提交 beb12455 编写于 作者: L Luo Tao

add relu converter and unit-test

上级 9945265f
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader) nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc engine.cc DEPS dynload_cuda) nv_test(test_tensorrt_engine SRCS test_engine.cc engine.cc DEPS dynload_cuda)
set(ENGINE_FILE ${CMAKE_CURRENT_SOURCE_DIR}/engine.cc)
add_subdirectory(convert) add_subdirectory(convert)
file(GLOB TENSORRT_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc") nv_test(test_tensorrt_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES})
nv_test(test_tensorrt_op_converter SRCS test_op_converter.cc ${TENSORRT_OPS} DEPS ${FLUID_CORE_MODULES}) nv_test(test_tensorrt_activation_op SRCS test_activation_op.cc ${ENGINE_FILE} activation_op.cc
DEPS ${FLUID_CORE_MODULES} activation_op)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class ReluOpConverter : public OpConverter {
public:
ReluOpConverter() {}
void operator()(const framework::OpDesc& op) override {
LOG(INFO) << "convert a fluid relu op to tensorrt activation layer whose "
"type is Relu";
const nvinfer1::ITensor* input_tensor =
engine_->GetITensor(op.Input("X")[0]);
nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
engine_, Activation, *const_cast<nvinfer1::ITensor*>(input_tensor),
nvinfer1::ActivationType::kRELU);
engine_->SetITensor(op.Output("Out")[0], layer->getOutput(0));
}
};
REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
...@@ -30,13 +30,14 @@ namespace tensorrt { ...@@ -30,13 +30,14 @@ namespace tensorrt {
class OpConverter { class OpConverter {
public: public:
OpConverter() {} OpConverter() {}
virtual void operator()(const framework::OpDesc& op) {} virtual void operator()(const framework::OpDesc& op) {}
void Execute(const framework::OpDesc& op) {
void Execute(const framework::OpDesc& op, TensorRTEngine* engine) {
std::string type = op.Type(); std::string type = op.Type();
auto it = converters_.find(type); auto it = converters_.find(type);
PADDLE_ENFORCE(it != converters_.end(), "no OpConverter for optype [%s]", PADDLE_ENFORCE(it != converters_.end(), "no OpConverter for optype [%s]",
type); type);
it->second->SetEngine(engine);
(*it->second)(op); (*it->second)(op);
} }
...@@ -50,18 +51,31 @@ class OpConverter { ...@@ -50,18 +51,31 @@ class OpConverter {
converters_[key] = new T; converters_[key] = new T;
} }
// convert fluid op to tensorrt layer
void ConvertOp(const framework::OpDesc& op, TensorRTEngine* engine) {
OpConverter::Global().Execute(op, engine);
}
// convert fluid block to tensorrt network
void ConvertBlock(const framework::BlockDesc& block, TensorRTEngine* engine) {
for (auto op : block.AllOps()) {
OpConverter::Global().Execute(*op, engine);
}
}
void SetEngine(TensorRTEngine* engine) { engine_ = engine; }
virtual ~OpConverter() {} virtual ~OpConverter() {}
// TensorRT engine
TensorRTEngine* engine_{nullptr};
private: private:
// registered op converter map, whose key is the fluid op type, and value is // registered op converter map, whose key is the fluid op type, and value is
// the pointer position of corresponding OpConverter class. // the pointer position of corresponding OpConverter class.
std::unordered_map<std::string, OpConverter*> converters_; std::unordered_map<std::string, OpConverter*> converters_;
// fluid inference scope // fluid inference scope
framework::Scope* scope_; framework::Scope* scope_{nullptr};
// tensorrt input/output tensor map, whose key is the fluid variable name,
// and value is the pointer position of tensorrt tensor
std::unordered_map<std::string, nvinfer1::ITensor*> tr_tensors_;
}; };
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \ #define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
...@@ -72,18 +86,6 @@ class OpConverter { ...@@ -72,18 +86,6 @@ class OpConverter {
}; \ }; \
trt_##op_type__##_converter trt_##op_type__##_converter__; trt_##op_type__##_converter trt_##op_type__##_converter__;
class BlockConverter {
public:
BlockConverter() {}
// convert fluid block to tensorrt network
void ConvertBlock(const framework::BlockDesc& block) {
for (auto op : block.AllOps()) {
OpConverter::Global().Execute(*op);
}
}
};
} // namespace tensorrt } // namespace tensorrt
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
USE_OP(relu);
namespace paddle {
namespace inference {
namespace tensorrt {
void compare(float input, float expect) {
framework::Scope scope;
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
// init fluid op and variable
auto x_var = scope.Var("X");
auto x_tensor = x_var->GetMutable<framework::LoDTensor>();
x_tensor->Resize({1, 1});
std::vector<float> init;
init.push_back(input);
framework::TensorFromVector(init, ctx, x_tensor);
auto out_var = scope.Var("Out");
auto out_tensor = out_var->GetMutable<framework::LoDTensor>();
out_tensor->Resize({1, 1});
out_tensor->mutable_data<float>(place);
framework::OpDesc op_desc;
op_desc.SetType("relu");
op_desc.SetInput("X", {"X"});
op_desc.SetOutput("Out", {"Out"});
auto relu_op = framework::OpRegistry::CreateOp(op_desc);
// run fluid op
relu_op->Run(scope, place);
std::vector<float> out1;
framework::TensorToVector(*out_tensor, ctx, &out1);
// init tensorrt op
cudaStream_t stream;
ASSERT_EQ(0, cudaStreamCreate(&stream));
TensorRTEngine* engine = new TensorRTEngine(1, 1 << 10, &stream);
engine->InitNetwork();
engine->DeclareInput("X", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
OpConverter op_converter;
op_converter.ConvertOp(op_desc, engine);
engine->DeclareOutput("Out");
engine->FreezeNetwork();
engine->SetInputFromCPU("X", &input, 1 * sizeof(float));
// run tensorrt op
engine->Execute(1);
float out2;
engine->GetOutputInCPU("Out", &out2, 1 * sizeof(float));
ASSERT_EQ(out1[0], out2);
ASSERT_EQ(out1[0], expect);
delete engine;
cudaStreamDestroy(stream);
}
TEST(OpConverter, ConvertRelu) {
compare(1, 1); // relu(1) = 1
compare(-5, 0); // relu(-5) = 0
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
...@@ -28,8 +28,8 @@ TEST(BlockConverter, ConvertBlock) { ...@@ -28,8 +28,8 @@ TEST(BlockConverter, ConvertBlock) {
auto* conv2d_op = block->AppendOp(); auto* conv2d_op = block->AppendOp();
conv2d_op->SetType("conv2d"); conv2d_op->SetType("conv2d");
BlockConverter converter; OpConverter converter;
converter.ConvertBlock(*block); converter.ConvertBlock(*block, nullptr /*TensorRTEngine*/);
} }
} // namespace tensorrt } // namespace tensorrt
......
...@@ -80,8 +80,8 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name, ...@@ -80,8 +80,8 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first"); PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
auto* input = infer_network_->addInput(name.c_str(), dtype, dim); auto* input = infer_network_->addInput(name.c_str(), dtype, dim);
PADDLE_ENFORCE(input, "infer network add input %s failed", name); PADDLE_ENFORCE(input, "infer network add input %s failed", name);
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * AccumDims(dim); buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * AccumDims(dim);
TensorRTEngine::SetITensor(name, input);
return input; return input;
} }
...@@ -99,6 +99,19 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset, ...@@ -99,6 +99,19 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
buffer_sizes_[name] = 0; buffer_sizes_[name] = 0;
} }
void TensorRTEngine::DeclareOutput(const std::string& name) {
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
name);
auto* output = TensorRTEngine::GetITensor(name);
PADDLE_ENFORCE(output != nullptr);
output->setName(name.c_str());
infer_network_->markOutput(*output);
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
buffer_sizes_[name] = 0;
}
void* TensorRTEngine::GetOutputInGPU(const std::string& name) { void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
return buffer(name); return buffer(name);
} }
...@@ -110,7 +123,6 @@ void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst, ...@@ -110,7 +123,6 @@ void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
PADDLE_ENFORCE(it != buffer_sizes_.end()); PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE_GT(it->second, 0); PADDLE_ENFORCE_GT(it->second, 0);
PADDLE_ENFORCE_GE(max_size, it->second); PADDLE_ENFORCE_GE(max_size, it->second);
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buffer(name), it->second, PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buffer(name), it->second,
cudaMemcpyDeviceToHost, *stream_)); cudaMemcpyDeviceToHost, *stream_));
} }
...@@ -126,10 +138,24 @@ void*& TensorRTEngine::buffer(const std::string& name) { ...@@ -126,10 +138,24 @@ void*& TensorRTEngine::buffer(const std::string& name) {
void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data, void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data,
size_t size) { size_t size) {
void* buf = buffer(name); void* buf = buffer(name);
cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
0, cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_)); 0, cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_));
} }
void TensorRTEngine::SetITensor(const std::string& name,
nvinfer1::ITensor* tensor) {
PADDLE_ENFORCE(tensor != nullptr);
PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate itensor name %s",
name);
itensor_map_[name] = tensor;
}
nvinfer1::ITensor* TensorRTEngine::GetITensor(const std::string& name) {
PADDLE_ENFORCE(itensor_map_.count(name), "no itensor %s", name);
return itensor_map_[name];
}
} // namespace tensorrt } // namespace tensorrt
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -80,6 +80,8 @@ class TensorRTEngine : public EngineBase { ...@@ -80,6 +80,8 @@ class TensorRTEngine : public EngineBase {
// name. // name.
void DeclareOutput(const nvinfer1::ILayer* layer, int offset, void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
const std::string& name); const std::string& name);
// Set the itensor_map_[name] as the network's output, and set its name.
void DeclareOutput(const std::string& name);
// GPU memory address for an ITensor with specific name. One can operate on // GPU memory address for an ITensor with specific name. One can operate on
// these memory directly for acceleration, for example, output the converted // these memory directly for acceleration, for example, output the converted
...@@ -98,6 +100,10 @@ class TensorRTEngine : public EngineBase { ...@@ -98,6 +100,10 @@ class TensorRTEngine : public EngineBase {
// LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU // LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
// to CPU. // to CPU.
void GetOutputInCPU(const std::string& name, void* dst, size_t max_size); void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
// Fill an ITensor into map itensor_map_.
void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
// Get an ITensor called name.
nvinfer1::ITensor* GetITensor(const std::string& name);
nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); } nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
nvinfer1::INetworkDefinition* network() { return infer_network_.get(); } nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
...@@ -113,6 +119,8 @@ class TensorRTEngine : public EngineBase { ...@@ -113,6 +119,8 @@ class TensorRTEngine : public EngineBase {
std::vector<void*> buffers_; std::vector<void*> buffers_;
// max data size for the buffers. // max data size for the buffers.
std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_; std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
itensor_map_;
// TensorRT related internal members // TensorRT related internal members
template <typename T> template <typename T>
......
...@@ -70,7 +70,6 @@ TEST_F(TensorRTEngineTest, add_layer) { ...@@ -70,7 +70,6 @@ TEST_F(TensorRTEngineTest, add_layer) {
engine_->Execute(1); engine_->Execute(1);
LOG(INFO) << "to get output"; LOG(INFO) << "to get output";
// void* y_v =
float y_cpu; float y_cpu;
engine_->GetOutputInCPU("y", &y_cpu, sizeof(float)); engine_->GetOutputInCPU("y", &y_cpu, sizeof(float));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册