Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
c5855506
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c5855506
编写于
1月 25, 2019
作者:
乔
乔龙飞 Qiao Longfei
提交者:
GitHub
1月 25, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14731 from jacquesqiao/optimize-cpp-reader
Optimize cpp reader
上级
d54494ba
119a3d4d
变更
15
显示空白变更内容
内联
并排
Showing
15 changed file
with
533 addition
and
140 deletion
+533
-140
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/reader/create_ctr_reader_op.cc
paddle/fluid/operators/reader/create_ctr_reader_op.cc
+27
-9
paddle/fluid/operators/reader/ctr_reader.cc
paddle/fluid/operators/reader/ctr_reader.cc
+199
-39
paddle/fluid/operators/reader/ctr_reader.h
paddle/fluid/operators/reader/ctr_reader.h
+73
-18
paddle/fluid/operators/reader/ctr_reader_test.cc
paddle/fluid/operators/reader/ctr_reader_test.cc
+81
-7
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
+4
-8
paddle/fluid/operators/reader/read_op.cc
paddle/fluid/operators/reader/read_op.cc
+24
-16
paddle/fluid/operators/reader/reader_op_registry.cc
paddle/fluid/operators/reader/reader_op_registry.cc
+21
-13
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-13
python/paddle/fluid/contrib/__init__.py
python/paddle/fluid/contrib/__init__.py
+3
-0
python/paddle/fluid/contrib/reader/README.md
python/paddle/fluid/contrib/reader/README.md
+15
-0
python/paddle/fluid/contrib/reader/__init__.py
python/paddle/fluid/contrib/reader/__init__.py
+19
-0
python/paddle/fluid/contrib/reader/ctr_reader.py
python/paddle/fluid/contrib/reader/ctr_reader.py
+57
-16
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+1
-1
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
c5855506
...
...
@@ -359,6 +359,7 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.reader.ctr_reader.ctr_reader ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.add_strategy ArgSpec(args=['self', 'strategy'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/operators/reader/create_ctr_reader_op.cc
浏览文件 @
c5855506
...
...
@@ -41,13 +41,19 @@ class CreateCTRReaderOp : public framework::OperatorBase {
auto
*
queue_holder
=
queue_holder_var
->
template
GetMutable
<
LoDTensorBlockingQueueHolder
>();
int
thread_num
=
Attr
<
int
>
(
"thread_num"
);
std
::
vector
<
std
::
string
>
slots
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"slots"
);
int
batch_size
=
Attr
<
int
>
(
"batch_size"
);
std
::
vector
<
std
::
string
>
file_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"file_list"
);
out
->
Reset
(
std
::
make_shared
<
CTRReader
>
(
queue_holder
->
GetQueue
(),
batch_size
,
thread_num
,
slots
,
file_list
));
auto
thread_num
=
Attr
<
int
>
(
"thread_num"
);
auto
sparse_slots
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"sparse_slots"
);
auto
dense_slot_index
=
Attr
<
std
::
vector
<
int
>>
(
"dense_slot_index"
);
auto
sparse_slot_index
=
Attr
<
std
::
vector
<
int
>>
(
"sparse_slot_index"
);
auto
batch_size
=
Attr
<
int
>
(
"batch_size"
);
auto
file_type
=
Attr
<
std
::
string
>
(
"file_type"
);
auto
file_format
=
Attr
<
std
::
string
>
(
"file_format"
);
auto
file_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"file_list"
);
DataDesc
data_desc
(
batch_size
,
file_list
,
file_type
,
file_format
,
dense_slot_index
,
sparse_slot_index
,
sparse_slots
);
VLOG
(
1
)
<<
data_desc
;
out
->
Reset
(
std
::
make_shared
<
CTRReader
>
(
queue_holder
->
GetQueue
(),
thread_num
,
data_desc
));
}
};
...
...
@@ -58,10 +64,22 @@ class CreateCTRReaderOpMaker : public FileReaderMakerBase {
"Name of the `LoDTensorBlockingQueueHolder` variable"
);
AddAttr
<
int
>
(
"thread_num"
,
"the thread num to read data"
);
AddAttr
<
int
>
(
"batch_size"
,
"the batch size of read data"
);
AddAttr
<
std
::
string
>
(
"file_type"
,
"plain or gzip"
).
SetDefault
(
"plain"
);
AddAttr
<
std
::
string
>
(
"file_format"
,
"svm or csv"
).
SetDefault
(
"csv"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"file_list"
,
"The list of files that need to read"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"slots"
,
"the slots that should be extract from file"
);
AddAttr
<
std
::
vector
<
int
>>
(
"dense_slot_index"
,
"the dense slots id that should be extract from file"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
int
>>
(
"sparse_slot_index"
,
"the sparse slots id that should be extract from file"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"sparse_slots"
,
"the sparse slots id that should be "
"extract from file, used when file "
"format is svm"
);
AddComment
(
R"DOC(
Create CTRReader to support read ctr data with cpp.
...
...
paddle/fluid/operators/reader/ctr_reader.cc
浏览文件 @
c5855506
...
...
@@ -73,6 +73,9 @@ static inline void parse_line(
}
}
// label slot1:fea_sign slot2:fea_sign slot1:fea_sign
static
inline
void
parse_svm_line
(
const
std
::
string
&
line
)
{}
class
Reader
{
public:
virtual
~
Reader
()
{}
...
...
@@ -95,11 +98,27 @@ class GzipReader : public Reader {
igzstream
gzstream_
;
};
class
MultiGzipReader
:
public
Reader
{
class
PlainFileReader
:
public
Reader
{
public:
explicit
PlainFileReader
(
const
std
::
string
&
file_name
)
:
stream_
(
file_name
.
c_str
())
{}
~
PlainFileReader
()
{}
bool
HasNext
()
override
{
return
stream_
.
peek
()
!=
EOF
;
}
void
NextLine
(
std
::
string
*
line
)
override
{
std
::
getline
(
stream_
,
*
line
);
}
private:
std
::
ifstream
stream_
;
};
template
<
typename
SingleFileReader
>
class
MultiFileReader
:
public
Reader
{
public:
explicit
Multi
Gzip
Reader
(
const
std
::
vector
<
std
::
string
>&
file_list
)
{
explicit
Multi
File
Reader
(
const
std
::
vector
<
std
::
string
>&
file_list
)
{
for
(
auto
&
file
:
file_list
)
{
readers_
.
emplace_back
(
std
::
make_shared
<
Gzip
Reader
>
(
file
));
readers_
.
emplace_back
(
std
::
make_shared
<
SingleFile
Reader
>
(
file
));
}
}
...
...
@@ -119,46 +138,35 @@ class MultiGzipReader : public Reader {
}
private:
std
::
vector
<
std
::
shared_ptr
<
Gzip
Reader
>>
readers_
;
std
::
vector
<
std
::
shared_ptr
<
SingleFile
Reader
>>
readers_
;
size_t
current_reader_index_
=
0
;
};
void
MonitorThread
(
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
VLOG
(
3
0
)
<<
"monitor thread in"
;
VLOG
(
3
)
<<
"monitor thread in"
;
bool
reader_thread_is_running
=
true
;
while
(
reader_thread_is_running
)
{
VLOG
(
3
0
)
<<
"reader_thread_is_running"
;
VLOG
(
3
)
<<
"reader_thread_is_running"
;
reader_thread_is_running
=
false
;
for
(
size_t
i
=
0
;
i
<
(
*
thread_status
).
size
();
++
i
)
{
if
((
*
thread_status
)[
i
]
==
Running
)
{
VLOG
(
3
0
)
<<
"reader is running!"
;
VLOG
(
3
)
<<
"reader is running!"
;
reader_thread_is_running
=
true
;
}
}
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
1000
));
}
VLOG
(
3
0
)
<<
"all reader thread is stopped, push empty data into
queue"
;
queue
->
Push
({}
);
VLOG
(
3
0
)
<<
"monitor thread exited"
;
VLOG
(
3
)
<<
"all reader thread is stopped, close the
queue"
;
queue
->
Close
(
);
VLOG
(
3
)
<<
"monitor thread exited"
;
}
void
ReadThread
(
const
std
::
vector
<
std
::
string
>&
file_list
,
const
std
::
vector
<
std
::
string
>&
slots
,
int
batch_size
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
void
ReadSvmData
(
const
DataDesc
&
data_desc
,
std
::
shared_ptr
<
Reader
>
reader
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
VLOG
(
30
)
<<
"["
<<
thread_id
<<
"]"
<<
" reader thread start! thread_id = "
<<
thread_id
;
for
(
auto
&
file
:
file_list
)
{
VLOG
(
30
)
<<
"["
<<
thread_id
<<
"]"
<<
" file "
<<
file
;
}
(
*
thread_status
)[
thread_id
]
=
Running
;
VLOG
(
30
)
<<
"set status to running"
;
std
::
unordered_map
<
std
::
string
,
size_t
>
slot_to_index
;
for
(
size_t
i
=
0
;
i
<
slots
.
size
();
++
i
)
{
slot_to_index
[
slots
[
i
]]
=
i
;
for
(
size_t
i
=
0
;
i
<
data_desc
.
sparse_slot_ids_
.
size
();
++
i
)
{
slot_to_index
[
data_desc
.
sparse_slot_ids_
[
i
]]
=
i
;
}
std
::
string
line
;
...
...
@@ -166,21 +174,17 @@ void ReadThread(const std::vector<std::string>& file_list,
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>>
batch_data
;
std
::
vector
<
int64_t
>
batch_label
;
MultiGzipReader
reader
(
file_list
);
VLOG
(
30
)
<<
"reader inited"
;
while
(
reader
.
HasNext
())
{
while
(
reader
->
HasNext
())
{
batch_data
.
clear
();
batch_data
.
reserve
(
batch_size
);
batch_data
.
reserve
(
data_desc
.
batch_size_
);
batch_label
.
clear
();
batch_label
.
reserve
(
batch_size
);
batch_label
.
reserve
(
data_desc
.
batch_size_
);
// read batch_size data
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
if
(
reader
.
HasNext
())
{
reader
.
NextLine
(
&
line
);
for
(
int
i
=
0
;
i
<
data_desc
.
batch_size_
;
++
i
)
{
if
(
reader
->
HasNext
())
{
reader
->
NextLine
(
&
line
);
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
slot_to_data
;
int64_t
label
;
parse_line
(
line
,
slot_to_index
,
&
label
,
&
slot_to_data
);
...
...
@@ -193,8 +197,8 @@ void ReadThread(const std::vector<std::string>& file_list,
std
::
vector
<
framework
::
LoDTensor
>
lod_datas
;
// first insert tensor for each slots
for
(
auto
&
slot
:
slots
)
{
// first insert tensor for each s
parse_s
lots
for
(
auto
&
slot
:
data_desc
.
sparse_slot_ids_
)
{
std
::
vector
<
size_t
>
lod_data
{
0
};
std
::
vector
<
int64_t
>
batch_feasign
;
...
...
@@ -226,11 +230,167 @@ void ReadThread(const std::vector<std::string>& file_list,
lod_datas
.
push_back
(
label_tensor
);
queue
->
Push
(
lod_datas
);
VLOG
(
40
)
<<
"push one data, queue_size="
<<
queue
->
Size
();
VLOG
(
4
)
<<
"push one data, queue_size="
<<
queue
->
Size
();
}
}
// label dense_fea,dense_fea sparse_fea,sparse_fea
static
inline
void
parse_csv_line
(
const
std
::
string
&
line
,
const
DataDesc
&
data_desc
,
int64_t
*
label
,
std
::
vector
<
std
::
vector
<
float
>>*
dense_datas
,
std
::
vector
<
std
::
vector
<
int64_t
>>*
sparse_datas
)
{
std
::
vector
<
std
::
string
>
ret
;
string_split
(
line
,
' '
,
&
ret
);
*
label
=
std
::
stol
(
ret
[
0
]);
dense_datas
->
resize
(
data_desc
.
dense_slot_index_
.
size
());
for
(
size_t
i
=
0
;
i
<
data_desc
.
dense_slot_index_
.
size
();
++
i
)
{
int
slot_idx
=
data_desc
.
dense_slot_index_
[
i
];
auto
&
slot_data
=
ret
[
slot_idx
];
std
::
vector
<
std
::
string
>
data_in_slot_str
;
string_split
(
slot_data
,
','
,
&
data_in_slot_str
);
std
::
vector
<
float
>
data_in_slot
;
for
(
auto
&
data_str
:
data_in_slot_str
)
{
(
*
dense_datas
)[
i
].
push_back
(
std
::
stof
(
data_str
));
}
}
sparse_datas
->
resize
(
data_desc
.
sparse_slot_index_
.
size
());
for
(
size_t
i
=
0
;
i
<
data_desc
.
sparse_slot_index_
.
size
();
++
i
)
{
int
slot_idx
=
data_desc
.
sparse_slot_index_
[
i
];
auto
&
slot_data
=
ret
[
slot_idx
];
std
::
vector
<
std
::
string
>
data_in_slot_str
;
string_split
(
slot_data
,
','
,
&
data_in_slot_str
);
std
::
vector
<
int64_t
>
data_in_slot
;
for
(
auto
&
data_str
:
data_in_slot_str
)
{
auto
id
=
std
::
stol
(
data_str
);
(
*
sparse_datas
)[
i
].
push_back
(
id
);
}
}
}
void
ReadCsvData
(
const
DataDesc
&
data_desc
,
std
::
shared_ptr
<
Reader
>
reader
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
std
::
string
line
;
while
(
reader
->
HasNext
())
{
std
::
vector
<
int64_t
>
batch_label
;
batch_label
.
reserve
(
data_desc
.
batch_size_
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
batch_dense_data
;
batch_dense_data
.
reserve
(
data_desc
.
batch_size_
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
batch_sparse_data
;
batch_sparse_data
.
reserve
(
data_desc
.
batch_size_
);
// read batch_size data
for
(
int
i
=
0
;
i
<
data_desc
.
batch_size_
;
++
i
)
{
if
(
reader
->
HasNext
())
{
reader
->
NextLine
(
&
line
);
int64_t
label
;
std
::
vector
<
std
::
vector
<
float
>>
dense_datas
;
std
::
vector
<
std
::
vector
<
int64_t
>>
sparse_datas
;
parse_csv_line
(
line
,
data_desc
,
&
label
,
&
dense_datas
,
&
sparse_datas
);
batch_label
.
push_back
(
label
);
if
(
!
batch_dense_data
.
empty
())
{
PADDLE_ENFORCE_EQ
(
batch_dense_data
[
0
].
size
(),
dense_datas
.
size
(),
"dense data should have the same shape"
);
}
batch_dense_data
.
push_back
(
dense_datas
);
batch_sparse_data
.
push_back
(
sparse_datas
);
}
else
{
break
;
}
}
// the order of output data is label, dense_datas, sparse_datas
std
::
vector
<
framework
::
LoDTensor
>
lod_datas
;
// insert label tensor
framework
::
LoDTensor
label_tensor
;
auto
*
label_tensor_data
=
label_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
batch_label
.
size
()),
1
}),
platform
::
CPUPlace
());
memcpy
(
label_tensor_data
,
batch_label
.
data
(),
batch_label
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
label_tensor
);
// insert tensor for each dense_slots
for
(
size_t
i
=
0
;
i
<
data_desc
.
dense_slot_index_
.
size
();
++
i
)
{
framework
::
LoDTensor
lod_tensor
;
size_t
width
=
batch_dense_data
[
0
][
i
].
size
();
auto
*
tensor_data
=
lod_tensor
.
mutable_data
<
float
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
batch_dense_data
.
size
()),
// batch_size
static_cast
<
int64_t
>
(
width
)}),
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
batch_dense_data
.
size
();
++
j
)
{
auto
&
dense_data_row
=
batch_dense_data
[
j
][
i
];
memcpy
(
tensor_data
+
j
*
width
,
dense_data_row
.
data
(),
width
*
sizeof
(
float
));
}
lod_datas
.
push_back
(
lod_tensor
);
}
// insert tensor for each sparse_slots
for
(
size_t
i
=
0
;
i
<
data_desc
.
sparse_slot_index_
.
size
();
++
i
)
{
std
::
vector
<
size_t
>
lod_data
{
0
};
std
::
vector
<
int64_t
>
batch_feasign
;
for
(
size_t
row_idx
=
0
;
row_idx
<
batch_sparse_data
.
size
();
++
row_idx
)
{
auto
&
sparse_ids
=
batch_sparse_data
[
row_idx
][
i
];
lod_data
.
push_back
(
lod_data
.
back
()
+
sparse_ids
.
size
());
batch_feasign
.
insert
(
batch_feasign
.
end
(),
sparse_ids
.
begin
(),
sparse_ids
.
end
());
}
framework
::
LoDTensor
lod_tensor
;
framework
::
LoD
lod
{
lod_data
};
lod_tensor
.
set_lod
(
lod
);
int64_t
*
tensor_data
=
lod_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
batch_feasign
.
size
()),
1
}),
platform
::
CPUPlace
());
memcpy
(
tensor_data
,
batch_feasign
.
data
(),
batch_feasign
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
lod_tensor
);
}
queue
->
Push
(
lod_datas
);
VLOG
(
4
)
<<
"push one data, queue_size="
<<
queue
->
Size
();
}
}
void
ReadThread
(
const
std
::
vector
<
std
::
string
>&
file_list
,
const
DataDesc
&
data_desc
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
VLOG
(
3
)
<<
"["
<<
thread_id
<<
"]"
<<
" reader thread start! thread_id = "
<<
thread_id
;
for
(
auto
&
file
:
file_list
)
{
VLOG
(
3
)
<<
"["
<<
thread_id
<<
"]"
<<
" file "
<<
file
;
}
(
*
thread_status
)[
thread_id
]
=
Running
;
VLOG
(
3
)
<<
"set status to running"
;
std
::
shared_ptr
<
Reader
>
reader
;
if
(
data_desc
.
file_type_
==
"gzip"
)
{
reader
.
reset
(
new
MultiFileReader
<
GzipReader
>
(
file_list
));
}
else
if
(
data_desc
.
file_type_
==
"plain"
)
{
reader
.
reset
(
new
MultiFileReader
<
PlainFileReader
>
(
file_list
));
}
else
{
PADDLE_THROW
(
"do not support file format %s"
,
data_desc
.
file_type_
);
}
VLOG
(
3
)
<<
"reader inited"
;
if
(
data_desc
.
file_format_
==
"svm"
)
{
ReadSvmData
(
data_desc
,
reader
,
queue
);
}
else
if
(
data_desc
.
file_format_
==
"csv"
)
{
ReadCsvData
(
data_desc
,
reader
,
queue
);
}
(
*
thread_status
)[
thread_id
]
=
Stopped
;
VLOG
(
3
0
)
<<
"set status to stopped, thread "
<<
thread_id
<<
" exited"
;
VLOG
(
3
)
<<
"set status to stopped, thread "
<<
thread_id
<<
" exited"
;
}
}
// namespace reader
...
...
paddle/fluid/operators/reader/ctr_reader.h
浏览文件 @
c5855506
...
...
@@ -36,9 +36,63 @@ namespace reader {
enum
ReaderThreadStatus
{
Running
,
Stopped
};
struct
DataDesc
{
DataDesc
(
int
batch_size
,
const
std
::
vector
<
std
::
string
>&
file_names
,
const
std
::
string
&
file_type
,
const
std
::
string
&
file_format
,
const
std
::
vector
<
int
>&
dense_slot_index
,
const
std
::
vector
<
int
>&
sparse_slot_index
,
const
std
::
vector
<
std
::
string
>&
sparse_slot_ids
)
:
batch_size_
(
batch_size
),
file_names_
(
file_names
),
file_type_
(
file_type
),
file_format_
(
file_format
),
dense_slot_index_
(
dense_slot_index
),
sparse_slot_index_
(
sparse_slot_index
),
sparse_slot_ids_
(
sparse_slot_ids
)
{}
const
int
batch_size_
;
const
std
::
vector
<
std
::
string
>
file_names_
;
const
std
::
string
file_type_
;
// gzip or plain
const
std
::
string
file_format_
;
// csv or svm
// used for csv data format
const
std
::
vector
<
int
>
dense_slot_index_
;
const
std
::
vector
<
int
>
sparse_slot_index_
;
// used for svm data format
const
std
::
vector
<
std
::
string
>
sparse_slot_ids_
;
};
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
DataDesc
&
data_desc
)
{
os
<<
"data_desc:
\n
"
;
os
<<
"
\t
batch_size -> "
<<
data_desc
.
batch_size_
<<
"
\n
"
;
os
<<
"
\t
file_type -> "
<<
data_desc
.
file_type_
<<
"
\n
"
;
os
<<
"
\t
file_format -> "
<<
data_desc
.
file_format_
<<
"
\n
"
;
os
<<
"
\t
file_names -> {"
;
for
(
auto
&
file_name
:
data_desc
.
file_names_
)
{
os
<<
file_name
<<
","
;
}
os
<<
"}
\n
"
;
os
<<
"
\t
dense_slot_index -> {"
;
for
(
auto
&
slot
:
data_desc
.
dense_slot_index_
)
{
os
<<
slot
<<
","
;
}
os
<<
"}
\n
"
;
os
<<
"
\t
sparse_slot_index_ -> {"
;
for
(
auto
&
slot
:
data_desc
.
sparse_slot_index_
)
{
os
<<
slot
<<
","
;
}
os
<<
"}
\n
"
;
os
<<
"
\t
sparse_slot_ids_ -> {"
;
for
(
auto
&
slot
:
data_desc
.
sparse_slot_ids_
)
{
os
<<
slot
<<
","
;
}
os
<<
"}
\n
"
;
return
os
;
}
void
ReadThread
(
const
std
::
vector
<
std
::
string
>&
file_list
,
const
std
::
vector
<
std
::
string
>&
slots
,
int
batch_size
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
const
DataDesc
&
data_desc
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
);
// monitor all running thread, if they are all stopped,
...
...
@@ -48,15 +102,15 @@ void MonitorThread(std::vector<ReaderThreadStatus>* thread_status,
class
CTRReader
:
public
framework
::
FileReader
{
public:
explicit
CTRReader
(
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
queue
,
int
batch_size
,
size_t
thread_num
,
const
std
::
vector
<
std
::
string
>&
slots
,
const
std
::
vector
<
std
::
string
>&
file_list
)
:
batch_size_
(
batch_size
),
slots_
(
slots
),
file_list_
(
file_list
)
{
CTRReader
(
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
queue
,
int
thread_num
,
const
DataDesc
&
data_desc
)
:
data_desc_
(
data_desc
)
{
PADDLE_ENFORCE_GT
(
thread_num
,
0
,
"thread num should be larger then 0!"
);
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"LoDTensorBlockingQueue must not be null"
);
PADDLE_ENFORCE_GT
(
file_list
.
size
(),
0
,
"file list should not be empty"
);
thread_num_
=
std
::
min
<
size_t
>
(
file_list_
.
size
(),
thread_num
);
PADDLE_ENFORCE_GT
(
data_desc_
.
file_names_
.
size
(),
0
,
"file list should not be empty"
);
thread_num_
=
std
::
min
<
size_t
>
(
data_desc_
.
file_names_
.
size
(),
thread_num
);
queue_
=
queue
;
SplitFiles
();
for
(
size_t
i
=
0
;
i
<
thread_num_
;
++
i
)
{
...
...
@@ -64,7 +118,7 @@ class CTRReader : public framework::FileReader {
}
}
~
CTRReader
()
{}
~
CTRReader
()
{
Shutdown
();
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
bool
success
;
...
...
@@ -81,7 +135,10 @@ class CTRReader : public framework::FileReader {
for
(
auto
&
read_thread
:
read_threads_
)
{
read_thread
->
join
();
}
if
(
monitor_thread_
)
{
monitor_thread_
->
join
();
}
read_threads_
.
clear
();
monitor_thread_
.
reset
(
nullptr
);
...
...
@@ -95,9 +152,9 @@ class CTRReader : public framework::FileReader {
queue_
->
ReOpen
();
VLOG
(
3
)
<<
"reopen success"
;
VLOG
(
3
)
<<
"thread_num "
<<
thread_num_
;
for
(
size_
t
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
for
(
in
t
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
read_threads_
.
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
ReadThread
,
file_groups_
[
thread_id
],
slots_
,
batch_size
_
,
&
ReadThread
,
file_groups_
[
thread_id
],
data_desc
_
,
static_cast
<
int
>
(
thread_id
),
&
read_thread_status_
,
queue_
)));
}
monitor_thread_
.
reset
(
new
std
::
thread
(
...
...
@@ -108,8 +165,8 @@ class CTRReader : public framework::FileReader {
private:
void
SplitFiles
()
{
file_groups_
.
resize
(
thread_num_
);
for
(
size_t
i
=
0
;
i
<
file_list
_
.
size
();
++
i
)
{
auto
&
file_name
=
file_list
_
[
i
];
for
(
size_t
i
=
0
;
i
<
data_desc_
.
file_names
_
.
size
();
++
i
)
{
auto
&
file_name
=
data_desc_
.
file_names
_
[
i
];
std
::
ifstream
f
(
file_name
.
c_str
());
PADDLE_ENFORCE
(
f
.
good
(),
"file %s not exist!"
,
file_name
);
file_groups_
[
i
%
thread_num_
].
push_back
(
file_name
);
...
...
@@ -118,9 +175,7 @@ class CTRReader : public framework::FileReader {
private:
size_t
thread_num_
;
const
int
batch_size_
;
const
std
::
vector
<
std
::
string
>
slots_
;
const
std
::
vector
<
std
::
string
>
file_list_
;
const
DataDesc
data_desc_
;
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue_
;
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
read_threads_
;
std
::
unique_ptr
<
std
::
thread
>
monitor_thread_
;
...
...
paddle/fluid/operators/reader/ctr_reader_test.cc
浏览文件 @
c5855506
...
...
@@ -36,6 +36,7 @@ using paddle::framework::LoD;
using
paddle
::
framework
::
DDim
;
using
paddle
::
platform
::
CPUPlace
;
using
paddle
::
framework
::
make_ddim
;
using
paddle
::
operators
::
reader
::
DataDesc
;
static
void
generatedata
(
const
std
::
vector
<
std
::
string
>&
data
,
const
std
::
string
&
file_name
)
{
...
...
@@ -126,30 +127,103 @@ TEST(CTR_READER, read_data) {
LoDTensorBlockingQueueHolder
queue_holder
;
int
capacity
=
64
;
queue_holder
.
InitOnce
(
capacity
,
{},
false
);
queue_holder
.
InitOnce
(
capacity
,
false
);
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
=
queue_holder
.
GetQueue
();
int
batch_size
=
3
;
int
thread_num
=
1
;
std
::
vector
<
std
::
string
>
slots
=
{
"6002"
,
"6003"
};
std
::
vector
<
std
::
string
>
s
parse_s
lots
=
{
"6002"
,
"6003"
};
std
::
vector
<
std
::
string
>
file_list
;
for
(
int
i
=
0
;
i
<
thread_num
;
++
i
)
{
file_list
.
push_back
(
gz_file_name
);
}
CTRReader
reader
(
queue
,
batch_size
,
thread_num
,
slots
,
file_list
);
DataDesc
data_desc
(
batch_size
,
file_list
,
"gzip"
,
"svm"
,
{},
{},
sparse_slots
);
CTRReader
reader
(
queue
,
thread_num
,
data_desc
);
reader
.
Start
();
size_t
batch_num
=
std
::
ceil
(
static_cast
<
float
>
(
ctr_data
.
size
())
/
batch_size
)
*
thread_num
;
check_all_data
(
ctr_data
,
slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
check_all_data
(
ctr_data
,
sparse_slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
reader
.
Shutdown
();
reader
.
Start
();
check_all_data
(
ctr_data
,
slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
check_all_data
(
ctr_data
,
sparse_slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
reader
.
Shutdown
();
}
static
void
GenereteCsvData
(
const
std
::
string
&
file_name
,
const
std
::
vector
<
std
::
string
>&
data
)
{
std
::
ofstream
out
(
file_name
.
c_str
());
PADDLE_ENFORCE
(
out
.
good
(),
"open file %s failed!"
,
file_name
);
for
(
auto
&
c
:
data
)
{
out
<<
c
;
}
out
.
close
();
PADDLE_ENFORCE
(
out
.
good
(),
"save file %s failed!"
,
file_name
);
}
static
void
CheckReadCsvOut
(
const
std
::
vector
<
LoDTensor
>&
out
)
{
ASSERT_EQ
(
out
.
size
(),
3
);
ASSERT_EQ
(
out
[
0
].
dims
()[
1
],
1
);
ASSERT_EQ
(
out
[
1
].
dims
()[
1
],
2
);
ASSERT_EQ
(
out
[
2
].
dims
()[
1
],
1
);
for
(
size_t
i
=
0
;
i
<
out
[
0
].
numel
();
++
i
)
{
int64_t
label
=
out
[
0
].
data
<
int64_t
>
()[
i
];
auto
&
dense_dim
=
out
[
1
].
dims
();
for
(
size_t
j
=
0
;
j
<
dense_dim
[
1
];
++
j
)
{
ASSERT_EQ
(
out
[
1
].
data
<
float
>
()[
i
*
dense_dim
[
1
]
+
j
],
static_cast
<
float
>
(
label
+
0.1
));
}
auto
&
sparse_lod
=
out
[
2
].
lod
();
for
(
size_t
j
=
sparse_lod
[
0
][
i
];
j
<
sparse_lod
[
0
][
i
+
1
];
++
j
)
{
ASSERT_EQ
(
out
[
2
].
data
<
int64_t
>
()[
j
],
label
);
}
}
}
TEST
(
CTR_READER
,
read_csv_data
)
{
std
::
string
file_name
=
"test_ctr_reader_data.csv"
;
const
std
::
vector
<
std
::
string
>
csv_data
=
{
"0 0.1,0.1 0,0,0,0
\n
"
,
"1 1.1,1.1 1,1,1,1
\n
"
,
"2 2.1,2.1 2,2,2,2
\n
"
,
"3 3.1,3.1 3,3,3,3
\n
"
,
};
GenereteCsvData
(
file_name
,
csv_data
);
LoDTensorBlockingQueueHolder
queue_holder
;
int
capacity
=
64
;
queue_holder
.
InitOnce
(
capacity
,
false
);
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
=
queue_holder
.
GetQueue
();
int
batch_size
=
3
;
int
thread_num
=
1
;
std
::
vector
<
std
::
string
>
file_list
;
for
(
int
i
=
0
;
i
<
thread_num
;
++
i
)
{
file_list
.
push_back
(
file_name
);
}
DataDesc
data_desc
(
batch_size
,
file_list
,
"plain"
,
"csv"
,
{
1
},
{
2
},
{});
CTRReader
reader
(
queue
,
thread_num
,
data_desc
);
for
(
size_t
i
=
0
;
i
<
2
;
++
i
)
{
reader
.
Start
();
std
::
vector
<
LoDTensor
>
out
;
while
(
true
)
{
reader
.
ReadNext
(
&
out
);
if
(
out
.
empty
())
{
break
;
}
CheckReadCsvOut
(
out
);
}
reader
.
Shutdown
();
}
}
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
浏览文件 @
c5855506
...
...
@@ -32,10 +32,8 @@ class LoDTensorBlockingQueue {
friend
class
LoDTensorBlockingQueueHolder
;
private:
LoDTensorBlockingQueue
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
bool
speed_test_mode
=
false
)
:
queue_
(
capacity
,
speed_test_mode
),
dims_
(
dims
)
{}
explicit
LoDTensorBlockingQueue
(
size_t
capacity
,
bool
speed_test_mode
=
false
)
:
queue_
(
capacity
,
speed_test_mode
)
{}
public:
bool
Push
(
const
std
::
vector
<
framework
::
LoDTensor
>&
lod_tensor_vec
)
{
...
...
@@ -65,17 +63,15 @@ class LoDTensorBlockingQueue {
private:
BlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>
queue_
;
std
::
vector
<
framework
::
DDim
>
dims_
;
};
class
LoDTensorBlockingQueueHolder
{
public:
void
InitOnce
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
bool
speed_test_mode
=
false
)
{
void
InitOnce
(
size_t
capacity
,
bool
speed_test_mode
=
false
)
{
PADDLE_ENFORCE
(
queue_
==
nullptr
,
"LoDTensorBlockingQueueHolder::InitOnce() can only be called once"
);
queue_
.
reset
(
new
LoDTensorBlockingQueue
(
capacity
,
dims
,
speed_test_mode
));
queue_
.
reset
(
new
LoDTensorBlockingQueue
(
capacity
,
speed_test_mode
));
}
inline
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
GetQueue
()
const
{
...
...
paddle/fluid/operators/reader/read_op.cc
浏览文件 @
c5855506
...
...
@@ -27,13 +27,13 @@ class ReadInferShape : public framework::InferShapeBase {
"The ReadOp must take a reader as input."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
"Out"
),
"The ReadOp should be assigned with output."
);
if
(
!
ctx
->
IsRuntime
()
&&
ctx
->
Attrs
().
Get
<
bool
>
(
"infer_out"
))
{
std
::
vector
<
framework
::
DDim
>
reader_dims
=
ctx
->
GetReaderDims
(
"Reader"
);
std
::
vector
<
std
::
string
>
out_names
=
ctx
->
Outputs
(
"Out"
);
PADDLE_ENFORCE_EQ
(
reader_dims
.
size
(),
out_names
.
size
(),
"The reader's dim number doesn't match the output number."
);
ctx
->
SetOutputsDim
(
"Out"
,
reader_dims
);
if
(
!
ctx
->
IsRuntime
())
{
auto
in_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"Reader"
)[
0
]);
auto
in_lod_levels
=
in_desc
->
GetLoDLevels
();
...
...
@@ -53,6 +53,8 @@ class ReadInferVarType : public framework::VarTypeInference {
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
bool
infer_out
=
boost
::
get
<
bool
>
(
op_desc
.
GetAttr
(
"infer_out"
));
if
(
infer_out
)
{
std
::
string
reader_name
=
op_desc
.
Input
(
"Reader"
)[
0
];
std
::
vector
<
std
::
string
>
out_names
=
op_desc
.
Output
(
"Out"
);
framework
::
VarDesc
*
reader
=
block
->
FindVarRecursive
(
reader_name
);
...
...
@@ -64,6 +66,7 @@ class ReadInferVarType : public framework::VarTypeInference {
out
.
SetDataType
(
dtypes
[
i
]);
}
}
}
};
class
ReadOp
:
public
framework
::
OperatorBase
{
...
...
@@ -73,6 +76,7 @@ class ReadOp : public framework::OperatorBase {
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
VLOG
(
3
)
<<
"read op in"
;
framework
::
ReaderHolder
*
reader
=
detail
::
Ref
(
scope
.
FindVar
(
Input
(
"Reader"
)),
"Cannot find reader variable %s"
,
Input
(
"Reader"
))
...
...
@@ -87,7 +91,9 @@ class ReadOp : public framework::OperatorBase {
reader
->
ReadNext
(
&
ins
);
if
(
ins
.
empty
())
{
VLOG
(
3
)
<<
"read empty data in"
;
if
(
Attr
<
bool
>
(
"throw_eof_exp"
))
{
VLOG
(
3
)
<<
"throw_eof_exp"
;
PADDLE_THROW_EOF
();
}
else
{
ins
.
resize
(
out_arg_names
.
size
());
...
...
@@ -96,6 +102,7 @@ class ReadOp : public framework::OperatorBase {
tensor
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
0
}),
dev_place
);
}
}
VLOG
(
3
)
<<
"read empty data out"
;
}
PADDLE_ENFORCE_EQ
(
ins
.
size
(),
out_arg_names
.
size
());
for
(
size_t
i
=
0
;
i
<
out_arg_names
.
size
();
++
i
)
{
...
...
@@ -120,6 +127,7 @@ class ReadOpMaker : public framework::OpProtoAndCheckerMaker {
" only when the data-balance is enabled in ParallelExecutor"
" and it is set by ParallelExecutor instance, not users."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"infer_out"
,
""
).
SetDefault
(
true
);
AddComment
(
R"DOC(
Read Operator
...
...
paddle/fluid/operators/reader/reader_op_registry.cc
浏览文件 @
c5855506
...
...
@@ -65,6 +65,10 @@ void FileReaderMakerBase::Make() {
"It means the reader will generate two data each time,"
"whose shapes are [2,3,4] and [5,6] respectively."
);
AddAttr
<
std
::
vector
<
int
>>
(
"lod_levels"
,
"The LoD levels of each data."
);
AddAttr
<
bool
>
(
"use_data_config"
,
"Use the config of all datas like shape_concat/ranks/lod_levels"
)
.
SetDefault
(
true
);
Apply
();
}
...
...
@@ -75,7 +79,10 @@ void FileReaderInferShape::operator()(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"The output file reader should not be null."
);
const
auto
shape_concat
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape_concat"
);
bool
use_data_config
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_data_config"
);
if
(
use_data_config
)
{
const
auto
shape_concat
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape_concat"
);
const
auto
ranks
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ranks"
);
std
::
vector
<
framework
::
DDim
>
shapes
=
RestoreShapes
(
shape_concat
,
ranks
);
ctx
->
SetReaderDims
(
"Out"
,
shapes
);
...
...
@@ -88,6 +95,7 @@ void FileReaderInferShape::operator()(framework::InferShapeContext* ctx) const {
framework
::
VarDesc
*
reader
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetOutputVarPtrs
(
"Out"
)[
0
]);
reader
->
SetLoDLevels
(
lod_levels
);
}
}
void
FileReaderInferVarType
::
operator
()(
const
framework
::
OpDesc
&
op_desc
,
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
c5855506
...
...
@@ -485,6 +485,7 @@ All parameter, weight, gradient are variables in Paddle.
py
::
return_value_policy
::
reference
);
py
::
class_
<
framework
::
ReaderHolder
>
(
m
,
"Reader"
,
""
)
.
def
(
"start"
,
&
framework
::
ReaderHolder
::
Start
)
.
def
(
"reset"
,
&
framework
::
ReaderHolder
::
ResetAll
);
using
LoDTensorBlockingQueue
=
...
...
@@ -505,17 +506,10 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"is_closed"
,
&
LoDTensorBlockingQueue
::
IsClosed
);
m
.
def
(
"init_lod_tensor_blocking_queue"
,
[](
Variable
&
var
,
size_t
capacity
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
shapes
)
->
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
{
std
::
vector
<
DDim
>
dims
(
shapes
.
size
());
std
::
transform
(
shapes
.
begin
(),
shapes
.
end
(),
dims
.
begin
(),
[](
const
std
::
vector
<
int64_t
>
&
shape
)
{
return
make_ddim
(
shape
);
});
[](
Variable
&
var
,
size_t
capacity
)
->
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
{
auto
*
holder
=
var
.
GetMutable
<
LoDTensorBlockingQueueHolder
>
();
holder
->
InitOnce
(
capacity
,
dims
,
FLAGS_reader_queue_speed_test_mode
);
holder
->
InitOnce
(
capacity
,
FLAGS_reader_queue_speed_test_mode
);
return
holder
->
GetQueue
();
},
py
::
return_value_policy
::
copy
);
...
...
python/paddle/fluid/contrib/__init__.py
浏览文件 @
c5855506
...
...
@@ -22,6 +22,8 @@ from . import op_frequence
from
.op_frequence
import
*
from
.
import
quantize
from
.quantize
import
*
from
.
import
reader
from
.reader
import
*
from
.
import
slim
from
.slim
import
*
from
.
import
utils
...
...
@@ -32,5 +34,6 @@ __all__ += decoder.__all__
__all__
+=
memory_usage_calc
.
__all__
__all__
+=
op_frequence
.
__all__
__all__
+=
quantize
.
__all__
__all__
+=
reader
.
__all__
__all__
+=
slim
.
__all__
__all__
+=
utils
.
__all__
python/paddle/fluid/contrib/reader/README.md
0 → 100644
浏览文件 @
c5855506
## CTR READER
An multi-thread cpp reader that has the same interface with py_reader. It
uses cpp multi-thread to read file and is much more faster then the Python read
thread in py_reader.
Currently, it support two types of file:
-
gzip
-
plain text file
and two types of data format:
-
cvs data format is :
*
label dense_fea,dense_fea sparse_fea,sparse_fea
-
the svm data format is :
*
label slot1:fea_sign slot2:fea_sign slot1:fea_sign
python/paddle/fluid/contrib/reader/__init__.py
0 → 100644
浏览文件 @
c5855506
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
.
import
ctr_reader
__all__
=
ctr_reader
.
__all__
python/paddle/fluid/contrib/reader/ctr_reader.py
浏览文件 @
c5855506
...
...
@@ -20,6 +20,8 @@ from paddle.fluid.framework import default_main_program, \
default_startup_program
,
Variable
from
paddle.fluid.unique_name
import
generate
as
unique_name
__all__
=
[
'ctr_reader'
]
def
monkey_patch_reader_methods
(
reader
):
def
__get_reader__
():
...
...
@@ -30,7 +32,11 @@ def monkey_patch_reader_methods(reader):
def
reset
():
return
__get_reader__
().
reset
()
def
start
():
return
__get_reader__
().
start
()
reader
.
reset
=
reset
reader
.
start
=
start
reader
.
stop_gradient
=
True
reader
.
persistable
=
True
return
reader
...
...
@@ -44,7 +50,12 @@ def _copy_reader_var_(block, var):
return
new_var
def
ctr_reader
(
feed_data
,
def
ctr_reader
(
feed_dict
,
file_type
,
# gzip or plain
file_format
,
# csv or svm
dense_slot_index
,
sparse_slot_index
,
capacity
,
thread_num
,
batch_size
,
...
...
@@ -67,12 +78,21 @@ def ctr_reader(feed_data,
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
Args:
feed_dict(list(variable)): a list of data variable.
file_type('gzip'|'plain'): the type of the data file
file_format('csv'|'svm'): csv data or svm data format.
cvs data format is :
label dense_fea,dense_fea sparse_fea,sparse_fea
the svm data format is :
label slot1:fea_sign slot2:fea_sign slot1:fea_sign
dense_slot_index(list(int)): the index of dense slots
sparse_slot_index(list(int)): the index of sparse slots
capacity(int): The buffer capacity maintained by :code:`py_reader`.
thread_num(
list|tuple): List of tuples which declaring data shapes
.
batch_size(
list|tuple): List of strs which declaring data type
.
file_list(list
|tuple): List of ints which declaring data lod_level
.
slots(
bool): Whether use double buffer or not
.
name(
base
string): The prefix Python queue name and Reader name. None will
thread_num(
int): the thread num to read files by cpp reader
.
batch_size(
int): batch size of data
.
file_list(list
(str)): List of file names that need to read
.
slots(
list(int64)): list of slot id
.
name(string): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
...
...
@@ -80,7 +100,15 @@ def ctr_reader(feed_data,
Examples:
1. The basic usage of :code:`py_reader` is as follows:
1. The basic usage of :code:`ctr_reader` is as follows:
.. code-block:: python
py_reader = fluid.contrib.ctr_reader.ctr_reader(
feed_dict=datas, file_type='plain', file_format='csv',
file_list=file_list, dense_slot_indexs=[1, 2, 3, 4], sparse_slot_indexs=[],
capacity=64, thread_num=20, batch_size=1000, slots=[], name='ctr_reader')
"""
if
name
is
None
:
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
...
...
@@ -90,7 +118,7 @@ def ctr_reader(feed_data,
reader_name
=
"_"
.
join
([
name
,
"reader"
])
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
,
shapes
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
)
startup_blk
=
default_startup_program
().
current_block
()
reader_var
=
startup_blk
.
create_var
(
name
=
reader_name
)
...
...
@@ -99,12 +127,22 @@ def ctr_reader(feed_data,
inputs
=
{
'blocking_queue'
:
[
queue_name
]},
outputs
=
{
'Out'
:
[
reader_var
]},
attrs
=
{
'use_data_config'
:
False
,
'thread_num'
:
thread_num
,
'batch_size'
:
batch_size
,
'file_list'
:
file_list
,
'slots'
:
slots
,
'file_type'
:
file_type
,
'file_format'
:
file_format
,
'dense_slot_index'
:
dense_slot_index
,
'sparse_slot_index'
:
sparse_slot_index
,
'sparse_slots'
:
slots
,
'ranks'
:
[],
'lod_levels'
:
[],
'shape_concat'
:
[]
})
dtypes
=
[
data
.
dtype
for
data
in
feed_dict
]
reader_var
.
desc
.
set_dtypes
(
dtypes
)
reader_var
.
persistable
=
True
main_prog_reader_var
=
_copy_reader_var_
(
...
...
@@ -118,6 +156,9 @@ def ctr_reader(feed_data,
main_blk
=
default_main_program
().
current_block
()
main_blk
.
append_op
(
type
=
'read'
,
inputs
=
{
'Reader'
:
[
reader
]},
outputs
=
{
'Out'
:
feed_data
})
type
=
'read'
,
inputs
=
{
'Reader'
:
[
reader
]},
attrs
=
{
'infer_out'
:
False
},
outputs
=
{
'Out'
:
feed_dict
})
return
reader
python/paddle/fluid/layers/io.py
浏览文件 @
c5855506
...
...
@@ -523,7 +523,7 @@ def _py_reader(capacity,
double_buffer_name
=
"_"
.
join
([
name
,
"double_buffer"
])
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
,
shapes
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
reader_name
)
...
...
python/setup.py.in
浏览文件 @
c5855506
...
...
@@ -109,6 +109,7 @@ packages=['paddle',
'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize',
'paddle.fluid.contrib.reader',
'paddle.fluid.contrib.slim',
'paddle.fluid.contrib.slim.core',
'paddle.fluid.contrib.slim.graph',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录