提交 c68bfc30 编写于 作者: Q qingqing01 提交者: GitHub

Merge pull request #3476 from qingqing01/bp_test

Compare the gradient consistency between GPU and CPU calculations
...@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel { ...@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("Y")->dims());
} }
}; };
......
...@@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel { ...@@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel {
auto Y = EigenVector<T>::Flatten(*output); auto Y = EigenVector<T>::Flatten(*output);
auto place = context.GetEigenDevice<Place>(); auto place = context.GetEigenDevice<Place>();
Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp()); Y.device(place) = 1. / (1. + (-X).exp());
} }
}; };
......
...@@ -25,3 +25,4 @@ py_test(test_operator SRCS test_operator.py) ...@@ -25,3 +25,4 @@ py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py) # py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test(test_uniform_random_op SRCS test_uniform_random_op.py) py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py) py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py)
import unittest import unittest
import numpy import numpy
import itertools
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator from paddle.v2.framework.op import Operator
...@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient'] ...@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
def create_op(op_type): def create_op(op_type):
# TODO need to set attrs
kwargs = dict() kwargs = dict()
for in_name in Operator.get_op_input_names(op_type): for in_name in Operator.get_op_input_names(op_type):
kwargs[in_name] = in_name kwargs[in_name] = in_name
...@@ -66,7 +68,6 @@ def get_numeric_gradient(op, ...@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace( local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace(
)) ))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx = core.DeviceContext.create(core.CPUPlace()) cpu_ctx = core.DeviceContext.create(core.CPUPlace())
def get_output(): def get_output():
...@@ -109,12 +110,110 @@ def get_numeric_gradient(op, ...@@ -109,12 +110,110 @@ def get_numeric_gradient(op,
class GradientChecker(unittest.TestCase): class GradientChecker(unittest.TestCase):
def assert_is_close(self, numeric_grads, scope, max_relative_error, def __get_gradient(self, forward_op, backward_op, input_value, grad_names,
msg_prefix): place):
for name in numeric_grads: """Get the input gradients after running forward and backward operators
b = numpy.array(scope.find_var(grad_var_name(name)).get_tensor()) on the given places.
a = numeric_grads[name]
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope = core.Scope()
ctx = core.DeviceContext.create(place)
inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]]
outputs = forward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
# create input var and set value
for name, value in input_value.iteritems():
if name not in in_names:
raise ValueError(name + "does not exist in Op's inputs.")
var = scope.new_var(name).get_tensor()
var.set_dims(value.shape)
var.set(value, place)
# run forward op
for out_name in out_names:
scope.new_var(out_name)
forward_op.infer_shape(scope)
forward_op.run(scope, ctx)
# set output var's shape
# set output grad to ones
for name in out_names:
out_tensor = scope.find_var(name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape())
data = numpy.ones(out_tensor.shape(), dtype=numpy.float32)
grad_tensor.set(data, place)
# run backward op
for name in backward_op.outputs():
scope.new_var(name)
backward_op.infer_shape(scope)
backward_op.run(scope, ctx)
outs = [
numpy.array(scope.find_var(name).get_tensor())
for name in grad_names
]
return outs
def compare_grad(self, forward_op, input_value):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:raises: AssertionError, there is different gradient value.
"""
backward_op = core.Operator.backward(forward_op, set())
# return if not compile with GPU or not implementing GPU kernel
if not (core.is_compile_gpu() and backward_op.support_gpu()):
return
outputs = backward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
cpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
out_names, core.CPUPlace())
gpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
out_names, core.GPUPlace(0))
for c_grad, g_grad, name in itertools.izip(cpu_grads, gpu_grads,
out_names):
self.assertTrue(
numpy.allclose(
c_grad, g_grad, atol=1e-4),
"output name: " + name + " has diff")
def __assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
abs_a = numpy.abs(a) abs_a = numpy.abs(a)
# if abs_a is nearly zero, then use abs error for a, not relative # if abs_a is nearly zero, then use abs error for a, not relative
# error. # error.
...@@ -159,105 +258,26 @@ class GradientChecker(unittest.TestCase): ...@@ -159,105 +258,26 @@ class GradientChecker(unittest.TestCase):
inputs = forward_op.inputs() inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]] in_names = [item for k in inputs for item in inputs[k]]
outputs = forward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
for no_grad in no_grad_set: for no_grad in no_grad_set:
if no_grad not in in_names: if no_grad not in in_names:
raise ValueError("no_grad should be in in_names") raise ValueError("no_grad should be in in_names")
backward_op = core.Operator.backward(forward_op, no_grad_set) backward_op = core.Operator.backward(forward_op, no_grad_set)
bwd_outputs = backward_op.outputs()
bwd_out_names = [item for k in bwd_outputs for item in bwd_outputs[k]]
places = [core.CPUPlace()] places = [core.CPUPlace()]
if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu(): if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu():
places.append(core.GPUPlace(0)) places.append(core.GPUPlace(0))
numeric_grad = dict() # get numerical gradients
# get numeric gradient numeric_grads = [
for check_name in inputs_to_check: get_numeric_gradient(forward_op, input_vars, output_name, name)
numeric_grad[check_name] = \ for name in inputs_to_check
get_numeric_gradient(forward_op, input_vars, output_name, ]
check_name)
# get operator gradient according to different device check_names = [grad_var_name(name) for name in inputs_to_check]
for place in places: for place in places:
scope = core.Scope() # get analytical gradients according to different device
ctx = core.DeviceContext.create(place) analytic_grads = self.__get_gradient(forward_op, backward_op,
input_vars, check_names, place)
# create input var and set value self.__assert_is_close(numeric_grads, analytic_grads, check_names,
for name, value in input_vars.iteritems(): max_relative_error,
if name not in in_names:
raise ValueError(name + " not in op.inputs_")
var = scope.new_var(name).get_tensor()
var.set_dims(value.shape)
var.set(value, place)
# create output var
for out_name in out_names:
scope.new_var(out_name).get_tensor()
# infer the shape of output var and compute/set value of output var
forward_op.infer_shape(scope)
forward_op.run(scope, ctx)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for name in out_names:
out_tensor = scope.find_var(name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape())
data = 1.0 * numpy.ones(out_tensor.shape())
grad_tensor.set(data, place)
# create input grad var
for name in bwd_out_names:
scope.new_var(name).get_tensor()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op.infer_shape(scope)
backward_op.run(scope, ctx)
self.assert_is_close(numeric_grad, scope, max_relative_error,
"Gradient Check On %s" % str(place)) "Gradient Check On %s" % str(place))
if __name__ == '__main__':
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = Operator('add_two', X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2)
def test_softmax_op(self):
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx = x - numpy.max(x)
exps = numpy.exp(shiftx)
return exps / numpy.sum(exps)
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(Y.shape[0]):
d = numpy.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
softmax_op = Operator("softmax", X="X", Y="Y")
X = numpy.random.random((2, 2)).astype("float32")
Y = numpy.apply_along_axis(stable_softmax, 1, X)
dY = numpy.ones(Y.shape)
dX = label_softmax_grad(Y, dY)
arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X')
numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2)
unittest.main()
import unittest
import numpy
from paddle.v2.framework.op import Operator
from gradient_checker import GradientChecker
from gradient_checker import get_numeric_gradient
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = Operator('add_two', X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)
def test_softmax_op(self):
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx = x - numpy.max(x)
exps = numpy.exp(shiftx)
return exps / numpy.sum(exps)
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(Y.shape[0]):
d = numpy.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
softmax_op = Operator("softmax", X="X", Y="Y")
X = numpy.random.random((2, 2)).astype("float32")
Y = numpy.apply_along_axis(stable_softmax, 1, X)
dY = numpy.ones(Y.shape)
dX = label_softmax_grad(Y, dY)
arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X')
numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2)
if __name__ == '__main__':
unittest.main()
import unittest import unittest
from op_test_util import OpTestMeta
import numpy as np import numpy as np
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
class TestSigmoidOp(unittest.TestCase): class TestSigmoidOp(unittest.TestCase):
...@@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase): ...@@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase):
def setUp(self): def setUp(self):
self.type = "sigmoid" self.type = "sigmoid"
self.inputs = {'X': np.random.random((32, 100)).astype("float32")} self.inputs = {'X': np.random.random((15, 31)).astype("float32")}
self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))} self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}
#class TestSigmoidGradOp(unittest.TestCase): class TestSigmoidGradOp(GradientChecker):
#TODO(qingqing) add unit test def test_grad(self):
op = create_op("sigmoid")
inputs = {"X": np.random.uniform(0.1, 1, [11, 17]).astype("float32")}
# compare gpu and cpu results for backward op.
# this test will be skiped if only compiling CPU version.
self.compare_grad(op, inputs)
# check gradients
self.check_grad(op, inputs, set("X"), "Y", max_relative_error=0.007)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册