diff --git a/.gitignore b/.gitignore
index 9622ab78e0e0556ec2b4cc974fee93ff680d54d2..4f21fefda9f64a0392881971a715b97c234030e3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -22,6 +22,7 @@ cmake-build-*
# generated while compiling
python/paddle/v2/framework/core.so
+paddle/pybind/pybind.h
CMakeFiles
cmake_install.cmake
paddle/.timestamp
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 08237cd850ae20c515a39c8783a18deaac431626..5739c2a26039426ab544f762e9401445f01e7de7 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -67,6 +67,9 @@ endif()
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
+ elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
+ # TODO: support glog for Android api 16 ~ 19 in the future
+ message(WARNING "Using the unofficial git repository instead")
endif()
set(WITH_GPU OFF CACHE STRING
diff --git a/Dockerfile.android b/Dockerfile.android
index 452aa1574550627c2cce6375e12e154a9763254d..9d13a414f67be04e17b7d83403228d92bce0eda9 100644
--- a/Dockerfile.android
+++ b/Dockerfile.android
@@ -6,13 +6,14 @@ RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ub
# ENV variables
ARG ANDROID_ABI
+ARG ANDROID_API
ENV ANDROID_ABI=${ANDROID_ABI:-"armeabi-v7a"}
+ENV ANDROID_API=${ANDROID_API:-21}
ENV HOME=/root \
ANDROID_NDK_HOME=/opt/android-ndk-linux \
- ANDROID_ARM_STANDALONE_TOOLCHAIN=/opt/arm-toolchain \
- ANDROID_ARM64_STANDALONE_TOOLCHAIN=/opt/arm64-toolchain
+ ANDROID_TOOLCHAINS_DIR=/opt/toolchains
RUN apt-get update && \
apt-get install -y \
@@ -42,14 +43,12 @@ RUN pip install --upgrade pip && \
pip install pre-commit
# Android NDK
-RUN mkdir /opt/android-ndk-tmp && \
+RUN mkdir -p ${ANDROID_TOOLCHAINS_DIR} && \
+ mkdir -p /opt/android-ndk-tmp && \
cd /opt/android-ndk-tmp && \
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \
unzip -q android-ndk-r14b-linux-x86_64.zip && \
mv android-ndk-r14b ${ANDROID_NDK_HOME} && \
- ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-23 --install-dir=${ANDROID_ARM_STANDALONE_TOOLCHAIN} && \
- ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm64 --platform=android-23 --install-dir=${ANDROID_ARM64_STANDALONE_TOOLCHAIN} && \
- rm -rf /opt/android-ndk-tmp && \
- rm -rf ${ANDROID_NDK_HOME}
+ rm -rf /opt/android-ndk-tmp
CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"]
diff --git a/cmake/cpplint.cmake b/cmake/cpplint.cmake
index 8d5d533126c9b7fa84c725d614cf3486126d0284..4823dc3e91390002aefac70f7931b4197db05789 100644
--- a/cmake/cpplint.cmake
+++ b/cmake/cpplint.cmake
@@ -26,9 +26,9 @@ set(IGNORE_PATTERN
.*ImportanceSampler.*
.*cblas\\.h.*
.*\\.pb\\.txt
- .*LtrDataProvider.*
.*MultiDataProvider.*
- .*pb.*)
+ .*pb.*
+ .*pybind.h)
# add_style_check_target
#
diff --git a/cmake/external/gflags.cmake b/cmake/external/gflags.cmake
index 16e5bef4cdb8d6513de51838e3c3c8398dbad60d..01a2f4d5fa357ca882162247cc52299a3d1d3030 100644
--- a/cmake/external/gflags.cmake
+++ b/cmake/external/gflags.cmake
@@ -18,9 +18,9 @@ SET(GFLAGS_SOURCES_DIR ${THIRD_PARTY_PATH}/gflags)
SET(GFLAGS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/gflags)
SET(GFLAGS_INCLUDE_DIR "${GFLAGS_INSTALL_DIR}/include" CACHE PATH "gflags include directory." FORCE)
IF(WIN32)
- set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
+ set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ELSE(WIN32)
- set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
+ set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR})
@@ -56,3 +56,12 @@ SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags)
LIST(APPEND external_project_dependencies gflags)
+
+IF(WITH_C_API)
+ INSTALL(DIRECTORY ${GFLAGS_INCLUDE_DIR} DESTINATION third_party/gflags)
+ IF(ANDROID)
+ INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib)
+ ENDIF()
+ENDIF()
diff --git a/cmake/external/glog.cmake b/cmake/external/glog.cmake
index 8a594a825abdca6a0f989b94fa42f97d6df5e10a..b450a3016667dcb4ab229fe7ec8aaae8609d8171 100644
--- a/cmake/external/glog.cmake
+++ b/cmake/external/glog.cmake
@@ -19,9 +19,9 @@ SET(GLOG_INSTALL_DIR ${THIRD_PARTY_PATH}/install/glog)
SET(GLOG_INCLUDE_DIR "${GLOG_INSTALL_DIR}/include" CACHE PATH "glog include directory." FORCE)
IF(WIN32)
- SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
+ SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
ELSE(WIN32)
- SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
+ SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR})
@@ -56,3 +56,12 @@ ADD_DEPENDENCIES(glog extern_glog gflags)
LINK_LIBRARIES(glog gflags)
LIST(APPEND external_project_dependencies glog)
+
+IF(WITH_C_API)
+ INSTALL(DIRECTORY ${GLOG_INCLUDE_DIR} DESTINATION third_party/glog)
+ IF(ANDROID)
+ INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib)
+ ENDIF()
+ENDIF()
diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake
index f9e05af59fed7a8ad049390eda2c94d8577db1e7..4fc8d43fc10891603b79c01a1c769cae21c52655 100644
--- a/cmake/external/openblas.cmake
+++ b/cmake/external/openblas.cmake
@@ -73,6 +73,26 @@ IF(NOT ${CBLAS_FOUND})
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
)
+
+ IF(WITH_C_API)
+ INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
+ # Because libopenblas.a is a symbolic link of another library, thus need to
+ # install the whole directory.
+ IF(ANDROID)
+ SET(TMP_INSTALL_DIR third_party/openblas/lib/${ANDROID_ABI})
+ ELSE()
+ SET(TMP_INSTALL_DIR third_party/openblas/lib)
+ ENDIF()
+ INSTALL(CODE "execute_process(
+ COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib
+ destination ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}
+ )"
+ )
+ INSTALL(CODE "MESSAGE(STATUS \"Installing: \"
+ \"${CBLAS_INSTALL_DIR}/lib -> ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}\"
+ )"
+ )
+ ENDIF()
ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
diff --git a/cmake/external/protobuf.cmake b/cmake/external/protobuf.cmake
index e629d61585c2d2ff916187ee28d4fd089a5bd857..a887be2e2ae5e21562fc15c775bb24cc1553480e 100644
--- a/cmake/external/protobuf.cmake
+++ b/cmake/external/protobuf.cmake
@@ -223,6 +223,15 @@ IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_PROTOC_LIBRARY ${extern_protobuf_PROTOC_LIBRARY}
CACHE FILEPATH "protoc library." FORCE)
+ IF(WITH_C_API)
+ INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf)
+ IF(ANDROID)
+ INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib)
+ ENDIF()
+ ENDIF()
+
IF(CMAKE_CROSSCOMPILING)
PROMPT_PROTOBUF_LIB(protobuf_host extern_protobuf)
ELSE()
diff --git a/cmake/external/zlib.cmake b/cmake/external/zlib.cmake
index 45ca5542b7dc30216b45487782f849b93c5f8fca..5aecab90ca3cecdfdba0eac178a6ba07dfcb8745 100644
--- a/cmake/external/zlib.cmake
+++ b/cmake/external/zlib.cmake
@@ -49,3 +49,12 @@ ExternalProject_Add(
)
LIST(APPEND external_project_dependencies zlib)
+
+IF(WITH_C_API)
+ INSTALL(DIRECTORY ${ZLIB_INCLUDE_DIR} DESTINATION third_party/zlib)
+ IF(ANDROID)
+ INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib/${ANDROID_ABI})
+ ELSE()
+ INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib)
+ ENDIF()
+ENDIF()
diff --git a/doc/design/if_else_op.md b/doc/design/if_else_op.md
index 7370c2a24fa644a64e738f202bac9b9209642e08..954a19c0733358c235eae3cffe134c23dac94c95 100644
--- a/doc/design/if_else_op.md
+++ b/doc/design/if_else_op.md
@@ -1,22 +1,4 @@
-IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has M (M<=N) instances, each corresponds to a true element in `cond`.
-
-```python
-import paddle as pd
-
-x = var()
-y = var()
-cond = var()
-
-b = pd.create_ifop(inputs=[x], output_num=1)
-with b.true_block():
- x = b.inputs(0)
- z = operator.add(x, y)
- b.set_output(0, operator.softmax(z))
-
-out = b(cond)
-```
-
-If we want the output still has N instances, we can use IfElseOp with a default value, whose minibatch size must be N:
+IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has N instances. If cond[i] == True, input instance input[i] will go through true_block() and generate output[i]; otherwise it will produce output from false_bloack().
```python
import paddle as pd
@@ -39,7 +21,7 @@ with b.false_block():
out = b(cond)
```
-If only true_block is set in an IfElseOp, we can have a default value for false as:
+If only true_block is set in an IfElseOp, a special case is that we can have a default value for false as:
```python
import paddle as pd
diff --git a/doc/design/ops/images/2_level_rnn.dot b/doc/design/ops/images/2_level_rnn.dot
new file mode 100644
index 0000000000000000000000000000000000000000..a498e882a3d85a33d44dbad7474fa2a340e33976
--- /dev/null
+++ b/doc/design/ops/images/2_level_rnn.dot
@@ -0,0 +1,56 @@
+digraph G {
+
+ rnn [label="1-th level RNN" shape=box]
+
+ subgraph cluster0 {
+ label = "time step 0"
+
+ sent0 [label="sentence"]
+ sent1 [label="sentence"]
+
+ rnn1 [label="2-th level RNN" shape=box]
+
+ sent0 -> rnn1
+ sent1 -> rnn1
+ }
+
+ subgraph cluster1 {
+ label = "time step 1"
+
+ sent2 [label="sentence"]
+ sent3 [label="sentence"]
+
+ rnn2 [label="2-th level RNN" shape=box]
+
+ sent2 -> rnn2
+ sent3 -> rnn2
+ }
+
+ subgraph cluster2 {
+ label = "time step 2"
+
+ sent4 [label="sentence"]
+ sent5 [label="sentence"]
+
+ rnn3 [label="2-th level RNN" shape=box]
+
+ sent4 -> rnn3
+ sent5 -> rnn3
+ }
+
+
+ para0 [label="paragraph info 0"]
+ para1 [label="paragraph info 1"]
+ para2 [label="paragraph info 2"]
+
+ rnn1 -> para0
+ rnn2 -> para1
+ rnn3 -> para2
+
+ para0 -> rnn
+ para1 -> rnn
+ para2 -> rnn
+
+ chapter [label="chapter info"]
+ rnn -> chapter
+}
diff --git a/doc/design/ops/images/2_level_rnn.png b/doc/design/ops/images/2_level_rnn.png
new file mode 100644
index 0000000000000000000000000000000000000000..0537a75beb175c0c284717421f7aa908da2a5038
Binary files /dev/null and b/doc/design/ops/images/2_level_rnn.png differ
diff --git a/doc/design/ops/images/rnn.dot b/doc/design/ops/images/rnn.dot
new file mode 100644
index 0000000000000000000000000000000000000000..c1141cd9c981bb3cbf50d8bf7a6ed210280d79a5
--- /dev/null
+++ b/doc/design/ops/images/rnn.dot
@@ -0,0 +1,87 @@
+digraph G {
+ label = "simple RNN implementation"
+
+ ranksep=2;
+
+ //graph [nodesep=1, ranksep=1];
+
+ node[nodesep=1]
+
+ subgraph cluster0 {
+ label = "global scope"
+ rankdir = TB
+ W
+ boot_memory
+ input
+ output
+ }
+
+ subgraph cluster1 {
+ label = "step-scope 0"
+ rankdir = TB
+ memory0[label="memory"]
+ prememory0[label="pre-memory"]
+ step_input0[label="step input"]
+ step_output0[label="step output"]
+ }
+
+ subgraph cluster2 {
+ label = "step-scope 1"
+ rankdir = TB
+ memory1[label="memory"]
+ prememory1[label="pre-memory"]
+ step_input1[label="step input"]
+ step_output1[label="step output"]
+ }
+
+ subgraph cluster3 {
+ label = "step-scope 2"
+ rankdir = TB
+ memory2[label="memory"]
+ prememory2[label="pre-memory"]
+ step_input2[label="step input"]
+ step_output2[label="step output"]
+ }
+
+ stepnet [shape=box]
+ stepnet0 [shape=box, style=dashed]
+ stepnet1 [shape=box, style=dashed]
+ stepnet2 [shape=box, style=dashed]
+
+
+ edge[color=blue]
+ boot_memory -> prememory0 [label="init" color="blue"]
+ memory0 -> prememory1 [label="copy/reference" color="blue"]
+ memory1 -> prememory2 [label="copy/reference" color="blue"]
+
+ edge[color=black]
+ W -> stepnet0[constraint=false, style=dashed]
+ W -> stepnet1[constraint=false, style=dashed]
+ W -> stepnet2[constraint=false, style=dashed]
+
+ memory0 -> stepnet0[style=dashed]
+ prememory0 -> stepnet0 -> step_output0[style=dashed]
+
+ memory1 -> stepnet1[style=dashed]
+ prememory1 -> stepnet1 -> step_output1[style=dashed]
+
+ memory2 -> stepnet2[style=dashed]
+ prememory2 -> stepnet2 -> step_output2[style=dashed]
+
+ input -> step_input0
+ input -> step_input1
+ input -> step_input2
+
+ step_input0 -> stepnet0 [style=dashed]
+ step_input1 -> stepnet1[style=dashed]
+ step_input2 -> stepnet2[style=dashed]
+
+ step_output0 -> output
+ step_output1 -> output
+ step_output2 -> output
+
+ stepnet0 -> stepnet[style=dashed]
+ stepnet1 -> stepnet[style=dashed]
+ stepnet2 -> stepnet[style=dashed]
+
+}
diff --git a/doc/design/ops/images/rnn.jpg b/doc/design/ops/images/rnn.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9867e404cf959df0dce6ded5222b466c788fb840
Binary files /dev/null and b/doc/design/ops/images/rnn.jpg differ
diff --git a/doc/design/ops/images/rnn.png b/doc/design/ops/images/rnn.png
new file mode 100644
index 0000000000000000000000000000000000000000..e139e373fe8396782044cfd936fdde624f8c66fe
Binary files /dev/null and b/doc/design/ops/images/rnn.png differ
diff --git a/doc/design/ops/images/rnn_2level_data.dot b/doc/design/ops/images/rnn_2level_data.dot
new file mode 100644
index 0000000000000000000000000000000000000000..1d85ae2617a915ad0ad8288d848b607cc37ad297
--- /dev/null
+++ b/doc/design/ops/images/rnn_2level_data.dot
@@ -0,0 +1,75 @@
+digraph G {
+ chapter [label="chapter"]
+
+ subgraph cluster0 {
+ label = "paragraph 0"
+
+ top_rnn0[label="top rnn step 0" shape=box]
+
+ p0 [label="paragraph 0"]
+ p1 [label="paragraph 1"]
+ }
+
+ subgraph cluster1{
+ label = "paragraph 1"
+
+ top_rnn1[label="top rnn step 1" shape=box]
+
+ p2 [label="paragraph 0"]
+ p3 [label="paragraph 1"]
+ }
+
+ subgraph cluster_p0 {
+ label = "sentence 0"
+
+ low_rnn0 [label="low rnn step 0" shape=box]
+ s00 [label="sentence 0"]
+ s01 [label="sentence 1"]
+
+ low_rnn0 -> s00
+ low_rnn0 -> s01
+ }
+
+ subgraph cluster_p1 {
+ label = "sentence 1"
+ low_rnn1 [label="low rnn step 1" shape=box]
+ s10 [label="sentence 0"]
+ s11 [label="sentence 1"]
+ low_rnn1 -> s10
+ low_rnn1 -> s11
+ }
+
+ subgraph cluster_p2 {
+ label = "sentence 1"
+ low_rnn2 [label="low rnn step 0" shape=box]
+ s20 [label="sentence 0"]
+ s21 [label="sentence 1"]
+ low_rnn2 -> s20
+ low_rnn2 -> s21
+ }
+
+ subgraph cluster_p3 {
+ label = "sentence 1"
+ low_rnn3 [label="low rnn step 1" shape=box]
+ s30 [label="sentence 0"]
+ s31 [label="sentence 1"]
+ low_rnn3 -> s30
+ low_rnn3 -> s31
+ }
+
+
+ chapter -> top_rnn0
+ chapter -> top_rnn1
+
+ top_rnn0 -> p0
+ top_rnn0 -> p1
+ top_rnn1 -> p2
+ top_rnn1 -> p3
+
+
+ p0 -> low_rnn0
+ p1 -> low_rnn1
+ p2 -> low_rnn2
+ p3 -> low_rnn3
+
+}
diff --git a/doc/design/ops/images/rnn_2level_data.png b/doc/design/ops/images/rnn_2level_data.png
new file mode 100644
index 0000000000000000000000000000000000000000..4be81b2430717a6a506342a09fc26899568574c6
Binary files /dev/null and b/doc/design/ops/images/rnn_2level_data.png differ
diff --git a/doc/design/ops/rnn.md b/doc/design/ops/rnn.md
new file mode 100644
index 0000000000000000000000000000000000000000..a78eea7d45e9e9553d153170aa31da55ec6e8289
--- /dev/null
+++ b/doc/design/ops/rnn.md
@@ -0,0 +1,153 @@
+# RNNOp design
+
+This document is about an RNN operator which requires that instances in a mini-batch have the same length. We will have a more flexible RNN operator.
+
+## RNN Algorithm Implementation
+
+
+
+
+
+The above diagram shows an RNN unrolled into a full network.
+
+There are several important concepts:
+
+- *step-net*: the sub-graph to run at each step,
+- *memory*, $h_t$, the state of the current step,
+- *ex-memory*, $h_{t-1}$, the state of the previous step,
+- *initial memory value*, the ex-memory of the first step.
+
+### Step-scope
+
+There could be local variables defined in step-nets. PaddlePaddle runtime realizes these variables in *step-scopes* -- scopes created for each step.
+
+
+
+Figure 2 the RNN's data flow
+
+
+Please be aware that all steps run the same step-net. Each step
+
+1. creates the step-scope,
+2. realizes local variables, including step-outputs, in the step-scope, and
+3. runs the step-net, which could use these variables.
+
+The RNN operator will compose its output from step outputs in step scopes.
+
+### Memory and Ex-memory
+
+Let's give more details about memory and ex-memory via a simply example:
+
+$$
+h_t = U h_{t-1} + W x_t
+$$,
+
+where $h_t$ and $h_{t-1}$ are the memory and ex-memory of step $t$'s respectively.
+
+In the implementation, we can make an ex-memory variable either "refers to" the memory variable of the previous step,
+or copy the value of the previous memory value to the current ex-memory variable.
+
+### Usage in Python
+
+For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md).
+
+We can define an RNN's step-net using Block:
+
+```python
+import paddle as pd
+
+X = some_op() # x is some operator's output, and is a LoDTensor
+a = some_op()
+
+# declare parameters
+W = pd.Variable(shape=[20, 30])
+U = pd.Variable(shape=[20, 30])
+
+rnn = pd.create_rnn_op(output_num=1)
+with rnn.stepnet():
+ x = rnn.add_input(X)
+ # declare a memory (rnn's step)
+ h = rnn.add_memory(init=a)
+ # h.pre_state() means previous memory of rnn
+ new_state = pd.add_two( pd.matmul(W, x) + pd.matmul(U, h.pre_state()))
+ # update current memory
+ h.update(new_state)
+ # indicate that h variables in all step scopes should be merged
+ rnn.add_outputs(h)
+
+out = rnn()
+```
+
+Python API functions in above example:
+
+- `rnn.add_input` indicates the parameter is a variable that will be segmented into step-inputs.
+- `rnn.add_memory` creates a variable used as the memory.
+- `rnn.add_outputs` mark the variables that will be concatenated across steps into the RNN output.
+
+### Nested RNN and LoDTensor
+
+An RNN whose step-net includes other RNN operators is known as an *nested RNN*.
+
+For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences.
+
+The following figure illustrates the feeding of text into the lower level, one sentence each step, and the feeding of step outputs to the top level. The final top level output is about the whole text.
+
+
+
+
+
+```python
+import paddle as pd
+
+W = pd.Variable(shape=[20, 30])
+U = pd.Variable(shape=[20, 30])
+
+W0 = pd.Variable(shape=[20, 30])
+U0 = pd.Variable(shape=[20, 30])
+
+# a is output of some op
+a = some_op()
+
+# chapter_data is a set of 128-dim word vectors
+# the first level of LoD is sentence
+# the second level of LoD is chapter
+chapter_data = pd.Variable(shape=[None, 128], type=pd.lod_tensor, level=2)
+
+def lower_level_rnn(paragraph):
+ '''
+ x: the input
+ '''
+ rnn = pd.create_rnn_op(output_num=1)
+ with rnn.stepnet():
+ sentence = rnn.add_input(paragraph, level=0)
+ h = rnn.add_memory(shape=[20, 30])
+ h.update(
+ pd.matmul(W, sentence) + pd.matmul(U, h.pre_state()))
+ # get the last state as sentence's info
+ rnn.add_outputs(h)
+ return rnn
+
+top_level_rnn = pd.create_rnn_op(output_num=1)
+with top_level_rnn.stepnet():
+ paragraph_data = rnn.add_input(chapter_data, level=1)
+ low_rnn = lower_level_rnn(paragraph_data)
+ paragraph_out = low_rnn()
+
+ h = rnn.add_memory(init=a)
+ h.update(
+ pd.matmul(W0, paragraph_data) + pd.matmul(U0, h.pre_state()))
+ top_level_rnn.add_outputs(h)
+
+# just output the last step
+chapter_out = top_level_rnn(output_all_steps=False)
+```
+
+in above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is a LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences.
+
+By default, the `RNNOp` will concatenate the outputs from all the time steps,
+if the `output_all_steps` set to False, it will only output the final time step.
+
+
+
+
+
diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md
index 58665e9f2b6299ec3959ed6858ab01d459f64dd8..c6570b89aedfaac1aef9b00e889b0b3ed21d8d65 100644
--- a/doc/howto/dev/new_op_cn.md
+++ b/doc/howto/dev/new_op_cn.md
@@ -34,7 +34,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU
注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,GPU实现在`.cu`文件中
-实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。
+实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。
@@ -224,45 +224,15 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
### 5. 编译
-- 简单**无特殊依赖**的OP无需修改CMakeList.txt文件。[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt) 会自动将 `paddle/operators` 目录下新增的 `*_op.cc` 文件加入编译。
-- 较为复杂、**有额外依赖** 的operator仍需要修改[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)。如,`mul_op` 依赖 `math_function`,需要在`CMakeLists.txt`中添加如下内容:
+运行下面命令可以进行编译:
- ```
- op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) +
- ```
-
-- 运行下面命令可以进行编译:
-
- ```
- make mul_op
- ```
+```
+make mul_op
+```
## 绑定Python
-- 绑定Python
-
- 在 [`paddle/pybind/pybind.cc
-`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc) 使用`USE_OP`告知编译器需要链接的Op,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。
-
- ```
- USE_OP(mul);
- ```
- 如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`:
-
- ```
- USE_CPU_ONLY_OP(gather);
- ```
-
- 如果OP不带Kernel,则使用`USE_NO_KENREL_OP`:
-
- ```
- USE_NO_KENREL_OP(recurrent);
- ```
-
-
- - 生成库
-
- 无需修改 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件,`paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。
+系统会对新增的op自动绑定Python,并链接到生成的lib库中。
## 实现单元测试
@@ -354,11 +324,7 @@ class TestMulGradOp(GradientChecker):
### 编译和执行单元测试
-单元测试编写完成之后,在[`python/paddle/v2/framework/tests/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)中添加以下内容,将单元测试加入工程:
-
-```
-py_test(test_mul_op SRCS test_mul_op.py)
-```
+`python/paddle/v2/framework/tests` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。
请注意,**不同于Op的编译测试,运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake paddle_dir -DWITH_TESTING=ON`。编译成功后,执行下面的命令来运行单元测试:
@@ -371,3 +337,10 @@ make test ARGS="-R test_mul_op -V"
```bash
ctest -R test_mul_op
```
+
+## 注意事项
+
+- 为每个Op创建单独的`*_op.h`(如有)、`*_op.cc`和`*_op.cu`(如有)。不允许一个文件中包含多个Op,这将会导致编译出错。
+- 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OP(B, ...)`等,这将会导致单元测试出错。
+- 如果Op没有实现GPU Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。
+- 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。
diff --git a/paddle/capi/CMakeLists.txt b/paddle/capi/CMakeLists.txt
index dde99ab3400be4e61bfe119fc272270518acf070..3af111eb5738c3f2f399ff4e5c06c8d2ecd8973e 100644
--- a/paddle/capi/CMakeLists.txt
+++ b/paddle/capi/CMakeLists.txt
@@ -64,9 +64,29 @@ link_paddle_exe(paddle_capi_shared)
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
if(ANDROID)
+ execute_process(
+ COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1
+ OUTPUT_VARIABLE GIT_COMMITS_LIST
+ RESULT_VARIABLE GIT_COMMITS_LIST_RESULT
+ ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
+ if(${GIT_COMMITS_LIST_RESULT})
+ set(GIT_COMMITS_LIST "No commits.")
+ endif()
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}
DESTINATION lib/${ANDROID_ABI})
install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI})
+ install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt
+ \"Compiler:\n\"
+ \"\\t${CMAKE_C_COMPILER}\\n\"
+ \"\\t${CMAKE_CXX_COMPILER}\\n\"
+ \"Compiler Flags:\\n\"
+ \"\\t${CMAKE_F_FLAGS}\\n\"
+ \"\\t${CMAKE_CXX_FLAGS}\\n\"
+ \"Android API: ${CMAKE_SYSTEM_VERSION}\\n\"
+ \"Lastest commit:\\n\"
+ \"\\t${GIT_COMMITS_LIST}\\n\"
+ )"
+ )
else(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib)
install(TARGETS paddle_capi_shared DESTINATION lib)
diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md
index c762811dfc190b255e0a3389885a081ce8315caf..0a6d762bc8be5201ac196b4bc6107c06d07a31d7 100644
--- a/paddle/framework/backward.md
+++ b/paddle/framework/backward.md
@@ -2,11 +2,22 @@
## Motivation
-In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the gradient operators/expressions together with the chain rule. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
+In Neural Network, many model is solved by the the backpropagation algorithm(known as BP) at present. Technically it caculates the gradient of the loss function, then distributed back through the networks. Follows the chain rule, so we need a module chains the gradient operators/expressions together with to construct the backward pass. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
-## Backward Operator Registry
+## Implementation
-A backward network is built up with several backward operators. Backward operators take forward operators' inputs outputs, and output gradients and then calculate its input gradients.
+In this design doc, we exported only one API for generating the backward pass.
+
+```c++
+std::unique_ptr Backward(const OperatorBase& forwardOp,
+ const std::unordered_set& no_grad_vars);
+```
+
+The implementation behind it can be divided into two parts, **Backward Operator Creating** and **Backward Operator Building**.
+
+### Backward Operator Registry
+
+A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs, and output gradients and then calculate its input gradients.
| | forward operator | backward operator
| ---------------------- | ---------------- |------------------------- |
@@ -25,7 +36,7 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
`mul_grad` is the type of backward operator, and `MulOpGrad` is its class name.
-## Backward Opeartor Creating
+### Backward Opeartor Creating
Given a certain forward operator, we can get its corresponding backward operator by calling:
@@ -43,40 +54,47 @@ The function `BuildGradOp` will sequentially execute following processes:
4. Building backward operator with `inputs`, `outputs` and forward operator's attributes.
-## Backward Network Building
-
-A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and put them together.
+### Backward Network Building
-In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network.
-
-given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`, `InputGradients`.
+A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and append them together one by one. There is some corner case need to process specially.
1. Op
- when the input forward network is an Op, return its gradient Operator Immediately.
+ When the input forward network is an Op, return its gradient Operator Immediately. If all of its outputs are in no gradient set, then return a special `NOP`.
2. NetOp
- when the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
+ In our design, the network itself is also a kind of operator(**NetOp**). So the operators contained by a big network may be some small network. When the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
+
+3. RnnOp
+
+ RnnOp is a nested stepnet operator. Backward module need to recusively call `Backward` for every stepnet.
+
+4. Sharing Variables
+
+ **sharing variables**. As illustrated in the pictures, two operator's share the same variable name of W@GRAD, which will overwrite their sharing input variable.
+
+
+
- **shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwrite their shared input variable.
+ pic 1. Sharing variables in operators.
-
-
+
- 1. Shared variable in operators.
+ Sharing variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator to replace the overwrite links.
-
+
+
- Share variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator replace the overwrite links.
+ pic 2. Replace sharing variable's gradient with `Add` operator.
-
-
+
- 2. Replace shared variable's gradient with `Add` operator.
+ Because our framework finds variables accord to their names, we need to rename the output links. We add a suffix of number to represent its position in clockwise.
-
+5. Part of Gradient is Zero.
+ In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implement, we insert a special `fillZeroLike` operator.
- Then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.
+Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.
diff --git a/paddle/framework/images/duplicate_op2.graffle b/paddle/framework/images/duplicate_op2.graffle
index ede3bca30ae17d5af52505fd94dc2f79b23b57e0..5cec3bc64dbd44dc99e348485969f29bd128ceb1 100644
Binary files a/paddle/framework/images/duplicate_op2.graffle and b/paddle/framework/images/duplicate_op2.graffle differ
diff --git a/paddle/framework/images/duplicate_op2.png b/paddle/framework/images/duplicate_op2.png
index 4e872dc2caf3b0cbd0d5176f11a14801b538dc86..21cdd5cabf1b5203e1435a75b57770d2f702fa92 100644
Binary files a/paddle/framework/images/duplicate_op2.png and b/paddle/framework/images/duplicate_op2.png differ
diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h
index 568f4e89819c8345d8908634f6fa56f09483a763..fac5cd20aa7f9db0792f8102bb442192ab1ad63f 100644
--- a/paddle/framework/lod_tensor.h
+++ b/paddle/framework/lod_tensor.h
@@ -51,18 +51,15 @@ bool operator==(const LoD& a, const LoD& b);
* LoDTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/
-class LoDTensor {
+class LoDTensor : public Tensor {
public:
LoDTensor() {}
- LoDTensor(const LoD& lod, Tensor* t) : lod_(lod), tensor_(t) {}
- void set_lod(const LoD& lod) { lod_ = lod; }
-
- void set_tensor(Tensor* tensor) { tensor_ = tensor; }
+ explicit LoDTensor(const LoD& lod) : lod_(lod) {}
- Tensor& tensor() { return *tensor_; }
+ void set_lod(const LoD& lod) { lod_ = lod; }
- LoD lod() { return lod_; }
+ LoD lod() const { return lod_; }
/*
* Get a element from LoD.
@@ -104,7 +101,6 @@ class LoDTensor {
private:
LoD lod_;
- Tensor* tensor_; // not owned
};
} // namespace framework
} // namespace paddle
diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc
index 1da8553134f377f7a4fbe8008d12fe8d4a0e47f4..7915326b27a22e9280e3f09d9bbfc2a58f46aff7 100644
--- a/paddle/framework/lod_tensor_test.cc
+++ b/paddle/framework/lod_tensor_test.cc
@@ -36,69 +36,64 @@ class LoDTensorTester : public ::testing::Test {
ASSERT_EQ(lod.size(), 3UL);
- tensor.Resize({20 /*batch size*/, 128 /*dim*/});
+ lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/});
// malloc memory
- tensor.mutable_data(place);
+ lod_tensor_.mutable_data(place);
- lod_tensor.set_lod(lod);
- lod_tensor.set_tensor(&tensor);
+ lod_tensor_.set_lod(lod);
}
protected:
platform::CPUPlace place;
- Tensor tensor;
- LoDTensor lod_tensor;
+ LoDTensor lod_tensor_;
};
-TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor.NumLevels(), 3UL); }
+TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); }
TEST_F(LoDTensorTester, NumElements) {
- ASSERT_EQ(lod_tensor.NumElements(0), 2UL);
- ASSERT_EQ(lod_tensor.NumElements(1), 4UL);
- ASSERT_EQ(lod_tensor.NumElements(2), 8UL);
+ ASSERT_EQ(lod_tensor_.NumElements(0), 2UL);
+ ASSERT_EQ(lod_tensor_.NumElements(1), 4UL);
+ ASSERT_EQ(lod_tensor_.NumElements(2), 8UL);
}
TEST_F(LoDTensorTester, SliceLevels) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
- LoDTensor new_lod_tensor = lod_tensor;
+ LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
- ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level));
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
}
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
- LoDTensor new_lod_tensor = lod_tensor;
+ LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
- ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level));
- ASSERT_EQ(new_lod_tensor.NumElements(1), lod_tensor.NumElements(level + 1));
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
+ ASSERT_EQ(new_lod_tensor.NumElements(1),
+ lod_tensor_.NumElements(level + 1));
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
}
}
TEST_F(LoDTensorTester, SliceInLevel) {
size_t level = 0;
- LoDTensor new_lod_tensor = lod_tensor;
+ LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL);
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
level = 1;
- new_lod_tensor = lod_tensor;
+ new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
- ASSERT_EQ(new_lod_tensor.tensor().data(),
- lod_tensor.tensor().data());
+ ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data());
}
} // namespace framework
diff --git a/paddle/framework/lod_tensor_test.cu b/paddle/framework/lod_tensor_test.cu
index 1079a36a2e7b24f6f8a5bcbb296355567305a765..97e69cdb2e5e1e64031c899f5e04020665485ba8 100644
--- a/paddle/framework/lod_tensor_test.cu
+++ b/paddle/framework/lod_tensor_test.cu
@@ -26,18 +26,16 @@ __global__ void test(size_t* a, int size) {
}
TEST(LoDTensor, LoDInGPU) {
- paddle::framework::Tensor tensor;
paddle::framework::LoDTensor lod_tensor;
paddle::platform::GPUPlace place(0);
paddle::framework::LoD src_lod;
src_lod.push_back(std::vector{0, 2, 4, 6, 8, 10, 12, 14});
- tensor.Resize({14, 16});
- tensor.mutable_data(place);
+ lod_tensor.Resize({14, 16});
+ lod_tensor.mutable_data(place);
lod_tensor.set_lod(src_lod);
- lod_tensor.set_tensor(&tensor);
CHECK_EQ(lod_tensor.lod_element(0, 2), 4);
CHECK_EQ(lod_tensor.lod_element(0, 4), 8);
diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc
index e1e122091f7759b1a68f1f982bc2a35e8241f9f0..c57537be4bf67a8db6a49669ab8d2ed1b1324bdc 100644
--- a/paddle/framework/operator.cc
+++ b/paddle/framework/operator.cc
@@ -186,6 +186,48 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
+template <>
+const Tensor* InferShapeContext::Input(const std::string& name) const {
+ auto* var = InputVar(name);
+ return var == nullptr ? nullptr : GetTensorFromVar(var);
+}
+
+template <>
+const std::vector InferShapeContext::MultiInput(
+ const std::string& name) const {
+ auto names = op().Inputs(name);
+ std::vector res;
+ res.reserve(names.size());
+ std::transform(names.begin(), names.end(), std::back_inserter(res),
+ [&](const std::string& sub_name) {
+ auto var = scope_.FindVar(sub_name);
+ return var == nullptr ? nullptr : GetTensorFromVar(var);
+ });
+ return res;
+}
+
+template <>
+Tensor* ExecutionContext::Output(const std::string& name) const {
+ auto* var = OutputVar(name);
+ return var == nullptr ? nullptr : const_cast(GetTensorFromVar(var));
+}
+
+template <>
+std::vector ExecutionContext::MultiOutput(
+ const std::string& name) const {
+ auto names = op().Outputs(name);
+ std::vector res;
+ res.reserve(names.size());
+ std::transform(names.begin(), names.end(), std::back_inserter(res),
+ [&](const std::string& sub_name) {
+ auto var = scope().FindVar(sub_name);
+ return var == nullptr
+ ? nullptr
+ : const_cast(GetTensorFromVar(var));
+ });
+ return res;
+}
+
void OpProtoAndCheckerMaker::Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h
index 4600b06009bcef7d0774d25b816aac4733f30795..adae7bfc3d7d31b1ed0373f01db4ef80343a08f7 100644
--- a/paddle/framework/operator.h
+++ b/paddle/framework/operator.h
@@ -22,6 +22,7 @@ limitations under the License. */
#include "op_info.h"
#include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
+#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
@@ -326,11 +327,27 @@ class InferShapeContext {
return res;
}
+ const Tensor* GetTensorFromVar(const Variable* var) const {
+ if (var->IsType()) {
+ return &var->Get();
+ }
+ PADDLE_ENFORCE(var->IsType(),
+ "The Input(%s) must be LoDTensor or Tensor.");
+ return &var->Get();
+ }
+
private:
const OperatorBase& op_;
const Scope& scope_;
};
+template <>
+const Tensor* InferShapeContext::Input(const std::string& name) const;
+
+template <>
+const std::vector InferShapeContext::MultiInput(
+ const std::string& name) const;
+
template
struct EigenDeviceConverter;
@@ -363,9 +380,37 @@ class ExecutionContext : public InferShapeContext {
return device_context_;
}
+ // redefine Output function,
+ // use Variable::Get instead of Variable::GetMutable
+ template
+ T* Output(const std::string& name) const {
+ auto var = OutputVar(name);
+ return var == nullptr ? nullptr : const_cast(&var->Get());
+ }
+
+ // redefine MultiOutput function.
+ // use Variable::Get instead of Variable::GetMutable
+ template
+ std::vector MultiOutput(const std::string& name) const {
+ auto names = op().Outputs(name);
+ std::vector res;
+ res.reserve(names.size());
+ std::transform(
+ names.begin(), names.end(), std::back_inserter(res),
+ [&](const std::string& sub_name) { return Output(sub_name); });
+ return res;
+ }
+
const platform::DeviceContext* device_context_;
};
+template <>
+Tensor* ExecutionContext::Output(const std::string& name) const;
+
+template <>
+std::vector ExecutionContext::MultiOutput(
+ const std::string& name) const;
+
class OpKernel {
public:
/**
diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h
index ce938b21437195fed8c1adad4329fd139f3f96ab..4b5a2ae523f2f7fde5445f0534cd99969ad9d59e 100644
--- a/paddle/framework/tensor.h
+++ b/paddle/framework/tensor.h
@@ -81,6 +81,9 @@ class Tensor {
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
+ /*! Return the numel of the memory block. */
+ inline int64_t numel() const;
+
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
@@ -162,6 +165,12 @@ class Tensor {
/*! points to dimensions of memory block. */
DDim dims_;
+ /**
+ * A cache of the number of elements in a tensor.
+ * Would be 0 for an uninitialized tensor.
+ */
+ int64_t numel_;
+
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h
index 637f04ae0037bd402d855b8bcde8087bfe8328d1..ed166935f76be9d25062b5e69536c7b7ac19045d 100644
--- a/paddle/framework/tensor_impl.h
+++ b/paddle/framework/tensor_impl.h
@@ -22,9 +22,9 @@ namespace framework {
template
inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL(
- holder_, "Tenosr holds no memory. Call Tensor::mutable_data first.");
+ holder_, "Tensor holds no memory. Call Tensor::mutable_data first.");
PADDLE_ENFORCE_GE(
- holder_->size(), product(dims_) * sizeof(T) + offset_,
+ holder_->size(), numel() * sizeof(T) + offset_,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory.\n"
"or maybe the required data-type mismatches the data already stored.");
@@ -54,11 +54,11 @@ inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
template
inline T* Tensor::mutable_data(platform::Place place) {
static_assert(std::is_pod::value, "T must be POD");
- PADDLE_ENFORCE_GT(product(dims_), 0,
+ PADDLE_ENFORCE_GT(numel(), 0,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first.");
/* some versions of boost::variant don't have operator!= */
- int64_t size = product(dims_) * sizeof(T);
+ int64_t size = numel() * sizeof(T);
if (holder_ == nullptr || !(holder_->place() == place) ||
holder_->size() < size + offset_) {
if (platform::is_cpu_place(place)) {
@@ -97,7 +97,7 @@ inline void Tensor::CopyFrom(const Tensor& src,
auto dst_ptr = static_cast(mutable_data(dst_place));
- auto size = product(src.dims_) * sizeof(T);
+ auto size = src.numel() * sizeof(T);
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
memory::Copy(boost::get(dst_place), dst_ptr,
@@ -131,7 +131,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index.");
PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1.");
- size_t base = product(dims_) / dims_[0];
+ size_t base = numel() / dims_[0];
Tensor dst;
dst.holder_ = holder_;
DDim dst_dims = dims_;
@@ -143,11 +143,14 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
inline Tensor& Tensor::Resize(const DDim& dims) {
dims_ = dims;
+ numel_ = product(dims_);
return *this;
}
inline const DDim& Tensor::dims() const { return dims_; }
+inline int64_t Tensor::numel() const { return numel_; }
+
template
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
Tensor res;
diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc
index 55302ea47120f420e952b26830c8ea4cbcce6435..e2ec738de35c90c6a06c9a46b062d4cce55f5eda 100644
--- a/paddle/framework/tensor_test.cc
+++ b/paddle/framework/tensor_test.cc
@@ -36,7 +36,7 @@ TEST(Tensor, DataAssert) {
} catch (paddle::platform::EnforceNotMet err) {
caught = true;
std::string msg =
- "holder_ should not be null\nTenosr holds no memory. Call "
+ "holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first.";
const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) {
@@ -112,7 +112,7 @@ TEST(Tensor, ShareDataWith) {
} catch (paddle::platform::EnforceNotMet err) {
caught = true;
std::string msg =
- "holder_ should not be null\nTenosr holds no memory. Call "
+ "holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first.";
const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) {
@@ -274,4 +274,4 @@ TEST(Tensor, ReshapeToMatrix) {
Tensor res = ReshapeToMatrix(src, 2);
ASSERT_EQ(res.dims()[0], 2 * 3);
ASSERT_EQ(res.dims()[1], 4 * 9);
-}
\ No newline at end of file
+}
diff --git a/paddle/function/neon/NeonDepthwiseConv.h b/paddle/function/neon/NeonDepthwiseConv.h
index aefeea78badbca3d0d09e292e4e1e148618f8ac6..33722d3cac61b62f5dce8f51105c1bf4e70c4a6c 100644
--- a/paddle/function/neon/NeonDepthwiseConv.h
+++ b/paddle/function/neon/NeonDepthwiseConv.h
@@ -594,7 +594,7 @@ struct StridePadding {
float32x4_t s1 = vdupq_n_f32(0.f);
for (int s = 0; s < step; s++) {
float32x4_t s0 = vld1q_f32(input);
- float32x4x2_t v = {s0, s1};
+ float32x4x2_t v = {{s0, s1}};
vst2q_f32(inputPadding, v);
input += 4;
inputPadding += 8;
diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..9088744beebd25ac105737fe3b012de143c66a7c
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp
@@ -0,0 +1,544 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "MKLDNNConvLayer.h"
+#include "paddle/math/MathUtils.h"
+#include "paddle/utils/Logging.h"
+
+using namespace mkldnn; // NOLINT
+typedef memory::format format;
+
+namespace paddle {
+
+REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);
+
+bool MKLDNNConvLayer::init(const LayerMap& layerMap,
+ const ParameterMap& parameterMap) {
+ if (!MKLDNNLayer::init(layerMap, parameterMap)) {
+ return false;
+ }
+ CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
+ CHECK_EQ(inputLayers_.size(), parameters_.size());
+ CHECK(config_.shared_biases()) << "Only support shared biases yet";
+
+ oc_ = config_.num_filters();
+ const ConvConfig& conf = config_.inputs(0).conv_conf();
+ ic_ = conf.channels();
+ fw_ = conf.filter_size();
+ fh_ = conf.filter_size_y();
+ pw_ = conf.padding();
+ ph_ = conf.padding_y();
+ dw_ = conf.dilation();
+ dh_ = conf.dilation_y();
+ sw_ = conf.stride();
+ sh_ = conf.stride_y();
+ gp_ = conf.groups();
+ oh_ = conf.output_y();
+ ow_ = conf.output_x();
+ ih_ = conf.img_size_y();
+ iw_ = conf.img_size();
+ caffeMode_ = conf.caffe_mode();
+ CHECK(caffeMode_) << "Only support caffe mode yet";
+ CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
+ // check group setting
+ CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
+ CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";
+
+ // create weight
+ size_t height = oc_ / gp_;
+ size_t width = ic_ * fh_ * fw_;
+ CHECK_EQ(parameters_[0]->getSize(), height * width);
+ weight_ =
+ std::unique_ptr(new Weight(height, width, parameters_[0], 0));
+
+ // create biases
+ if (biasParameter_.get() != NULL) {
+ biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_));
+ }
+ return true;
+}
+
+void MKLDNNConvLayer::convertWeightsFromPaddle() {
+ if (hasInitedWgt_) {
+ return;
+ }
+
+ CHECK(wgtVal_) << "should have been initialized";
+ // the paddle weight format is oihw or goihw
+ auto targetDim = wgtVal_->getDims();
+ auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
+ wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
+ hasInitedWgt_ = true;
+}
+
+void MKLDNNConvLayer::convertWeightsToPaddle() {
+ CHECK(wgtVal_) << "should have been initialized";
+ auto targetDim = wgtVal_->getDims();
+ auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
+ wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
+}
+
+void MKLDNNConvLayer::reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
+ reshapeInput(bs, ih, iw);
+
+ // cal output sizes
+ // oc can not be changed
+ int fh = (fh_ - 1) * dh_ + 1;
+ int fw = (fw_ - 1) * dw_ + 1;
+ oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
+ ow = outputSize(iw, fw, pw_, sw_, caffeMode_);
+
+ reshapeOutput(oh, ow);
+ resizeOutput(bs, oc * oh * ow);
+
+ printSizeInfo();
+}
+
+void MKLDNNConvLayer::resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetFwdPD(fwdPD_);
+
+ resetFwdBuffers(fwdPD_, in, wgt, bias, out);
+
+ resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
+
+ printValueFormatFlow();
+}
+
+void MKLDNNConvLayer::resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ std::shared_ptr bwdWgtPD;
+ std::shared_ptr bwdDataPD;
+
+ resetBwdWgtPD(bwdWgtPD);
+
+ resetBwdDataPD(bwdDataPD);
+
+ resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out);
+
+ resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
+
+ printGradFormatFlow();
+}
+
+void MKLDNNConvLayer::updateInputData() {
+ cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
+}
+
+void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
+ weight_->getParameterPtr()->incUpdate(callback);
+ if (biases_ && biases_->getWGrad()) {
+ biases_->getParameterPtr()->incUpdate(callback);
+ }
+}
+
+void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
+ memory::dims& bias,
+ memory::dims& stride,
+ memory::dims& dilation,
+ memory::dims& padL,
+ memory::dims& padR) {
+ wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
+ : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
+ bias = memory::dims{oc_};
+ stride = memory::dims{sh_, sw_};
+ padL = memory::dims{ph_, pw_};
+ padR = getPaddingR();
+ // note: mkldnn dilation start from 0
+ dilation = memory::dims{dh_ - 1, dw_ - 1};
+}
+
+void MKLDNNConvLayer::resetFwdPD(
+ std::shared_ptr& pd) {
+ // dims for conv
+ memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
+ memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+ memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
+ loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
+
+ prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
+ : prop_kind::forward_training;
+ algorithm algo = algorithm::convolution_direct;
+ padding_kind padKind = padding_kind::zero;
+ conv_fwd::desc fwdDesc =
+ biases_ && biases_->getW()
+ ? conv_fwd::desc(pk,
+ algo,
+ MKLDNNMatrix::createMemoryDesc(inDims),
+ MKLDNNMatrix::createMemoryDesc(wgtDims),
+ MKLDNNMatrix::createMemoryDesc(biasDims),
+ MKLDNNMatrix::createMemoryDesc(outDims),
+ strides,
+ dilations,
+ padL,
+ padR,
+ padKind)
+ : conv_fwd::desc(pk,
+ algo,
+ MKLDNNMatrix::createMemoryDesc(inDims),
+ MKLDNNMatrix::createMemoryDesc(wgtDims),
+ MKLDNNMatrix::createMemoryDesc(outDims),
+ strides,
+ dilations,
+ padL,
+ padR,
+ padKind);
+ pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
+}
+
+void MKLDNNConvLayer::resetFwdBuffers(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ CHECK(pd);
+ resetInValue(pd, in);
+
+ resetWgtBiasValue(pd, wgt, bias);
+
+ resetOutValue(pd, out);
+}
+
+void MKLDNNConvLayer::resetFwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+
+ if (cvtInVal_) {
+ pipeline.push_back(*cvtInVal_);
+ }
+
+ if (bias) {
+ fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
+ } else {
+ fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
+ }
+ pipeline.push_back(*fwd_);
+
+ if (cvtOutVal_) {
+ pipeline.push_back(*cvtOutVal_);
+ }
+}
+
+void MKLDNNConvLayer::resetInValue(
+ std::shared_ptr& pd, MKLDNNMatrixPtr& in) {
+ const MatrixPtr& inMat = inputLayers_[0]->getOutput().value;
+ in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc());
+
+ // create buffer and reorder if input value do not match
+ cpuInVal_ = nullptr;
+ cvtInVal_ = nullptr;
+ if (inputIsOnlyMKLDNN()) {
+ MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast(inMat);
+ CHECK(dnnIn) << "Input should be MKLDNNMatrix";
+ if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+ CHECK_EQ(dnnIn->getFormat(), format::nc);
+ CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format";
+ // create a new one with nchw format and same data
+ memory::dims inDims = memory::dims{bs_, ic_, 1, 1};
+ dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
+ CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc());
+ }
+ in = dnnIn;
+ } else {
+ const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
+ memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
+ cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_);
+ if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+ // create new mkldnn matrix
+ in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
+ cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
+ CHECK(cvtInVal_) << "should not be emptry";
+ } else {
+ in = cpuInVal_;
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetWgtBiasValue(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
+ wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc());
+ VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat();
+
+ bias = (biases_ && biases_->getW())
+ ? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc())
+ : nullptr;
+}
+
+void MKLDNNConvLayer::resetOutValue(
+ std::shared_ptr& pd, MKLDNNMatrixPtr& out) {
+ out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc());
+
+ // change original output value from cpu matrix to mkldnn matrix
+ output_.value = std::dynamic_pointer_cast(out);
+
+ // create reorder if output value has cpu device and pd do not match
+ cpuOutVal_ = nullptr;
+ cpuOutVal_ = nullptr;
+ if (!outputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
+ memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+ cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
+ if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
+ cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
+ CHECK(cvtOutVal_) << "should not be emptry";
+ } else {
+ // CPU output share the same data of MKLDNN output
+ cpuOut->setData(out->getData());
+ cpuOutVal_ = out;
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetBwdWgtPD(
+ std::shared_ptr& pd) {
+ memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
+ loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
+
+ // create backward weight using input, output and weight value memory desc
+ CHECK(inVal_) << "Should have input value";
+ CHECK(outVal_) << "Should have output value";
+ CHECK(wgtVal_) << "Should have weight value";
+ algorithm algo = algorithm::convolution_direct;
+ padding_kind padKind = padding_kind::zero;
+ auto bwdWgtDesc = biasVal_ != nullptr
+ ? conv_bwdWgt::desc(algo,
+ inVal_->getMemoryDesc(),
+ wgtVal_->getMemoryDesc(),
+ biasVal_->getMemoryDesc(),
+ outVal_->getMemoryDesc(),
+ strides,
+ padL,
+ padR,
+ padKind)
+ : conv_bwdWgt::desc(algo,
+ inVal_->getMemoryDesc(),
+ wgtVal_->getMemoryDesc(),
+ outVal_->getMemoryDesc(),
+ strides,
+ padL,
+ padR,
+ padKind);
+ pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
+ CHECK(pd->src_primitive_desc() == inVal_->getPrimitiveDesc())
+ << "primitive desc of in value should equal";
+ CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
+ << "primitive desc of out grad should equal the out value";
+ CHECK(pd->diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc())
+ << "primitive desc of weight grad should equal the weight value";
+}
+
+void MKLDNNConvLayer::resetBwdDataPD(
+ std::shared_ptr& pd) {
+ pd = nullptr;
+ if (inputLayers_[0]->getOutput().grad == nullptr) {
+ return;
+ }
+
+ memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
+ loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
+ CHECK(inVal_) << "Should have input value";
+ CHECK(outVal_) << "Should have output value";
+ // create backward data using input and output value memory desc
+ // but using weight memory desc with any format
+ auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
+ inVal_->getMemoryDesc(),
+ MKLDNNMatrix::createMemoryDesc(wgtDims),
+ outVal_->getMemoryDesc(),
+ strides,
+ padL,
+ padR,
+ padding_kind::zero);
+ pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
+ CHECK(pd->diff_src_primitive_desc() == inVal_->getPrimitiveDesc())
+ << "primitive desc of in grad should equal the in value";
+ CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
+ << "primitive desc of out grad should equal";
+}
+
+void MKLDNNConvLayer::resetBwdBuffers(
+ std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ CHECK(wgtPD);
+ resetOutGrad(wgtPD, out);
+
+ resetWgtBiasGrad(wgtPD, wgt, bias);
+
+ resetInGrad(dataPD, in);
+
+ resetWgtValBwdData(dataPD, wgtValBwdData_);
+}
+
+void MKLDNNConvLayer::resetBwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+
+ if (cvtOutGrad_) {
+ pipeline.push_back(*cvtOutGrad_);
+ }
+
+ // add bwdWgt handle
+ if (bias) {
+ bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
+ } else {
+ bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
+ }
+ pipeline.push_back(*bwdWgt_);
+
+ if (dataPD == nullptr) {
+ return;
+ }
+
+ if (cvtWgtVal_) {
+ pipeline.push_back(*cvtWgtVal_);
+ }
+
+ // add bwdData handle
+ CHECK(wgtValBwdData_) << "Should have weight memory";
+ bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
+ pipeline.push_back(*bwdData_);
+
+ if (cvtInGrad_) {
+ pipeline.push_back(*cvtInGrad_);
+ }
+}
+
+void MKLDNNConvLayer::resetOutGrad(
+ std::shared_ptr& wgtPD, MKLDNNMatrixPtr& out) {
+ const MatrixPtr& outMat = output_.grad;
+ out = MKLDNNMatrix::create(outMat, wgtPD->diff_dst_primitive_desc());
+ CHECK(outVal_ != nullptr &&
+ out->getPrimitiveDesc() == outVal_->getPrimitiveDesc())
+ << "primitive desc of out grad and value should be equal";
+
+ // TODO(TJ): merge outgrad
+ // create reorder if has output grad does not match
+ cpuOutGrad_ = nullptr;
+ cvtOutGrad_ = nullptr;
+ if (!outputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
+ // same PrimitiveDesc with cpuInVal_
+ CHECK(cpuOutVal_);
+ cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
+ if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
+ outMat->setData(cpuOut->getData());
+ out = cpuOutGrad_;
+ } else {
+ cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
+ CHECK(cvtOutGrad_);
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetWgtBiasGrad(
+ std::shared_ptr& wgtPD,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
+ wgt = MKLDNNMatrix::create(weight_->getWGrad(),
+ wgtPD->diff_weights_primitive_desc());
+ CHECK(nullptr != wgtVal_ &&
+ wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc())
+ << "primitive desc of weight grad and value should be equal";
+ VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat();
+
+ bias = nullptr;
+ if (biasVal_ == nullptr) {
+ return;
+ }
+ bias = MKLDNNMatrix::create(biases_->getWGrad(),
+ wgtPD->diff_bias_primitive_desc());
+ CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc())
+ << "primitive desc of bias grad should equal the bias value";
+}
+
+void MKLDNNConvLayer::resetInGrad(
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in) {
+ if (dataPD == nullptr) {
+ return;
+ }
+
+ // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
+ in = MKLDNNMatrix::create(inputLayers_[0]->getOutput().grad,
+ dataPD->diff_src_primitive_desc());
+ CHECK(nullptr != inVal_ &&
+ in->getPrimitiveDesc() == inVal_->getPrimitiveDesc())
+ << "primitive desc of input grad and value should be equal";
+
+ // create reorder if has output grad does not match
+ cpuInGrad_ = nullptr;
+ cvtInGrad_ = nullptr;
+ if (!inputIsOnlyMKLDNN()) {
+ const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
+ // same PrimitiveDesc with cpuInVal_
+ CHECK(cpuInVal_);
+ cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
+ if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+ const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE);
+ in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc());
+ cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
+ CHECK(cvtInGrad_);
+ } else {
+ in = cpuInGrad_;
+ }
+ }
+}
+
+void MKLDNNConvLayer::resetWgtValBwdData(
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& wgt) {
+ if (dataPD == nullptr) {
+ return;
+ }
+
+ // create new weight value for backward data, and create reorder if necessary
+ // since the primitive_desc would be different with wgtVal_
+ CHECK(wgtVal_) << "should have weight value";
+ if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
+ wgtValBwdData_ =
+ MKLDNNMatrix::create(nullptr, dataPD->weights_primitive_desc());
+ cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
+ CHECK(cvtWgtVal_);
+ } else {
+ wgtValBwdData_ = wgtVal_;
+ }
+ VLOG(MKLDNN_FMTS) << "weight value format for backward data"
+ << wgtValBwdData_->getFormat();
+}
+
+} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h
new file mode 100644
index 0000000000000000000000000000000000000000..f84f2f737c47a1b8adc2b83360a0396ffbc6ae24
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNConvLayer.h
@@ -0,0 +1,253 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+#include "MKLDNNLayer.h"
+#include "mkldnn.hpp"
+
+namespace paddle {
+typedef mkldnn::convolution_forward conv_fwd;
+typedef mkldnn::convolution_backward_weights conv_bwdWgt;
+typedef mkldnn::convolution_backward_data conv_bwdData;
+
+/**
+ * @brief A subclass of MKLDNNLayer conv layer.
+ *
+ * The config file api is mkldnn_conv
+ */
+class MKLDNNConvLayer : public MKLDNNLayer {
+protected:
+ // padding height and width
+ int ph_, pw_;
+ // stride height and width
+ int sh_, sw_;
+ // dilation height and width
+ int dh_, dw_;
+ // filter(kenerl) height and width
+ int fh_, fw_;
+ // group number
+ int gp_;
+
+ // in resetBwdData, the format of wgtValBwdData_ is different with wgtVal_
+ MKLDNNMatrixPtr wgtValBwdData_;
+ // convert handle from wgtVal_ to wgtValBwdData_
+ std::shared_ptr cvtWgtVal_;
+
+ // save forward primitive_desc, which can be used backward
+ std::shared_ptr fwdPD_;
+
+ // MKLDNNMatrixPtr which should be created from CPU Device
+ MKLDNNMatrixPtr cpuInVal_;
+ MKLDNNMatrixPtr cpuInGrad_;
+ MKLDNNMatrixPtr cpuOutVal_;
+ MKLDNNMatrixPtr cpuOutGrad_;
+ // convert handle between CPU device and MKLDNN device
+ std::shared_ptr cvtInVal_;
+ std::shared_ptr cvtInGrad_;
+ std::shared_ptr cvtOutVal_;
+ std::shared_ptr cvtOutGrad_;
+
+ // whether the weight has been init
+ bool hasInitedWgt_;
+
+ // true by default, which impact the calculation of output image size.
+ // details can refer to mathUtil.h
+ bool caffeMode_;
+
+ // weight and bias
+ std::unique_ptr weight_;
+ std::unique_ptr biases_;
+
+public:
+ explicit MKLDNNConvLayer(const LayerConfig& config)
+ : MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {}
+
+ ~MKLDNNConvLayer() {}
+
+ bool init(const LayerMap& layerMap,
+ const ParameterMap& parameterMap) override;
+
+ void reshape(
+ int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
+
+ void resetFwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
+
+ void resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) override;
+
+ void updateInputData() override;
+
+ void updateWeights(const UpdateCallback& callback) override;
+
+ void convertWeightsFromPaddle() override;
+
+ void convertWeightsToPaddle() override;
+
+ void printSizeInfo() override {
+ MKLDNNLayer::printSizeInfo();
+ VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
+ << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
+ << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_;
+ }
+
+ void printValueFormatFlow() override {
+ if (cpuInVal_) {
+ VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>";
+ }
+ MKLDNNLayer::printValueFormatFlow();
+ if (cpuOutVal_) {
+ VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat();
+ }
+ }
+
+ void printGradFormatFlow() override {
+ if (cpuInGrad_) {
+ VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<";
+ }
+ MKLDNNLayer::printGradFormatFlow();
+ if (cpuOutGrad_) {
+ VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat();
+ }
+ }
+
+protected:
+ /**
+ * load the dims settings of this conv
+ */
+ void loadConvSettings(mkldnn::memory::dims& wgt,
+ mkldnn::memory::dims& bias,
+ mkldnn::memory::dims& stride,
+ mkldnn::memory::dims& dilation,
+ mkldnn::memory::dims& padL,
+ mkldnn::memory::dims& padR);
+
+ /**
+ * reset the forward primitive descriptor.
+ */
+ void resetFwdPD(std::shared_ptr& pd);
+ /**
+ * reset the MKLDNNMatrix buffers used in forward.
+ */
+ void resetFwdBuffers(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ /**
+ * reset the forward pipeline.
+ */
+ void resetFwdPipeline(std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * reset MKLDNNMatrix of input value
+ */
+ void resetInValue(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in);
+ /**
+ * reset MKLDNNMatrix of weight and bias value
+ */
+ void resetWgtBiasValue(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias);
+ /**
+ * reset MKLDNNMatrix of output value
+ */
+ void resetOutValue(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * reset the backward weight primitive descriptor.
+ */
+ void resetBwdWgtPD(std::shared_ptr& pd);
+ /**
+ * reset the backward data primitive descriptor.
+ */
+ void resetBwdDataPD(std::shared_ptr& pd);
+ /**
+ * reset the MKLDNNMatrix buffers used in backward.
+ */
+ void resetBwdBuffers(std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ /**
+ * reset the backward pipeline.
+ */
+ void resetBwdPipeline(std::vector& pipeline,
+ std::shared_ptr& wgtPD,
+ std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * reset MKLDNNMatrix of output grad
+ */
+ void resetOutGrad(std::shared_ptr& wgtPD,
+ MKLDNNMatrixPtr& out);
+ /**
+ * reset MKLDNNMatrix of weight and bias grad
+ */
+ void resetWgtBiasGrad(std::shared_ptr& wgtPD,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias);
+ /**
+ * reset MKLDNNMatrix of input grad
+ */
+ void resetInGrad(std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& in);
+ /**
+ * reset MKLDNNMatrix of weight value for backward data
+ * since the primitive_desc would be different with wgtVal_
+ */
+ void resetWgtValBwdData(std::shared_ptr& dataPD,
+ MKLDNNMatrixPtr& wgt);
+
+ /**
+ * get padding_r according to
+ * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
+ * test_convolution_forward_common.hpp
+ * @note: mkldnn dilation start from 0 while paddle start from 1
+ */
+ mkldnn::memory::dims getPaddingR() const {
+ mkldnn::memory::dims padR = {ph_, pw_};
+ for (int i = 0; i < 2; ++i) {
+ if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) {
+ ++padR[0];
+ }
+ if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) {
+ ++padR[1];
+ }
+ }
+ return padR;
+ }
+};
+
+} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp
index f70343251ad4fbb99f9614618f6d1bff1174f15e..f60e221a6ec2ff513789a24e9f59bb25aef437b5 100644
--- a/paddle/gserver/layers/MKLDNNFcLayer.cpp
+++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp
@@ -17,9 +17,6 @@ limitations under the License. */
using namespace mkldnn; // NOLINT
typedef memory::format format;
-typedef inner_product_forward fc_fwd;
-typedef inner_product_backward_weights fc_bwdWgt;
-typedef inner_product_backward_data fc_bwdData;
namespace paddle {
@@ -93,35 +90,88 @@ void MKLDNNFcLayer::reshape(
printSizeInfo();
}
-void MKLDNNFcLayer::resetFwd(std::vector& pipeline,
+void MKLDNNFcLayer::resetFwd(std::vector& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
- pipeline.clear();
- bool hasBias = biases_ && biases_->getW();
- const MatrixPtr& wgtVal = weight_->getW();
- const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr;
- const MatrixPtr& outVal = output_.value;
+ resetFwdBuffers(in, wgt, bias, out);
+
+ resetFwdPD(fwdPD_, in, wgt, bias, out);
+
+ resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
+
+ printValueFormatFlow();
+}
+
+void MKLDNNFcLayer::resetBwd(std::vector& pipeline,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ std::shared_ptr bwdWgtPD;
+ std::shared_ptr bwdDataPD;
+
+ resetBwdBuffers(in, wgt, bias, out);
+
+ resetBwdWgtPD(bwdWgtPD, wgt, bias, out);
+
+ resetBwdDataPD(bwdDataPD, in, out);
+
+ resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
+
+ printGradFormatFlow();
+}
+
+void MKLDNNFcLayer::updateInputData() {
+ inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
+}
+void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
+ weight_->getParameterPtr()->incUpdate(callback);
+ if (biases_ && biases_->getWGrad()) {
+ biases_->getParameterPtr()->incUpdate(callback);
+ }
+}
+
+void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetInValue(in);
+
+ resetWgtBiasValue(wgt, bias);
+
+ resetOutValue(out);
+}
+
+void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) {
if (inputIsOnlyMKLDNN()) {
- const MatrixPtr& inVal = getInputValue(0);
- in = std::dynamic_pointer_cast(inVal);
+ const MatrixPtr& dnnIn = getInputValue(0);
+ in = std::dynamic_pointer_cast(dnnIn);
CHECK(in) << "Input should be MKLDNNMatrix";
} else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
- const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE);
+ const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
in = MKLDNNMatrix::create(
- inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
+ cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
}
in->downSpatial();
+}
+
+void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
wgt = MKLDNNMatrix::create(
- wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
+ weight_->getW(), {oc_, ic_, ih_, iw_}, format::oihw, engine_);
wgt->downSpatial();
- bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_)
- : nullptr;
- out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_);
+ bias = (biases_ && biases_->getW())
+ ? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_)
+ : nullptr;
+}
+
+void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) {
+ out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_);
// change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast(out);
if (!outputIsOnlyMKLDNN()) {
@@ -129,46 +179,59 @@ void MKLDNNFcLayer::resetFwd(std::vector& pipeline,
// just share point
getOutput(CPU_DEVICE).value->setData(output_.value->getData());
}
+}
- // create forward handle
+void MKLDNNFcLayer::resetFwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr in,
+ MKLDNNMatrixPtr wgt,
+ MKLDNNMatrixPtr bias,
+ MKLDNNMatrixPtr out) {
+ CHECK(in);
+ CHECK(wgt);
+ CHECK(out);
prop_kind pk = prop_kind::forward;
- fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk,
- in->getMemoryDesc(),
- wgt->getMemoryDesc(),
- bias->getMemoryDesc(),
- out->getMemoryDesc())
- : fc_fwd::desc(pk,
- in->getMemoryDesc(),
- wgt->getMemoryDesc(),
- out->getMemoryDesc());
- fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
- if (hasBias) {
- fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out));
+ fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk,
+ in->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ bias->getMemoryDesc(),
+ out->getMemoryDesc())
+ : fc_fwd::desc(pk,
+ in->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ out->getMemoryDesc());
+ pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_));
+}
+
+void MKLDNNFcLayer::resetFwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+
+ if (bias) {
+ fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
} else {
- fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out));
+ fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out));
}
- printValueFormatFlow();
pipeline.push_back(*fwd_);
}
-void MKLDNNFcLayer::resetBwd(std::vector& pipeline,
- MKLDNNMatrixPtr& in,
- MKLDNNMatrixPtr& wgt,
- MKLDNNMatrixPtr& bias,
- MKLDNNMatrixPtr& out) {
- pipeline.clear();
- if (!needResetBwd_) {
- return;
- }
- needResetBwd_ = false;
- bool hasBias = biases_ && biases_->getWGrad();
+void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ resetOutGrad(out);
+
+ resetWgtBiasGrad(wgt, bias);
- /// backward weight
- CHECK(inVal_) << "Should have input value";
- const MatrixPtr& wgtGrad = weight_->getWGrad();
- const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr;
+ resetInGrad(in);
+}
+void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
// TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
// for MKLDNN device:
@@ -178,66 +241,88 @@ void MKLDNNFcLayer::resetBwd(std::vector& pipeline,
// for CPU device:
// fc do not need to convert from cpu device since output is always nc format
// only need create from cpu device
- const MatrixPtr& outGrad = getOutput(device).grad;
- out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc());
- wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc());
- bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc())
- : nullptr;
-
- // create memory primitive desc
- fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
- inVal_->getMemoryDesc(),
- wgt->getMemoryDesc(),
- out->getMemoryDesc());
- fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
- fc_bwdWgt::desc bwdWgtDesc = hasBias
- ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
- wgt->getMemoryDesc(),
- bias->getMemoryDesc(),
- out->getMemoryDesc())
- : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
- wgt->getMemoryDesc(),
- out->getMemoryDesc());
- fc_bwdWgt::primitive_desc bwdWgtPD =
- fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
-
- if (hasBias) {
- bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias));
- } else {
- bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt));
+ CHECK(outVal_);
+ out =
+ MKLDNNMatrix::create(getOutput(device).grad, outVal_->getPrimitiveDesc());
+}
+
+void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias) {
+ CHECK(wgtVal_);
+ wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc());
+
+ bias = nullptr;
+ if (biasVal_ == nullptr) {
+ return;
}
- pipeline.push_back(*bwdWgt_);
+ bias =
+ MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc());
+}
- /// backward data
+void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) {
+ in = nullptr;
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
return;
}
- if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
- // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
- } else {
- in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
- }
-
- fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
- inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc());
- fc_bwdData::primitive_desc bwdDataPD =
- fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
+ // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
+ CHECK(inVal_);
+ in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
+}
- CHECK(wgtVal_) << "Should have weight memory";
- bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in));
- printGradFormatFlow();
- pipeline.push_back(*bwdData_);
+void MKLDNNFcLayer::resetBwdWgtPD(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ CHECK(inVal_);
+ fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ bias->getMemoryDesc(),
+ out->getMemoryDesc())
+ : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
+ wgt->getMemoryDesc(),
+ out->getMemoryDesc());
+ pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
}
-void MKLDNNFcLayer::updateInputData() {
- inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
+void MKLDNNFcLayer::resetBwdDataPD(
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out) {
+ pd = nullptr;
+ if (in == nullptr) {
+ return;
+ }
+ CHECK(wgtVal_);
+ fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
+ in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc());
+ pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
}
-void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
- weight_->getParameterPtr()->incUpdate(callback);
- if (biases_ && biases_->getWGrad()) {
- biases_->getParameterPtr()->incUpdate(callback);
+void MKLDNNFcLayer::resetBwdPipeline(
+ std::vector& pipeline,
+ std::shared_ptr& bwdWgtPD,
+ std::shared_ptr& bwdDataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out) {
+ pipeline.clear();
+ CHECK(inVal_);
+ if (bias) {
+ bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));
+ } else {
+ bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt));
+ }
+ pipeline.push_back(*bwdWgt_);
+
+ if (bwdDataPD == nullptr) {
+ return;
}
+ CHECK(wgtVal_) << "Should have weight memory";
+ bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in));
+ pipeline.push_back(*bwdData_);
}
+
} // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h
index 3119f863496df092da13c08bf733f13c42e53780..c76878aafab7e986d2bf478eaba02f2f0aced293 100644
--- a/paddle/gserver/layers/MKLDNNFcLayer.h
+++ b/paddle/gserver/layers/MKLDNNFcLayer.h
@@ -18,6 +18,9 @@ limitations under the License. */
#include "mkldnn.hpp"
namespace paddle {
+typedef mkldnn::inner_product_forward fc_fwd;
+typedef mkldnn::inner_product_backward_weights fc_bwdWgt;
+typedef mkldnn::inner_product_backward_data fc_bwdData;
/**
* @brief A subclass of MKLDNNLayer fc layer.
@@ -32,6 +35,9 @@ protected:
// if has already init the weight
bool hasInitedWgt_;
+ // save forward primitive_desc, which can be used backward
+ std::shared_ptr fwdPD_;
+
// fc weight and bias
std::unique_ptr weight_;
std::unique_ptr biases_;
@@ -67,6 +73,59 @@ public:
void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override;
+
+protected:
+ /**
+ * Forward functions: reset buffers(input, output, weight and bias),
+ * reset primitive descriptor,
+ * reset pipeline.
+ */
+ void resetFwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ void resetInValue(MKLDNNMatrixPtr& in);
+ void resetWgtBiasValue(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
+ void resetOutValue(MKLDNNMatrixPtr& out);
+ void resetFwdPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr in,
+ MKLDNNMatrixPtr wgt,
+ MKLDNNMatrixPtr bias,
+ MKLDNNMatrixPtr out);
+ void resetFwdPipeline(std::vector& pipeline,
+ std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+
+ /**
+ * Backward functions: reset buffers(input, output, weight and bias),
+ * reset primitive descriptor for backward weight,
+ * reset primitive descriptor for backward data,
+ * reset pipeline.
+ */
+ void resetBwdBuffers(MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ void resetOutGrad(MKLDNNMatrixPtr& out);
+ void resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
+ void resetInGrad(MKLDNNMatrixPtr& in);
+ void resetBwdWgtPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
+ void resetBwdDataPD(std::shared_ptr& pd,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& out);
+ void resetBwdPipeline(std::vector& pipeline,
+ std::shared_ptr& bwdWgtPD,
+ std::shared_ptr& bwdDataPD,
+ MKLDNNMatrixPtr& in,
+ MKLDNNMatrixPtr& wgt,
+ MKLDNNMatrixPtr& bias,
+ MKLDNNMatrixPtr& out);
};
} // namespace paddle
diff --git a/paddle/gserver/layers/SwitchOrderLayer.cpp b/paddle/gserver/layers/SwitchOrderLayer.cpp
index d7eee6eaf078dab8d48adc4c7ee758a433672ac6..e97809141a93106f9e6ebaf40c7e8aa9c6010557 100644
--- a/paddle/gserver/layers/SwitchOrderLayer.cpp
+++ b/paddle/gserver/layers/SwitchOrderLayer.cpp
@@ -83,8 +83,7 @@ void SwitchOrderLayer::forward(PassType passType) {
setOutDims();
resetOutput(outDims_[0], outDims_[1] * outDims_[2] * outDims_[3]);
if (heightAxis_.size() > 0) {
- getOutputValue()->reshape(reshapeHeight_, reshapeWidth_);
- getOutputGrad()->reshape(reshapeHeight_, reshapeWidth_);
+ resetOutput(reshapeHeight_, reshapeWidth_);
}
// switch NCHW to NHWC
diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp
index e1d2270df24331914f3a51acc90a518084b3ce4e..e70802881e3f22160a87b7a4babda07ffbcf9d6f 100644
--- a/paddle/gserver/tests/test_MKLDNN.cpp
+++ b/paddle/gserver/tests/test_MKLDNN.cpp
@@ -17,6 +17,7 @@ limitations under the License. */
#include
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
+#include "paddle/math/MathUtils.h"
using namespace paddle; // NOLINT
@@ -63,6 +64,83 @@ TEST(MKLDNNLayer, FcLayer) {
testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
}
+struct testConvDesc {
+ int bs, gp;
+ int ic, ih, iw;
+ int oc, oh, ow;
+ int fh, fw;
+ int ph, pw;
+ int sh, sw;
+ int dh, dw;
+};
+
+void testConvLayer(const testConvDesc& pm) {
+ const std::string compareTypes[] = {"mkldnn_conv", "exconv"};
+ TestConfig cfg;
+ cfg.layerConfig.set_type(compareTypes[0]);
+ cfg.layerConfig.set_num_filters(pm.oc);
+ cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow);
+ // cfg.layerConfig.set_partial_sum(1); // TODO: check it
+ cfg.layerConfig.set_shared_biases(true);
+ cfg.inputDefs.push_back(
+ {INPUT_DATA,
+ "layer_0",
+ /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
+ /* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)});
+ LayerInputConfig* input = cfg.layerConfig.add_inputs();
+ ConvConfig* conv = input->mutable_conv_conf();
+ conv->set_groups(pm.gp);
+ conv->set_img_size(pm.iw);
+ conv->set_img_size_y(pm.ih);
+ conv->set_output_x(pm.ow);
+ conv->set_output_y(pm.oh);
+ conv->set_filter_size(pm.fw);
+ conv->set_filter_size_y(pm.fh);
+ conv->set_channels(pm.ic);
+ conv->set_padding(pm.pw);
+ conv->set_padding_y(pm.ph);
+ conv->set_stride(pm.sw);
+ conv->set_stride_y(pm.sh);
+ conv->set_dilation(pm.dw);
+ conv->set_dilation_y(pm.dh);
+ conv->set_caffe_mode(true);
+ conv->set_filter_channels(conv->channels() / conv->groups());
+ CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels())
+ << "it is indivisible";
+
+ int fh = (pm.fh - 1) * pm.dh + 1;
+ int fw = (pm.fw - 1) * pm.dw + 1;
+ int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true);
+ int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true);
+ CHECK_EQ(ow, pm.ow) << "output size check failed";
+ CHECK_EQ(oh, pm.oh) << "output size check failed";
+
+ MKLDNNTester tester;
+ for (auto biasSize : {pm.oc, 0}) {
+ cfg.biasSize = biasSize;
+ TestConfig ref = cfg;
+ ref.layerConfig.set_type(compareTypes[1]);
+ for (auto bs : {pm.bs, 1}) {
+ tester.run(cfg, ref, bs, pm.ih, pm.iw);
+ }
+ }
+}
+
+TEST(MKLDNNLayer, ConvLayer) {
+ /* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */
+ testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1});
+ testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1});
+ testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1});
+ // with groups
+ testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
+ testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
+}
+
// TODO(TJ): add branch test
int main(int argc, char** argv) {
diff --git a/paddle/math/MKLDNNMatrix.cpp b/paddle/math/MKLDNNMatrix.cpp
index c4063e5069854242d9f93886b66580385557ca73..0778bb63b7b3bca9b3d2647ca43dad72d783950a 100644
--- a/paddle/math/MKLDNNMatrix.cpp
+++ b/paddle/math/MKLDNNMatrix.cpp
@@ -49,6 +49,27 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m,
return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg));
}
+std::shared_ptr MKLDNNMatrix::createReorder(const MKLDNNMatrixPtr& src,
+ const MKLDNNMatrixPtr& dst,
+ bool checkData) {
+ if (src == dst || src->getPrimitiveDesc() == dst->getPrimitiveDesc()) {
+ return nullptr;
+ }
+
+ if (checkData && (src->getData() == dst->getData())) {
+ LOG(FATAL) << "can not create reorder with inplace data";
+ return nullptr;
+ }
+
+ memory::dims srcDims = src->getDims();
+ memory::dims dstDims = dst->getDims();
+ CHECK_EQ(srcDims.size(), dstDims.size());
+ for (size_t i = 0; i < srcDims.size(); ++i) {
+ CHECK_EQ(srcDims[i], dstDims[i]);
+ }
+ return std::make_shared(*src, *dst);
+}
+
void MKLDNNMatrix::reorderDataFrom(const MKLDNNMatrixPtr& m,
memory::format srcFmt,
memory::dims targetDim) {
diff --git a/paddle/math/MKLDNNMatrix.h b/paddle/math/MKLDNNMatrix.h
index eef3b429e6fa0087aeac3f5aed9dff983b06e826..c843115eb9a5be50d6ff873f1510844228c9d89f 100644
--- a/paddle/math/MKLDNNMatrix.h
+++ b/paddle/math/MKLDNNMatrix.h
@@ -52,6 +52,32 @@ public:
mkldnn::engine& eg,
mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32);
+ /**
+ * Create Memory descriptor.
+ * default with any format and f32 dtype
+ */
+ static mkldnn::memory::desc createMemoryDesc(
+ const mkldnn::memory::dims& dims,
+ const mkldnn::memory::format& fmt = mkldnn::memory::format::any,
+ const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) {
+ return mkldnn::memory::desc(dims, dtype, fmt);
+ }
+
+ /**
+ * Create reorder primitive.
+ * Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst.
+ * checkData: whether to check the data handle of src and dst.
+ * if true, it will check the data and do not allow them equal;
+ * otherwise, it will not check them, then the reorder created
+ * may have inplace buffer.
+ * Do not set false, if you can not guarantee the inplace logical
+ * would work with your reorder.
+ */
+ static std::shared_ptr createReorder(
+ const MKLDNNMatrixPtr& src,
+ const MKLDNNMatrixPtr& dst,
+ bool checkData = true);
+
public:
/**
* Reorder this MKLDNNMatrix from other format.
diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc
index a19a3e3675e3e2e7cc0c3594f21191f932d6379f..19ec9ba9b26f5919796181a19a048b7edb508bdd 100644
--- a/paddle/memory/memcpy.cc
+++ b/paddle/memory/memcpy.cc
@@ -62,6 +62,24 @@ void Copy(platform::GPUPlace dst_place,
}
}
+template <>
+void Copy(platform::CPUPlace dst_place,
+ void* dst,
+ platform::GPUPlace src_place,
+ const void* src, size_t num) {
+ platform::SetDeviceId(src_place.device);
+ platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
+}
+
+template <>
+void Copy(platform::GPUPlace dst_place,
+ void* dst,
+ platform::CPUPlace src_place,
+ const void* src, size_t num) {
+ platform::SetDeviceId(dst_place.device);
+ platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
+}
+
#endif // PADDLE_ONLY_CPU
} // namespace memory
diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt
index f9ea25ab045a02be5ab9ed81ef9c679126d3a188..e3e934bcccd1a5f34d88a2f33f3708a46ddabe05 100644
--- a/paddle/operators/CMakeLists.txt
+++ b/paddle/operators/CMakeLists.txt
@@ -1,5 +1,7 @@
file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc")
string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}")
+set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/pybind/pybind.h)
+file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n")
function(op_library TARGET)
# op_library is a function to create op library. The interface is same as
# cc_library. But it handle split GPU/CPU code and link some common library
@@ -7,10 +9,11 @@ function(op_library TARGET)
set(OP_LIBRARY ${TARGET} ${OP_LIBRARY} PARENT_SCOPE)
set(cc_srcs)
set(cu_srcs)
- set(op_common_deps operator op_registry)
+ set(op_common_deps operator op_registry math_function)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
+ set(pybind_flag 0)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
@@ -46,22 +49,42 @@ function(op_library TARGET)
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
endif()
+
+ # net_op doesn't need pybind
+ if ("${TARGET}" STREQUAL "net_op")
+ set(pybind_flag 1)
+ endif()
+
+ # pybind USE_NO_KERNEL_OP
+ file(READ ${TARGET}.cc TARGET_CONTENT)
+ string(REGEX MATCH "OperatorWithKernel" regex_result "${TARGET_CONTENT}")
+ string(REPLACE "_op" "" TARGET "${TARGET}")
+ if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "")
+ file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(${TARGET});\n")
+ set(pybind_flag 1)
+ endif()
+
+ # pybind USE_CPU_ONLY_OP
+ list(LENGTH cu_srcs cu_srcs_len)
+ if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0)
+ file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
+ set(pybind_flag 1)
+ endif()
+
+ # pybind USE_OP
+ if (${pybind_flag} EQUAL 0)
+ file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
+ endif()
endfunction()
add_subdirectory(math)
set(DEPS_OPS
- identity_op
- minus_op
- mul_op
recurrent_op
- scale_op)
-op_library(identity_op DEPS scale_op)
-op_library(minus_op DEPS scale_op)
-op_library(mul_op DEPS math_function)
+ cond_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
- DEPS framework_proto tensor operator net_op)
-op_library(scale_op DEPS net_op)
+ DEPS framework_proto tensor net_op)
+op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc
new file mode 100644
index 0000000000000000000000000000000000000000..0c813748b2989a8f0c00a359345747242dd21dd8
--- /dev/null
+++ b/paddle/operators/accuracy_op.cc
@@ -0,0 +1,71 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "paddle/operators/accuracy_op.h"
+
+namespace paddle {
+namespace operators {
+
+class AccuracyOp : public framework::OperatorWithKernel {
+ public:
+ using framework::OperatorWithKernel::OperatorWithKernel;
+
+ protected:
+ void InferShape(const framework::InferShapeContext &ctx) const override {
+ PADDLE_ENFORCE_NOT_NULL(
+ ctx.InputVar("Inference"),
+ "Input(Inference) of AccuracyOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
+ "Input(Label) of AccuracyOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(
+ ctx.OutputVar("Accuracy"),
+ "Output(Accuracy) of AccuracyOp should not be null.");
+
+ auto *inference = ctx.Input("Inference");
+ auto *label = ctx.Input("Label");
+
+ PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label must be a vector");
+ PADDLE_ENFORCE_EQ(inference->dims()[0], label->dims()[0],
+ "inference size must be the same as label size");
+
+ ctx.Output("Accuracy")->Resize({1});
+ }
+};
+
+class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
+ public:
+ AccuracyOpMaker(framework::OpProto *proto,
+ framework::OpAttrChecker *op_checker)
+ : OpProtoAndCheckerMaker(proto, op_checker) {
+ // TODO(typhoonzero): support both inference value and indices.
+ AddInput("Inference", "topk(indices) the network output");
+ AddInput("Label", "Label of the training data");
+ // TODO(typhoonzero): AddInput("Weight", ...
+ AddOutput("Accuracy", "The accuracy of current batch");
+
+ AddComment(
+ R"DOC(Accuracy. It will print accuracy rate for classification.
+The accuracy is:
+.. math::
+accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})DOC");
+ }
+};
+
+} // namespace operators
+} // namespace paddle
+
+namespace ops = paddle::operators;
+REGISTER_OP_WITHOUT_GRADIENT(accuracy, ops::AccuracyOp, ops::AccuracyOpMaker);
+REGISTER_OP_CPU_KERNEL(accuracy,
+ ops::AccuracyKernel);
diff --git a/paddle/operators/accuracy_op.cu b/paddle/operators/accuracy_op.cu
new file mode 100644
index 0000000000000000000000000000000000000000..4e6d1ef9654012ce6355cbd7561c4fdc1785c11a
--- /dev/null
+++ b/paddle/operators/accuracy_op.cu
@@ -0,0 +1,69 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "paddle/operators/accuracy_op.h"
+
+namespace paddle {
+namespace operators {
+
+__global__ void AccuracySingleKernel(const int N, const int D, const int top_k,
+ const int* Xdata, const int* labelData,
+ float* accuracy) {
+ int correct = 0;
+ for (int row = 0; row < N; row++) {
+ const int label = labelData[row];
+ for (int col = 0; col < D; col++) {
+ const int pred = Xdata[row * D + col];
+ if (pred == label) {
+ ++correct;
+ break;
+ }
+ }
+ }
+ *accuracy = static_cast(correct) / static_cast(N);
+}
+
+template
+class AccuracyOpCUDAKernel : public framework::OpKernel {
+ public:
+ void Compute(const framework::ExecutionContext& ctx) const override {
+ PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
+ "It must use GPUPlace.");
+ auto* inference = ctx.Input("Inference");
+ auto* label = ctx.Input("Label");
+ auto* accuracy = ctx.Output("Accuracy");
+ // FIXME(typhoonzero): only support indices currently
+ // if add support for output values, how to detect the data type?
+ const int* inference_data = inference->data();
+ const int* label_data = label->data();
+ float* accuracy_data = accuracy->mutable_data(ctx.GetPlace());
+
+ size_t num_samples = inference->dims()[0];
+ size_t infer_width = inference->dims()[1];
+ cudaMemset((void**)&accuracy_data, 0, sizeof(float));
+
+ if (num_samples == 0) {
+ return;
+ }
+
+ AccuracySingleKernel<<<1, 1>>>(num_samples, infer_width, 1, inference_data,
+ label_data, accuracy_data);
+ }
+};
+
+} // namespace operators
+} // namespace paddle
+
+REGISTER_OP_GPU_KERNEL(accuracy,
+ paddle::operators::AccuracyOpCUDAKernel);
diff --git a/paddle/operators/accuracy_op.h b/paddle/operators/accuracy_op.h
new file mode 100644
index 0000000000000000000000000000000000000000..fe704efe1c979f4fc6a5a37184e51b416f5e517f
--- /dev/null
+++ b/paddle/operators/accuracy_op.h
@@ -0,0 +1,77 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+#include
+#include "paddle/framework/eigen.h"
+#include "paddle/framework/op_registry.h"
+
+namespace paddle {
+namespace operators {
+
+using Tensor = framework::Tensor;
+
+template
+using EigenMatrix = framework::EigenMatrix;
+
+template
+using EigenVector = framework::EigenVector;
+
+template
+using EigenScalar = framework::EigenScalar;
+
+template
+class AccuracyKernel : public framework::OpKernel {
+ public:
+ void Compute(const framework::ExecutionContext& ctx) const override {
+ auto* inference = ctx.Input("Inference");
+ auto* label = ctx.Input("Label");
+ auto* accuracy = ctx.Output("Accuracy");
+
+ float* accuracy_data = accuracy->mutable_data(ctx.GetPlace());
+
+ const T* inference_data = inference->data();
+ const T* label_data = label->data();
+
+ size_t num_samples = inference->dims()[0];
+ size_t class_dim = inference->dims()[1];
+ *accuracy_data = 0.0f;
+
+ if (num_samples == 0) {
+ return;
+ }
+
+ int num_correct = 0;
+ // assume inference is already the topk of the output
+ for (size_t i = 0; i < num_samples; ++i) {
+ PADDLE_ENFORCE_GE(label_data[i], 0, "label must >= 0");
+ for (size_t j = 0; j < class_dim; ++j) {
+ if (inference_data[i * class_dim + j] == label_data[i]) {
+ ++num_correct;
+ break;
+ }
+ }
+ }
+
+ // FIXME(typhoonzero): we don't accumulate the accuracy for now.
+ *accuracy_data =
+ static_cast(num_correct) / static_cast(num_samples);
+ }
+};
+
+} // namespace operators
+} // namespace paddle
diff --git a/paddle/operators/add_op.cc b/paddle/operators/add_op.cc
index 8dbd47cf0dfbc265032a9966343eed5c7bd8692e..e83c1efeaf897889d18a37a6bd2ca2f8f012db25 100644
--- a/paddle/operators/add_op.cc
+++ b/paddle/operators/add_op.cc
@@ -23,10 +23,18 @@ class AddOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
+ PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
+ "Input(X) of AddOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
+ "Input(Y) of AddOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
+ "Output(Out) of AddOp should not be null.");
+
PADDLE_ENFORCE_EQ(ctx.Input("X")->dims(),
ctx.Input("Y")->dims(),
"Two input of Add Op's dimension must be same.");
- ctx.Output("Out")->Resize(ctx.Input("X")->dims());
+ ctx.Output("Out")->Resize(
+ ctx.Input("X")->dims());
}
};
diff --git a/paddle/operators/concat_op.cc b/paddle/operators/concat_op.cc
index 0ebefbab26ec8fdf316f852fbb7f6d9f3bbc48eb..223bb0ffe6e75ce71919eb5f4cca06bedbb00764 100644
--- a/paddle/operators/concat_op.cc
+++ b/paddle/operators/concat_op.cc
@@ -25,8 +25,11 @@ class ConcatOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
+ PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
+ "Output(Out) of ConcatOp should not be null.");
+
auto ins = ctx.MultiInput("X");
- auto *out = ctx.Output("Out");
+ auto *out = ctx.Output("Out");
size_t axis = static_cast(ctx.Attr("axis"));
size_t n = ins.size();
diff --git a/paddle/operators/concat_op.cu b/paddle/operators/concat_op.cu
deleted file mode 100644
index 38fee7473dbb2ba97fe95b6632db7a1749cf3bbe..0000000000000000000000000000000000000000
--- a/paddle/operators/concat_op.cu
+++ /dev/null
@@ -1,19 +0,0 @@
-/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-
-http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License. */
-
-#define EIGEN_USE_GPU
-#include "paddle/operators/concat_op.h"
-
-namespace ops = paddle::operators;
-// TODO(Yancey1989) Add GPU kernel
diff --git a/paddle/operators/cond_op.cc b/paddle/operators/cond_op.cc
new file mode 100644
index 0000000000000000000000000000000000000000..8262a7a5c8c13c86c5f6c123a14fa89696358c57
--- /dev/null
+++ b/paddle/operators/cond_op.cc
@@ -0,0 +1,229 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "paddle/operators/cond_op.h"
+
+#include
+#include
+
+#include "paddle/framework/op_registry.h"
+#include "paddle/operators/gather.h"
+#include "paddle/operators/net_op.h"
+#include "paddle/operators/scatter.h"
+
+namespace paddle {
+namespace operators {
+
+using Scope = framework::Scope;
+using Variable = framework::Variable;
+using Tensor = framework::Tensor;
+using LoDTensor = framework::LoDTensor;
+using DDim = framework::DDim;
+
+void CondOp::CreateScope(const Scope& scope) const {
+ auto sub_scopes_var = scope.FindVar("SubScopes");
+ PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
+ "Output(SubScopes) of CondOp should not be null.");
+ auto sub_scopes = sub_scopes_var->GetMutable>();
+ auto& sub_scope = scope.NewScope();
+ sub_scopes->push_back(&sub_scope);
+}
+
+void CondOp::CreateIndexTensor(const Scope& scope) const {
+ auto index_tensors_var = scope.FindVar("IndexTensors");
+ PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
+ "Output(IndexTensors) of CondOp should not be null.");
+ auto& index_tensors =
+ *index_tensors_var->GetMutable>();
+ index_tensors.push_back(LoDTensor());
+}
+
+void CondOp::InferShape(const Scope& scope) const {
+ auto sub_scopes_var = scope.FindVar("SubScopes");
+ PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
+ "Output(SubScopes) of CondOp should not be null.");
+ auto& sub_scopes = *sub_scopes_var->GetMutable>();
+
+ for (int i = 0; i < 2; ++i) {
+ // Create two sub scopes for true and false branches
+ // sub_scopes[0] for the true branch and sub_scopes[1] for the false
+ // branch
+ CreateScope(scope);
+
+ // Create two tensors for true and false indices
+ // index_tensors[0] for the true branch and index_tensors[1] for the false
+ // branch
+ CreateIndexTensor(scope);
+
+ PADDLE_ENFORCE(!Inputs("Xs").empty(),
+ "Inputs(Xs) of CondOp can't be empty.");
+ for (auto& input : Inputs("Xs")) {
+ // Create a new tensor in sub-scope for input-type tensor
+ Variable* v = sub_scopes[i]->NewVar(input);
+ LoDTensor* sub_input = v->GetMutable();
+ sub_input->Resize(scope.FindVar(input)->GetMutable()->dims());
+ }
+
+ for (auto& output : (*sub_net_op_[i]).Outputs()) {
+ for (auto& var_name : output.second) {
+ sub_scopes[i]->NewVar(var_name);
+ }
+ }
+
+ // each net calls InferShape
+ sub_net_op_[i]->InferShape(*sub_scopes[i]);
+ }
+
+ for (auto& output : Outputs("Outs")) {
+ LoDTensor* tensor_t_out =
+ sub_scopes[0]->FindVar(output)->GetMutable();
+ PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should not be NULL");
+ LoDTensor* tensor_f_out =
+ sub_scopes[1]->FindVar(output)->GetMutable();
+ PADDLE_ENFORCE_NOT_NULL(tensor_f_out, "False output should not be NULL");
+
+ auto* tensor_out_var = scope.FindVar(output);
+ PADDLE_ENFORCE_NOT_NULL(tensor_out_var, "Output not found");
+ LoDTensor* tensor_out = tensor_out_var->GetMutable();
+ PADDLE_ENFORCE_NOT_NULL(tensor_t_out,
+ "True output tensor should not be NULL");
+
+ // check output size should be same
+ PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
+ "Outputs not of the same shape");
+ tensor_out->Resize(tensor_t_out->dims());
+ // tensor_out->mutable_data(tensor_out->dims(),
+ // platform::CPUPlace());
+ tensor_out->mutable_data(platform::CPUPlace());
+ }
+}
+
+void CondOp::Run(const Scope& scope,
+ const platform::DeviceContext& dev_ctx) const {
+ auto* sub_scopes_var = scope.FindVar("SubScopes");
+ PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
+ "Output(SubScopes) of CondOp should not be null.");
+ auto sub_scopes = sub_scopes_var->Get>();
+ auto* index_tensors_var = scope.FindVar("IndexTensors");
+ PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
+ "Output(IndexTensors) of CondOp should not be null.");
+ auto index_tensors = index_tensors_var->Get>();
+
+ std::string cond_name = Input("Cond");
+ Variable* cond_var = scope.FindVar(cond_name);
+ PADDLE_ENFORCE_NOT_NULL(cond_var,
+ "Input(Cond) of CondOp should not be null.");
+ const LoDTensor* cond = cond_var->GetMutable();
+
+ // Step 1: get the true/false index at runtime
+ // index_[0]: vector, contains all index for cond[i] == true
+ // index_[1]: vector, contains all index for cond[i] == false
+ for (int i = 0; i < 2; ++i) index_[i].clear();
+
+ const int* cond_data = cond->data();
+ for (int i = 0; i < cond->dims()[0]; ++i) {
+ if (cond_data[i])
+ index_[0].push_back(i);
+ else
+ index_[1].push_back(i);
+ }
+
+ // put index_[0] and index_[1] into two tensors:
+ // index_tensor_[0] and index_tensor_[1]
+ DDim dim = paddle::framework::make_ddim({0});
+ for (int i = 0; i < 2; ++i) {
+ dim[0] = index_[i].size();
+ int* tmp_ptr =
+ index_tensors[i].mutable_data(dim, platform::CPUPlace());
+ index_tensors[i].Resize(dim);
+ memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
+ }
+
+ // Step 2: collect data by calling gather
+ for (int i = 0; i < 2; ++i) {
+ // i= 0/i for True and False branches respectively
+ for (auto& input : Inputs("Xs")) {
+ // find Tensor
+ Variable* v = scope.FindVar(input);
+ PADDLE_ENFORCE_NOT_NULL(v);
+ LoDTensor* tensor_parent = v->GetMutable();
+
+ v = sub_scopes[i]->FindVar(input);
+ PADDLE_ENFORCE_NOT_NULL(v);
+ LoDTensor* tensor_child = v->GetMutable();
+
+ // Resize child
+ DDim dim = tensor_child->dims();
+ dim[0] = index_[i].size();
+ tensor_child->Resize(dim);
+ tensor_child->mutable_data(dim, platform::CPUPlace());
+
+ Gather(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i],
+ tensor_child);
+ }
+ }
+
+ // Step 3: run
+ for (int i = 0; i < 2; ++i) {
+ sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);
+ }
+
+ // Step 4: merge output results
+ PADDLE_ENFORCE(!Outputs("Outs").empty(),
+ "Outputs(Outs) of CondOp can't be empty.");
+ for (int i = 0; i < 2; ++i) {
+ // i= 0/i for True and False branches respectively
+ for (auto& output : Outputs("Outs")) {
+ // find Tensor
+ Variable* v = scope.FindVar(output);
+ PADDLE_ENFORCE_NOT_NULL(v);
+ LoDTensor* tensor_parent = v->GetMutable();
+
+ v = sub_scopes[i]->FindVar(output);
+ PADDLE_ENFORCE_NOT_NULL(v);
+ LoDTensor* tensor_child = v->GetMutable();
+
+ ScatterUpdate(dev_ctx.GetPlace(), tensor_child, &index_tensors[i],
+ tensor_parent);
+ }
+ }
+}
+
+class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
+ public:
+ CondOpProtoAndCheckerMaker(framework::OpProto* proto,
+ framework::OpAttrChecker* op_checker)
+ : OpProtoAndCheckerMaker(proto, op_checker) {
+ AddInput("Cond", "The condition, which is a bool vector");
+ AddInput("Xs", "Inputs of Subnets").AsDuplicable();
+ AddOutput("Outs", "Outputs of Cond_Op after merge").AsDuplicable();
+
+ AddOutput("SubScopes", "sub scopes for true and false branches");
+ AddOutput("IndexTensors", "Index Tensors contains indices for true/false");
+
+ AddComment(R"DOC(
+Sample dependent Cond Operator:
+Given Cond[i] as a 1/0 vector to indicate true/false
+The equation is:
+Out[i] = subnet_t[i], if Cond[i] == true
+Out[i] = subnet_t[i], if Cond[i] == false
+)DOC");
+ }
+};
+
+} // namespace operators
+} // namespace paddle
+
+REGISTER_OP_WITHOUT_GRADIENT(cond, paddle::operators::CondOp,
+ paddle::operators::CondOpProtoAndCheckerMaker);
diff --git a/paddle/operators/cond_op.h b/paddle/operators/cond_op.h
new file mode 100644
index 0000000000000000000000000000000000000000..b09e32331e66c53555c88c06d7b1456276050eaa
--- /dev/null
+++ b/paddle/operators/cond_op.h
@@ -0,0 +1,91 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+#include
+#include "glog/logging.h"
+#include "paddle/framework/ddim.h"
+#include "paddle/framework/eigen.h"
+#include "paddle/framework/operator.h"
+#include "paddle/framework/tensor.h"
+#include "paddle/operators/net_op.h"
+
+namespace paddle {
+namespace operators {
+
+/*
+ * @brief CondOp is a dynamic if-else Operator
+ *
+ * It has a input tensor named cond indicating which netop each instance will
+ * run.
+ *
+ * if cond == 1, it will run true_net, which is a NetOp.
+ *
+ * if cond == 0, it will run false_net, which is another NetOp.
+ */
+class CondOp : public framework::OperatorBase {
+ public:
+ CondOp(const std::string& type, const framework::VariableNameMap& inputs,
+ const framework::VariableNameMap& outputs,
+ const framework::AttributeMap& attrs)
+ : OperatorBase(type, inputs, outputs, attrs) {
+ index_.resize(2);
+ sub_net_op_.resize(2);
+ }
+
+ CondOp(const CondOp& o)
+ : framework::OperatorBase(
+ static_cast(o)) {
+ // TODO(yuyang18): Implement copy ctor well.
+ PADDLE_THROW("Not implemented");
+ }
+
+ void CreateScope(const framework::Scope& scope) const;
+
+ void CreateIndexTensor(const framework::Scope& scope) const;
+
+ /*
+ * InferShape must be called before Run.
+ */
+ void InferShape(const framework::Scope& scope) const override;
+
+ /*
+ * Set True Block
+ */
+ void set_truenet(std::unique_ptr&& net) {
+ sub_net_op_[0] = std::move(net);
+ }
+
+ /*
+ * Set False Block
+ */
+ void set_falsenet(std::unique_ptr&& net) {
+ sub_net_op_[1] = std::move(net);
+ }
+
+ void Run(const framework::Scope& scope,
+ const platform::DeviceContext& dev_ctx) const override;
+
+ private:
+ // sub_net_op_[0]: subnet_t
+ // sub_net_op_[1]: subnet_f
+ std::vector> sub_net_op_;
+
+ // index_[0]: True_index;
+ // index_[1]: False_index;
+ mutable std::vector> index_;
+};
+
+} // namespace operators
+} // namespace paddle
diff --git a/paddle/operators/cos_sim_op.cc b/paddle/operators/cos_sim_op.cc
index c033af3b741ae26ad9d37b2164f87aa6e8651c6e..72c446493684246959656dc048e7f0e761665423 100644
--- a/paddle/operators/cos_sim_op.cc
+++ b/paddle/operators/cos_sim_op.cc
@@ -25,16 +25,38 @@ class CosSimOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
- PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
- PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
- PADDLE_ENFORCE_EQ(ctx.Input("X")->dims(),
- ctx.Input("Y")->dims(),
- "Dimensions of Input(X) and Input(Y) must be the same.");
-
- auto dims = ctx.Input("X")->dims();
- ctx.Output("Out")->Resize({dims[0], 1});
- ctx.Output("XNorm")->Resize({dims[0], 1});
- ctx.Output("YNorm")->Resize({dims[0], 1});
+ // notnull check
+ PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
+ "Input(X) of CosSimOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
+ "Input(Y) of CosSimOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
+ "Output(Out) of CosSimOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("XNorm"),
+ "Output(XNorm) of CosSimOp should not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("YNorm"),
+ "Output(YNorm) of CosSimOp should not be null.");
+
+ // shape check
+ auto x_dims = ctx.Input("X")->dims();
+ auto y_dims = ctx.Input("Y")->dims();
+
+ PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
+ "Ranks of Input(X) and Input(Y) must be equal.");
+ PADDLE_ENFORCE_GE(x_dims.size(), 2,
+ "Rank of Input(X) must not be less than 2.");
+ PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
+ framework::slice_ddim(y_dims, 1, y_dims.size()),
+ "All dimensions except the 1st of Input(X) and Input(Y) "
+ "must be equal.");
+ PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
+ "The 1st dimension of Input(Y) must be equal to Input(X) or"
+ " just 1 (which will be broadcasted to match Input(X)).");
+
+ // resize tensor
+ ctx.Output("Out")->Resize({x_dims[0], 1});
+ ctx.Output("XNorm")->Resize({x_dims[0], 1});
+ ctx.Output("YNorm")->Resize({y_dims[0], 1});
}
};
@@ -42,16 +64,27 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
- AddInput("X", "The first input of cos_sim op.");
- AddInput("Y", "The second input of cos_sim op.");
+ AddInput("X", "The 1st input of cos_sim op.");
+ AddInput("Y", "The 2nd input of cos_sim op.");
AddOutput("Out", "The output of cos_sim op.");
- AddOutput("XNorm", "Row norm of the first input.").AsIntermediate();
- AddOutput("YNorm", "Row norm of the second input.").AsIntermediate();
+ AddOutput("XNorm",
+ "Norm of the first input, reduced along the 1st "
+ "dimension.")
+ .AsIntermediate();
+ AddOutput("YNorm",
+ "Norm of the second input, reduced along the 1st "
+ "dimension.")
+ .AsIntermediate();
AddComment(R"DOC(
Cosine Similarity Operator.
-The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y))
+The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).
+
+Input(X) and Input(Y) must have the same shape, except that the 1st dimension
+of Input(Y) could be just 1 (different from Input(X)), which will be
+broadcasted to match the shape of Input(X) before computing their cosine
+similarity.
)DOC");
}
};
@@ -62,34 +95,54 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
+ // notnull check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
"Input(XNorm) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
"Input(YNorm) must not be null.");
+ PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"),
+ "Input(Out) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) must not be null.");
+ // shape check
auto x_dims = ctx.Input("X")->dims();
auto y_dims = ctx.Input("Y")->dims();
auto xnorm_dims = ctx.Input("XNorm")->dims();
auto ynorm_dims = ctx.Input("YNorm")->dims();
- auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims();
- PADDLE_ENFORCE_EQ(x_dims, y_dims,
- "Dimensions of Input(X) and Input(Y) must be the same.");
- PADDLE_ENFORCE_EQ(xnorm_dims[0], x_dims[0],
- "1st dimension of XNorm must equal that of Input(X).");
- PADDLE_ENFORCE_EQ(xnorm_dims[1], 1, "2st dimension of XNorm must be one.");
- PADDLE_ENFORCE_EQ(ynorm_dims[0], y_dims[0],
- "1st dimension of YNorm must equal that of Input(Y).");
- PADDLE_ENFORCE_EQ(ynorm_dims[1], 1, "2st dimension of YNorm must be one.");
- PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
- "1st dimension of Out@GRAD must equal that of Input(X)");
- PADDLE_ENFORCE_EQ(out_dims[1], 1, "1st dimension of Out@GRAD must be one.");
-
- auto *x_grad = ctx.Output(framework::GradVarName("X"));
- auto *y_grad = ctx.Output(framework::GradVarName("Y"));
+ auto out_dims = ctx.Input("Out")->dims();
+ auto out_grad_dims =
+ ctx.Input(framework::GradVarName("Out"))->dims();
+
+ PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
+ "Ranks of Input(X) and Input(Y) must be equal.");
+ PADDLE_ENFORCE_GE(x_dims.size(), 2,
+ "Rank of Input(X) must not be less than 2.");
+ PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
+ framework::slice_ddim(y_dims, 1, y_dims.size()),
+ "All dimensions except the 1st of Input(X) and Input(Y) "
+ "must be equal.");
+ PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
+ "The 1st dimension of Input(Y) must be equal to Input(X) or"
+ " just 1 (which will be broadcasted to match Input(X)).");
+ auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
+ auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
+ PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
+ "Shape of Input(XNorm) must be [X.Dim(0), 1].");
+ PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
+ "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
+ PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
+ "Shape of Input(Out) must be [X.Dim(0), 1].");
+ PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
+ "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");
+
+ // resize tensor
+ auto *x_grad =
+ ctx.Output(framework::GradVarName("X"));
+ auto *y_grad =
+ ctx.Output(framework::GradVarName("Y"));
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
}
diff --git a/paddle/operators/cos_sim_op.h b/paddle/operators/cos_sim_op.h
index 9e2bcebe3b5432c157fac895a9bbab5164193dbb..bcf6f758cae561a2e22f5be6c7a242647ef1c144 100644
--- a/paddle/operators/cos_sim_op.h
+++ b/paddle/operators/cos_sim_op.h
@@ -31,30 +31,38 @@ template
class CosSimKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
- auto* input_x = context.Input("X");
- auto* input_y = context.Input("Y");
- auto* output_z = context.Output("Out");
- auto* output_x_norm = context.Output("XNorm");
- auto* output_y_norm = context.Output("YNorm");
+ // get Tensor
+ auto* in_x = context.Input("X");
+ auto* in_y = context.Input("Y");
+ auto* out_z = context.Output("Out");
+ auto* out_x_norm = context.Output("XNorm");
+ auto* out_y_norm = context.Output