未验证 提交 c09b1d68 编写于 作者: A Allen Guo 提交者: GitHub

[IPU] add mixed-precission support for ipu (#41733) (#41906)

add mixed-precission support for ipu

cherry-pick from #41733
上级 fd9c7818
......@@ -32,7 +32,8 @@ std::set<std::string> ignored_ops = {
"elementwise_mul",
"scale", // adamax
"assign", // adamw
"squared_l2_norm" // gradient_clip_norm
"squared_l2_norm", // gradient_clip_norm
"cast", // mix-precision support
};
const bool startswith(const std::string& str, const std::string& pre) {
......
......@@ -191,7 +191,8 @@ def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
attrs={
"in_dtype": in_var.dtype,
"out_dtype": out_var.dtype,
"op_device": op_device
"op_device": op_device,
"op_role": op.attr("op_role"),
})
num_cast_ops += 1
_rename_arg(op, in_var.name, out_var.name)
......@@ -241,7 +242,8 @@ def _insert_cast_post_op(block, op, idx, src_dtype, dest_dtype, target_name,
attrs={
"in_dtype": target_var.dtype,
"out_dtype": cast_var.dtype,
"op_device": op.attr("op_device")
"op_device": op.attr("op_device"),
"op_role": op.attr("op_role"),
})
num_cast_ops += 1
op_var_rename_map[block.idx][target_var.name] = cast_var.name
......@@ -415,7 +417,9 @@ def cast_model_to_fp16(program, amp_lists=None, use_fp16_guard=True):
keep_fp32_ops.add(op)
continue # processed below
for in_name in op.input_names:
if _keep_fp32_input(op, in_name):
# for ipu, all inputs must be converted to fp16
if not core.is_compiled_with_ipu() and _keep_fp32_input(
op, in_name):
continue
for in_var_name in op.input(in_name):
in_var = None
......@@ -443,7 +447,9 @@ def cast_model_to_fp16(program, amp_lists=None, use_fp16_guard=True):
format(op.type, in_var_name, in_var.dtype))
for out_name in op.output_names:
if _keep_fp32_output(op, out_name):
# for ipu, all outputs must be converted to fp16
if not core.is_compiled_with_ipu() and _keep_fp32_output(
op, out_name):
continue
for out_var_name in op.output(out_name):
out_var = None
......
......@@ -16,7 +16,7 @@ import os
import random
import unittest
import numpy as np
from enum import Enum
from enum import IntEnum
import paddle
import paddle.static
......@@ -33,17 +33,24 @@ map_np_dtype_to_fluid_dtype = {
}
class ExecutionMode(Enum):
class ExecutionModeFull(IntEnum):
# Run fp32 model on cpu
CPU_FP32 = 1
# Run fp32 model on ipu
IPU_FP32 = 2
# enable_fp16 through ipu_strategy.enable_fp16
# Convert model to fp16 using popart transform
# All parameters will be converted to fp16
# TODO rename to IPU_FP16
IPU_POPART_FP16 = 3
# Mix-precision mode, using `paddle.static.amp.fp16_guard()` to control the
# precision of each operator
IPU_MIXED_PRECISION = 4
def __lt__(self, other):
return self.value < other.value
def __gt__(self, other):
return self.value > other.value
class ExecutionMode(IntEnum):
CPU_FP32 = ExecutionModeFull.CPU_FP32
IPU_FP32 = ExecutionModeFull.IPU_FP32
IPU_POPART_FP16 = ExecutionModeFull.IPU_POPART_FP16
def np_dtype_to_fluid_str(dtype: np.dtype) -> str:
......@@ -61,6 +68,12 @@ class IPUOpTest(unittest.TestCase):
np.random.seed(cls.SEED)
random.seed(cls.SEED)
# For ipu, most ops support fp16
cls.amp_list = paddle.static.amp.CustomOpLists(
custom_black_list=[], custom_white_list=[])
cls.amp_list.unsupported_list = {}
cls.amp_list.black_list = {}
# Enable paddle static graph mode
paddle.enable_static()
......@@ -114,3 +127,30 @@ class IPUOpTest(unittest.TestCase):
if check_shape:
self.assertTrue(ipu_popart_fp16.shape == cpu_fp32.shape)
ipu_mixed_precision = None
if ExecutionModeFull.IPU_MIXED_PRECISION in outputs.keys():
ipu_mixed_precision = outputs[
ExecutionModeFull.IPU_MIXED_PRECISION]
max_diff = np.abs(
ipu_mixed_precision.astype(np.float32) - cpu_fp32).max()
fp16_flag = np.allclose(
ipu_mixed_precision.astype(np.float32),
cpu_fp32,
rtol=self.rtol_fp16,
atol=self.atol_fp16)
self.assertTrue(fp16_flag, "max diff is %f" % (max_diff))
if check_shape:
self.assertTrue(ipu_mixed_precision.shape == cpu_fp32.shape)
if ExecutionMode.IPU_POPART_FP16 in outputs.keys(
) and ExecutionModeFull.IPU_MIXED_PRECISION in outputs.keys():
max_diff = np.abs(ipu_popart_fp16 - ipu_mixed_precision).max()
self.assertEqual(ipu_popart_fp16.all(),
ipu_mixed_precision.all(),
"max diff is %f" % (max_diff))
if check_shape:
self.assertTrue(
ipu_popart_fp16.shape == ipu_mixed_precision.shape)
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
import paddle.nn.functional as F
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionModeFull
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_data_feed()
self.set_feed_attr()
@property
def fp16_enabled(self):
return True
def set_atol(self):
self.atol = 1e-6
self.rtol = 1e-6
self.atol_fp16 = 1e-3
self.rtol_fp16 = 1e-3
def set_data_feed(self):
data = np.random.uniform(size=[1, 10, 27, 27])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
def dtype_check(self, program, to_fp16_var_names):
block = program.global_block()
assert len(to_fp16_var_names) > 0
for var_name in to_fp16_var_names:
assert (block.var(var_name).dtype, paddle.float16)
def _test_base(self, exec_mode):
generator = paddle.fluid.unique_name.UniqueNameGenerator()
scope = paddle.static.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = self.SEED
startup_prog.random_seed = self.SEED
with paddle.fluid.unique_name.guard(generator):
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
# using fp32
x = paddle.static.nn.conv2d(
input=x, num_filters=3, filter_size=3)
x = paddle.static.nn.batch_norm(x, act='relu')
x = F.max_pool2d(x, kernel_size=2, stride=2)
# using fp16
with paddle.static.amp.fp16_guard():
x = paddle.static.nn.conv2d(
input=x, num_filters=6, filter_size=3)
x = paddle.static.nn.batch_norm(x, act='relu')
x = F.max_pool2d(x, kernel_size=2, stride=2)
# using fp32
x = paddle.static.nn.fc(x, size=10)
loss = paddle.mean(x)
fetch_list = [loss.name]
if exec_mode == ExecutionModeFull.CPU_FP32:
place = paddle.CPUPlace()
else:
place = paddle.IPUPlace()
# cast model to fp16
if exec_mode == ExecutionModeFull.IPU_MIXED_PRECISION:
to_fp16_var_names = paddle.static.amp.cast_model_to_fp16(
main_prog, self.amp_list)
self.dtype_check(main_prog, to_fp16_var_names)
exe = paddle.static.Executor(place)
exe.run(startup_prog)
# cast parameters to fp16
if exec_mode == ExecutionModeFull.IPU_MIXED_PRECISION:
paddle.static.amp.cast_parameters_to_fp16(
paddle.CPUPlace(),
main_prog,
to_fp16_var_names=to_fp16_var_names)
if exec_mode != ExecutionModeFull.CPU_FP32:
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(is_training=False)
if exec_mode == ExecutionModeFull.IPU_POPART_FP16:
ipu_strategy.set_precision_config(enable_fp16=True)
program = paddle.static.IpuCompiledProgram(
main_prog, ipu_strategy=ipu_strategy).compile(
self.feed_list, fetch_list)
else:
program = main_prog
feed = self.feed_fp32
result = exe.run(program, feed=feed, fetch_list=fetch_list)
return result[0]
def test(self):
output_dict = {}
for mode in ExecutionModeFull:
if mode == ExecutionModeFull.IPU_POPART_FP16:
continue
if mode > ExecutionModeFull.IPU_FP32 and not self.fp16_enabled:
break
output_dict[mode] = self._test_base(mode).flatten()
self.check(output_dict)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
import paddle.nn.functional as F
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest, ExecutionModeFull
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
@property
def fp16_enabled(self):
return True
def set_atol(self):
self.atol = 2e-6
self.rtol = 1e-5
self.atol_fp16 = 1e-2
self.rtol_fp16 = 1e-3
def set_training(self):
self.is_training = True
self.epoch = 20
def set_data_feed(self):
data = np.random.uniform(size=[1, 3, 28, 28])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
def dtype_check(self, program, to_fp16_var_names):
block = program.global_block()
assert len(to_fp16_var_names) > 0
for var_name in to_fp16_var_names:
assert (block.var(var_name).dtype, paddle.float16)
def _test_base(self, exec_mode):
generator = paddle.fluid.unique_name.UniqueNameGenerator()
scope = paddle.static.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = self.SEED
startup_prog.random_seed = self.SEED
with paddle.fluid.unique_name.guard(generator):
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
# using fp32
x = paddle.static.nn.conv2d(
input=x, num_filters=3, filter_size=3)
x = paddle.static.nn.batch_norm(x, act='relu')
x = F.max_pool2d(x, kernel_size=2, stride=2)
# using fp16
with paddle.static.amp.fp16_guard():
x = paddle.static.nn.conv2d(
input=x, num_filters=6, filter_size=3)
x = paddle.static.nn.batch_norm(x, act='relu')
x = F.max_pool2d(x, kernel_size=2, stride=2)
# using fp32
x = paddle.static.nn.fc(x, size=10)
loss = paddle.mean(x)
# optimizer
optimizer = paddle.optimizer.Adam(learning_rate=1e-2)
optimizer.minimize(loss, startup_prog)
fetch_list = [loss.name]
# cast model to fp16
if exec_mode == ExecutionModeFull.IPU_MIXED_PRECISION:
to_fp16_var_names = paddle.static.amp.cast_model_to_fp16(
main_prog, self.amp_list)
self.dtype_check(main_prog, to_fp16_var_names)
if exec_mode == ExecutionModeFull.CPU_FP32:
place = paddle.CPUPlace()
else:
place = paddle.IPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
# cast parameters to fp16
if exec_mode == ExecutionModeFull.IPU_MIXED_PRECISION:
paddle.static.amp.cast_parameters_to_fp16(
paddle.CPUPlace(),
main_prog,
to_fp16_var_names=to_fp16_var_names)
if exec_mode != ExecutionModeFull.CPU_FP32:
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(is_training=self.is_training)
if exec_mode == ExecutionModeFull.IPU_POPART_FP16:
ipu_strategy.set_precision_config(enable_fp16=True)
program = paddle.static.IpuCompiledProgram(
main_prog, ipu_strategy=ipu_strategy).compile(
self.feed_list, fetch_list)
else:
program = main_prog
feed = self.feed_fp32
result = []
for i in range(self.epoch):
out = exe.run(program, feed=feed, fetch_list=fetch_list)
result.append(out)
return np.array(result)
def test_base(self):
output_dict = {}
for mode in ExecutionModeFull:
if mode == ExecutionModeFull.IPU_POPART_FP16:
continue
if mode > ExecutionModeFull.IPU_FP32 and not self.fp16_enabled:
break
output_dict[mode] = self._test_base(mode).flatten()
self.check(output_dict)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_attrs()
self.set_data_feed()
def set_training(self):
self.is_training = False
self.epoch = 10
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 1
self.ipu_bs = 1
def set_data_feed(self):
np_image = np.random.rand(1, 3, 10, 10).astype(np.float32)
self.feed_cpu = {"image": np_image}
self.feed_ipu = {"image": np_image}
def _test_base(self, run_ipu=True):
scope = paddle.static.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = self.SEED
startup_prog.random_seed = self.SEED
bs = self.ipu_bs if run_ipu else self.cpu_bs
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
image = paddle.static.data(
name='image', shape=[bs, 3, 10, 10], dtype='float32')
with paddle.static.ipu_shard_guard(index=0):
conv1 = paddle.static.nn.conv2d(
image, num_filters=3, filter_size=3, bias_attr=False)
with paddle.static.ipu_shard_guard(index=1):
conv2 = paddle.static.nn.conv2d(
conv1, num_filters=3, filter_size=3, bias_attr=False)
# should consider influence of bs
loss = paddle.mean(conv2)
if self.is_training:
if self.optimizer == 'sgd':
opt = paddle.optimizer.SGD(learning_rate=1e-2)
elif self.optimizer == 'adam':
opt = paddle.optimizer.Adam(learning_rate=1e-2)
elif self.optimizer == 'lamb':
opt = paddle.optimizer.Lamb(learning_rate=1e-2)
else:
raise Exception('optimizer must be sgd, adam or lamb')
opt.minimize(loss)
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
executor = paddle.static.Executor(place)
executor.run(startup_prog)
if run_ipu:
feed_list = [image.name]
fetch_list = [loss.name]
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(
num_ipus=2 * self.ipu_options['replicated_graph_count'],
is_training=self.is_training,
enable_manual_shard=True)
ipu_strategy.set_options(self.ipu_options)
program = paddle.static.IpuCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
feed = self.feed_ipu if run_ipu else self.feed_cpu
epoch = self.epoch
if not run_ipu:
epoch *= self.ipu_options['replicated_graph_count']
epoch *= self.ipu_options['batches_per_step']
epoch *= self.ipu_options['accumulation_factor']
epoch = epoch / (self.cpu_bs / self.ipu_bs)
result = []
for i in range(int(epoch)):
loss_res = executor.run(program, feed=feed, fetch_list=[loss])
result.append(loss_res)
return np.array(result).flatten()
def test(self):
cpu_outputs = self._test_base(False)
ipu_outputs = self._test_base(True)
self.assertTrue(np.allclose(cpu_outputs, ipu_outputs, atol=self.atol))
class TestReplicaInference(TestBase):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": True,
"replicated_graph_count": 2,
}
self.cpu_bs = 1
self.ipu_bs = 1
def set_data_feed(self):
np_image = np.random.rand(1, 3, 10, 10).astype(np.float32)
self.feed_cpu = {"image": np_image}
self.feed_ipu = {
"image":
np.tile(np_image,
[self.ipu_options['replicated_graph_count'], 1, 1, 1])
}
class TestPipelineInference(TestBase):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 2,
"enable_pipelining": True,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 1
self.ipu_bs = 1
def set_data_feed(self):
np_image = np.random.rand(1, 3, 10, 10).astype(np.float32)
self.feed_cpu = {"image": np_image}
self.feed_ipu = {
"image": np.tile(np_image,
[self.ipu_options['batches_per_step'], 1, 1, 1])
}
class TestTrainBase(TestBase):
def set_training(self):
self.is_training = True
self.epoch = 10
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 1
self.ipu_bs = 1
self.optimizer = 'sgd'
class TestReplicaTrain(TestTrainBase):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": True,
"replicated_graph_count": 2,
}
self.cpu_bs = 2
self.ipu_bs = 1
self.optimizer = 'sgd'
def set_data_feed(self):
np_image = np.random.rand(1, 3, 10, 10).astype(np.float32)
self.feed_cpu = {"image": np.tile(np_image, [self.cpu_bs, 1, 1, 1])}
self.feed_ipu = {
"image":
np.tile(np_image,
[self.ipu_options['replicated_graph_count'], 1, 1, 1])
}
def test(self):
cpu_outputs = self._test_base(False)
ipu_outputs = self._test_base(True)[::2]
self.assertTrue(np.allclose(cpu_outputs, ipu_outputs, atol=self.atol))
class TestPipelineTrain(TestTrainBase):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 3,
"enable_pipelining": True,
"enable_gradient_accumulation": True,
"accumulation_factor": 3,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 3
self.ipu_bs = 1
self.optimizer = 'sgd'
def set_data_feed(self):
np_image = np.random.rand(1, 3, 10, 10).astype(np.float32)
self.feed_cpu = {"image": np.tile(np_image, [self.cpu_bs, 1, 1, 1])}
bps_acc = self.ipu_options['batches_per_step'] * self.ipu_options[
'accumulation_factor']
self.feed_ipu = {"image": np.tile(np_image, [bps_acc, 1, 1, 1])}
def test(self):
cpu_outputs = self._test_base(False)
ipu_outputs = self._test_base(True)[::3]
self.assertTrue(np.allclose(cpu_outputs, ipu_outputs, atol=self.atol))
class TestAdamTrain(TestTrainBase):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 1
self.ipu_bs = 1
self.optimizer = 'adam'
class TestAdamReplicaTrain(TestReplicaTrain):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": True,
"replicated_graph_count": 2,
}
self.cpu_bs = 2
self.ipu_bs = 1
self.optimizer = 'adam'
class TestAdamPipelineTrain(TestPipelineTrain):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 3,
"enable_pipelining": True,
"enable_gradient_accumulation": True,
"accumulation_factor": 3,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 3
self.ipu_bs = 1
self.optimizer = 'adam'
class TestAdamRecomputationTrain(TestPipelineTrain):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 3,
"enable_pipelining": True,
"enable_gradient_accumulation": True,
"accumulation_factor": 3,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
"auto_recomputation": 3,
}
self.cpu_bs = 3
self.ipu_bs = 1
self.optimizer = 'adam'
class TestLambTrain(TestAdamTrain):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 1
self.ipu_bs = 1
self.optimizer = 'lamb'
class TestLambReplicaTrain(TestAdamReplicaTrain):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 1,
"enable_pipelining": False,
"enable_gradient_accumulation": False,
"accumulation_factor": 1,
"enable_replicated_graphs": True,
"replicated_graph_count": 2,
}
self.cpu_bs = 2
self.ipu_bs = 1
self.optimizer = 'lamb'
class TestLambPipelineTrain(TestAdamPipelineTrain):
def set_attrs(self):
self.ipu_options = {
"batches_per_step": 3,
"enable_pipelining": True,
"enable_gradient_accumulation": True,
"accumulation_factor": 3,
"enable_replicated_graphs": False,
"replicated_graph_count": 1,
}
self.cpu_bs = 3
self.ipu_bs = 1
self.optimizer = 'lamb'
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
@unittest.skipIf(IPUOpTest.use_ipumodel(), "skip for ipumodel")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_data_feed()
self.set_feed_attr()
self.set_attrs()
def set_atol(self):
self.atol = 1e-6
def set_data_feed(self):
self.feed = {
"image": np.random.uniform(size=[1, 3, 10, 10]).astype('float32'),
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [x.dtype for x in self.feed.values()]
def set_attrs(self):
self.attrs = {
"weight_decay": 4.0,
"loss_scaling": 1.0,
}
def _test_optimizer(self, run_ipu=True):
def exclude_fn(param):
return param.name.endswith('.w_0')
scope = paddle.static.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = self.SEED
startup_prog.random_seed = self.SEED
np.random.seed(self.SEED)
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
image = paddle.static.data(
name='image', shape=[1, 3, 10, 10], dtype='float32')
bias = paddle.fluid.layers.create_parameter(
shape=[1, 3, 10, 10], is_bias=True, dtype='float32')
add1 = image + bias
conv1 = paddle.static.nn.conv2d(
add1, num_filters=3, filter_size=3, bias_attr=False)
loss = paddle.mean(conv1)
opt = paddle.optimizer.Lamb(
learning_rate=1e-1,
lamb_weight_decay=self.attrs['weight_decay'],
exclude_from_weight_decay_fn=exclude_fn)
opt.minimize(loss)
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
paddle.static.save(main_prog, "weight_decay")
if run_ipu:
feed_list = [image.name]
fetch_list = [loss.name]
ipu_strategy = paddle.static.IpuStrategy()
ipu_strategy.set_graph_config(is_training=True)
ipu_strategy.set_options({
'loss_scaling': self.attrs["loss_scaling"]
})
program = paddle.static.IpuCompiledProgram(
main_prog, ipu_strategy=ipu_strategy).compile(feed_list,
fetch_list)
else:
program = main_prog
result = []
for epoch in range(100):
loss_res = exe.run(program, feed=self.feed, fetch_list=[loss])
result.append(loss_res)
return np.array(result)
def test(self):
# cpu and ipu dimenstion mismatch, cpu:(100, 1, 1), ipu:(100, 1)
ipu_loss = self._test_optimizer(True).flatten()
cpu_loss = self._test_optimizer(False).flatten()
self.assertTrue(np.allclose(ipu_loss, cpu_loss, atol=self.atol))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册