros(
(self.num_layers, batch_size, hidden_size)).astype(self.dtype)
init_c = np.zeros(
(self.num_layers, batch_size, hidden_size)).astype(self.dtype)
state_out = np.ndarray((300)).astype("uint8")
if core.is_compiled_with_rocm():
for i in range(len(flat_w)):
w = np.split(flat_w[i][1], 4, 0)
w = [w[0], w[1], w[3], w[2]]
w = np.concatenate(w)
flat_w[i] = (flat_w[i][0], w)
self.inputs = {
'Input': input,
'WeightList': flat_w,
'InitH': init_h,
'InitC': init_c,
'SequenceLength': self.sequence_length
}
if self.sequence_length is None:
self.inputs = {
'Input': input,
'WeightList': flat_w,
'InitH': init_h,
'InitC': init_c,
}
self.attrs = {
'dropout_prob': 0.0,
'is_bidirec': False,
'input_size': input_size,
'hidden_size': hidden_size,
'num_layers': self.num_layers,
}
self.outputs = {
'Out': output,
"LastH": last_hidden,
'LastC': last_cell,
'Reserve': np.ndarray((400)).astype("uint8"),
'StateOut': state_out
}
def set_attrs(self):
pass
def test_output_with_place(self):
place = core.CUDAPlace(0)
if core.is_compiled_with_rocm():
self.check_output_with_place(place,
atol=1e-5,
no_check_set=['Reserve', 'StateOut'])
else:
self.check_output_with_place(place,
no_check_set=['Reserve', 'StateOut'])
def test_grad_with_place(self):
place = core.CUDAPlace(0)
var_name_list = self.get_weight_names()
for var_name in var_name_list:
self.check_grad_with_place(
place, set(['Input', var_name, 'InitH', 'InitC']),
['Out', 'LastH', 'LastC'])
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNlstmAPI(unittest.TestCase):
def test_lstm(self):
seq_len = 20
batch_size = 5
hidden_size = 20
dropout_prob = 0.0
num_layers = 1
dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
input = fluid.data(name='input',
shape=[seq_len, batch_size, hidden_size],
dtype=dtype)
init_h = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
init_c = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len,
hidden_size, num_layers,
dropout_prob, False)
exe = fluid.Executor(fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
input_i = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_len, batch_size,
hidden_size)).astype("float64")
out = exe.run(fluid.default_main_program(),
feed={'input': input_i},
fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'])
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNlstmAPI(unittest.TestCase):
def test_lstm(self):
seq_len = 20
batch_size = 5
hidden_size = 20
dropout_prob = 0.0
num_layers = 2
dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
input = fluid.data(name='input',
shape=[seq_len, batch_size, hidden_size],
dtype=dtype)
init_h = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
init_c = layers.fill_constant([num_layers, batch_size, hidden_size],
dtype, 0.0)
rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len,
hidden_size, num_layers,
dropout_prob, False, True)
exe = fluid.Executor(fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
input_i = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_len, batch_size,
hidden_size)).astype(dtype)
out = exe.run(fluid.default_main_program(),
feed={'input': input_i},
fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'])
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
import paddle.fluid.core as core
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import random
import sys
from op_test import OpTest
sys.path.append("./rnn")
from rnn_numpy import SimpleRNN, LSTM, GRU
from convert import get_params_for_net
random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()
class TestRNNOp(OpTest):
def get_weight_names(self):
weight_names = []
for i in range(self.num_layers):
for j in range(0, 2 * self.direction_num):
weight_names.append("{}.weight_{}".format(i, j))
for i in range(self.num_layers):
for j in range(0, 2 * self.direction_num):
weight_names.append("{}.bias_{}".format(i, j))
return weight_names
def setUp(self):
self.op_type = "rnn"
self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
self.sequence_length = None if core.is_compiled_with_rocm(
) else np.array([12, 11, 10, 9, 8], dtype=np.int32)
self.num_layers = 1
self.is_bidirec = False
self.mode = "LSTM"
self.is_test = False
self.dropout = 0.0
self.set_attrs()
self.direction_num = 2 if self.is_bidirec else 1
direction = "bidirectional" if self.is_bidirec else "forward"
seq_length = 12
batch_size = 5
input_size = 3
hidden_size = 2
input = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_length, batch_size,
input_size)).astype(self.dtype)
if self.sequence_length is not None:
input[11][1:][:] = 0
input[10][2:][:] = 0
input[9][3:][:] = 0
input[8][4:][:] = 0
rnn1 = LSTM(input_size,
hidden_size,
num_layers=self.num_layers,
time_major=True,
direction=direction,
dropout=self.dropout,
dtype=self.dtype)
flat_w = get_params_for_net(rnn1)
output, (last_hidden,
last_cell) = rnn1(input, sequence_length=self.sequence_length)
if core.is_compiled_with_rocm():
def rocm_rnn_get_place():
places = [core.CUDAPlace(0)]
return places
self._get_places = rocm_rnn_get_place
init_h = np.zeros((self.num_layers * self.direction_num, batch_size,
hidden_size)).astype(self.dtype)
init_c = np.zeros((self.num_layers * self.direction_num, batch_size,
hidden_size)).astype(self.dtype)
state_out = np.ndarray((300)).astype("uint8")
self.inputs = {
'Input': input,
'WeightList': flat_w,
'PreState': [('init_h', init_h), ('init_c', init_c)],
'SequenceLength': self.sequence_length
}
if self.sequence_length is None:
self.inputs = {
'Input': input,
'WeightList': flat_w,
'PreState': [('init_h', init_h), ('init_c', init_c)],
}
self.attrs = {
'dropout_prob': self.dropout,
'is_bidirec': self.is_bidirec,
'input_size': input_size,
'hidden_size': hidden_size,
'num_layers': self.num_layers,
'mode': self.mode,
'is_test': self.is_test
}
self.outputs = {
'Out': output,
"State": [('last_hidden', last_hidden), ('last_cell', last_cell)],
'Reserve': np.ndarray((400)).astype("uint8"),
'DropoutState': state_out
}
def test_output(self):
self.check_output(no_check_set=['Reserve', 'DropoutState'])
def set_attrs(self):
pass
def test_grad(self):
if not self.is_test:
var_name_list = self.get_weight_names()
grad_check_list = ['Input', 'init_h', 'init_c']
grad_check_list.extend(var_name_list)
self.check_grad(set(grad_check_list),
['Out', 'last_hidden', 'last_cell'])
class TestRNNOp1(TestRNNOp):
def set_attrs(self):
self.sequence_length = None
class TestRNNOp2(TestRNNOp):
def set_attrs(self):
self.sequence_length = None
self.is_bidirec = True
class TestRNNOp3(TestRNNOp):
def set_attrs(self):
self.is_test = True
self.sequence_length = None
class TestRNNOp4(TestRNNOp):
def set_attrs(self):
self.is_test = True
self.sequence_length = None
self.is_bidirec = True
class TestRNNOp5(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
class TestRNNOp6(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
self.is_bidirec = True
class TestRNNOp7(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
self.is_bidirec = True
self.is_test = True
class TestRNNOp8(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
self.is_bidirec = True
self.sequence_length = None
class TestRNNOp9(TestRNNOp):
def set_attrs(self):
self.num_layers = 3
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
import paddle.fluid.core as core
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import random
import sys
from op_test import OpTest
sys.path.append("./rnn")
from rnn_numpy import SimpleRNN, LSTM, GRU
from convert import get_params_for_net
random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()
class TestRNNOp(OpTest):
def get_weight_names(self):
weight_names = []
for i in range(self.num_layers):
for j in range(0, 2 * self.direction_num):
weight_names.append("{}.weight_{}".format(i, j))
for i in range(self.num_layers):
for j in range(0, 2 * self.direction_num):
weight_names.append("{}.bias_{}".format(i, j))
return weight_names
def setUp(self):
self.op_type = "rnn"
self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
self.sequence_length = None if core.is_compiled_with_rocm(
) else np.array([12, 11, 10, 9, 8], dtype=np.int32)
self.num_layers = 1
self.is_bidirec = False
self.mode = "LSTM"
self.is_test = False
self.dropout = 0.0
self.set_attrs()
self.direction_num = 2 if self.is_bidirec else 1
direction = "bidirectional" if self.is_bidirec else "forward"
seq_length = 12
batch_size = 5
input_size = 3
hidden_size = 2
input = np.random.uniform(low=-0.1,
high=0.1,
size=(seq_length, batch_size,
input_size)).astype(self.dtype)
if self.sequence_length is not None:
input[11][1:][:] = 0
input[10][2:][:] = 0
input[9][3:][:] = 0
input[8][4:][:] = 0
rnn1 = LSTM(input_size,
hidden_size,
num_layers=self.num_layers,
time_major=True,
direction=direction,
dropout=self.dropout,
dtype=self.dtype)
flat_w = get_params_for_net(rnn1)
output, (last_hidden,
last_cell) = rnn1(input, sequence_length=self.sequence_length)
if core.is_compiled_with_rocm():
def rocm_rnn_get_place():
places = [core.CUDAPlace(0)]
return places
self._get_places = rocm_rnn_get_place
init_h = np.zeros((self.num_layers * self.direction_num, batch_size,
hidden_size)).astype(self.dtype)
init_c = np.zeros((self.num_layers * self.direction_num, batch_size,
hidden_size)).astype(self.dtype)
state_out = np.ndarray((300)).astype("uint8")
self.inputs = {
'Input': input,
'WeightList': flat_w,
'PreState': [('init_h', init_h), ('init_c', init_c)],
'SequenceLength': self.sequence_length
}
if self.sequence_length is None:
self.inputs = {
'Input': input,
'WeightList': flat_w,
'PreState': [('init_h', init_h), ('init_c', init_c)],
}
self.attrs = {
'dropout_prob': self.dropout,
'is_bidirec': self.is_bidirec,
'input_size': input_size,
'hidden_size': hidden_size,
'num_layers': self.num_layers,
'mode': self.mode,
'is_test': self.is_test
}
self.outputs = {
'Out': output,
"State": [('last_hidden', last_hidden), ('last_cell', last_cell)],
'Reserve': np.ndarray((400)).astype("uint8"),
'DropoutState': state_out
}
def test_output(self):
self.check_output(no_check_set=['Reserve', 'DropoutState'])
def set_attrs(self):
pass
def test_grad(self):
if not self.is_test:
var_name_list = self.get_weight_names()
grad_check_list = ['Input', 'init_h', 'init_c']
grad_check_list.extend(var_name_list)
self.check_grad(set(grad_check_list),
['Out', 'last_hidden', 'last_cell'])
class TestRNNOp1(TestRNNOp):
def set_attrs(self):
self.sequence_length = None
class TestRNNOp2(TestRNNOp):
def set_attrs(self):
self.sequence_length = None
self.is_bidirec = True
class TestRNNOp3(TestRNNOp):
def set_attrs(self):
self.is_test = True
self.sequence_length = None
class TestRNNOp4(TestRNNOp):
def set_attrs(self):
self.is_test = True
self.sequence_length = None
self.is_bidirec = True
class TestRNNOp5(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
class TestRNNOp6(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
self.is_bidirec = True
class TestRNNOp7(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
self.is_bidirec = True
self.is_test = True
class TestRNNOp8(TestRNNOp):
def set_attrs(self):
self.num_layers = 2
self.is_bidirec = True
self.sequence_length = None
class TestRNNOp9(TestRNNOp):
def set_attrs(self):
self.num_layers = 3
if __name__ == '__main__':
unittest.main()
......@@ -21,7 +21,7 @@ def memory_optimize(input_program,
level=0,
skip_grads=True):
"""
:api_attr: Static Graph
:api_attr: Static Graph
This API is deprecated since 1.6. Please do not use it. The better
memory optimization strategies are enabled by default.
......@@ -43,7 +43,7 @@ def memory_optimize(input_program,
def release_memory(input_program, skip_opt_set=None):
"""
:api_attr: Static Graph
:api_attr: Static Graph
This API is deprecated since 1.6. Please do not use it. The better
memory optimization strategies are enabled by default.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册