Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
bd2ea0e1
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bd2ea0e1
编写于
6月 05, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add host_memory_profiling_cn.md
上级
23812490
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
89 addition
and
0 deletion
+89
-0
doc/fluid/howto/optimization/host_memory_profiling_cn.md
doc/fluid/howto/optimization/host_memory_profiling_cn.md
+89
-0
doc/fluid/howto/optimization/memory_cpu_allocator.jpg
doc/fluid/howto/optimization/memory_cpu_allocator.jpg
+0
-0
doc/fluid/howto/optimization/memory_cpu_allocator.pdf
doc/fluid/howto/optimization/memory_cpu_allocator.pdf
+0
-0
doc/fluid/howto/optimization/memory_leak_protobuf.pdf
doc/fluid/howto/optimization/memory_leak_protobuf.pdf
+0
-0
doc/fluid/howto/optimization/memory_program_desc.png
doc/fluid/howto/optimization/memory_program_desc.png
+0
-0
doc/fluid/howto/optimization/memory_protobuf_arena.png
doc/fluid/howto/optimization/memory_protobuf_arena.png
+0
-0
未找到文件。
doc/fluid/howto/optimization/host_memory_profiling_cn.md
0 → 100644
浏览文件 @
bd2ea0e1
## 堆内存分析和优化
计算机程序都可能有内存泄露的风险。
**内存泄露**
一般是由于程序在堆(heap)上分配了内存而没有释放,随着程序的运行占用的内存越来越大,一方面会影响程序的稳定性,可能让运行速度越来越慢,或者造成oom,甚至会影响运行程序的机器的稳定性,造成宕机。
目前有很多内存泄露分析工具,比较经典的有
[
valgrind
](
http://valgrind.org/docs/manual/quick-start.html#quick-start.intro
)
,
[
gperftools
](
https://gperftools.github.io/gperftools/
)
。
因为Fluid是用Python驱动C++ core来运行,valgrind直接分析非常困难,需要自己编译debug版本的、带valgrind支持的专用版本,而且输出的信息中大部分是Python自己的符号和调用信息,分析起来很困难,所以不建议使用。
本教程主要介绍
[
gperftools
](
https://gperftools.github.io/gperftools/
)
的使用。
gperftool主要支持以下四个功能:
-
thread-caching malloc
-
heap-checking using tcmalloc
-
heap-profiling using tcmalloc
-
CPU profiler
Paddle也提供了基于gperftool的
[
CPU性能分析教程
](
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/cpu_profiling_cn.md
)
。
对于堆内存的分析,主要用到thread-caching malloc和heap-profiling using tcmalloc。
## 使用流程
#### 环境
本教程基于paddle提供的Docker开发环境paddlepaddle/paddle:latest-dev,基于Ubuntu 16.04.4 LTS环境。
#### 使用流程
-
安装google-perftools
```
apt-get install libunwind-dev
apt-get install google-perftools
```
-
安装pprof
```
go get -u github.com/google/pprof
```
-
设置运行环境
```
export PPROF_PATH=/root/gopath/bin/pprof
export PPROF_BINARY_PATH=/root/gopath/bin/pprof
export LD_PRELOAD=/usr/lib/libtcmalloc.so.4
```
-
使用heap profile来运行python程序。本质上是周期性的对堆的分配情况做一次快照。
```
# HEAPPROFILE 设置生成的堆分析文件的目录和文件前缀
# HEAP_PROFILE_ALLOCATION_INTERVAL 设置每分配多少存储dump一次dump,默认1GB
env HEAPPROFILE="./perf_log/test.log" HEAP_PROFILE_ALLOCATION_INTERVAL=209715200 python trainer.py
```
随着程序的运行,会在perf_log这个文件夹下生成很多文件,如下:
```
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0001.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0002.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0003.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0004.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0005.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0006.heap
```
-
使用pprof对heap文件进行分析。分析有两种模式:
-
完整模式。会对当前heap做一个分析,显示目前分配内存一些调用路径。
```
pprof --pdf python test.log.0012.heap
```
上述命令会生成一个profile00x.pdf的文件,可以直接打开,例如:[allocator](./memory_cpu_allocator.pdf)。从下图可以看出,在CPU版本fluid的运行过程中,分配存储最多的模块式CPUAllocator. 而别的模块相对而言分配内存较少,所以被忽略了,这对于分配内存泄露是很不方便的,因为泄露是一个缓慢的过程,在这种图中是无法看到的。
![result](memory_cpu_allocator.jpg)
- Diff模式。可以对两个时刻的heap做diff,把一些内存分配没有发生变化的模块去掉,而把增量部分显示出来。
```
pprof --pdf --base test.log.0010.heap python test.log.1045.heap
```
生成的结果为:[`memory_leak_protobuf`](./memory_leak_protobuf.pdf)
从图中可以看出:ProgramDesc这个结构,在两个版本之间增长了200MB+,所以这里有很大的内存泄露的可能性,最终结果也确实证明是这里造成了泄露。
![result](memory_program_desc.png)
![result](memory_protobuf_arena.png)
doc/fluid/howto/optimization/memory_cpu_allocator.jpg
0 → 100644
浏览文件 @
bd2ea0e1
75.8 KB
doc/fluid/howto/optimization/memory_cpu_allocator.pdf
0 → 100644
浏览文件 @
bd2ea0e1
文件已添加
doc/fluid/howto/optimization/memory_leak_protobuf.pdf
0 → 100644
浏览文件 @
bd2ea0e1
文件已添加
doc/fluid/howto/optimization/memory_program_desc.png
0 → 100644
浏览文件 @
bd2ea0e1
30.0 KB
doc/fluid/howto/optimization/memory_protobuf_arena.png
0 → 100644
浏览文件 @
bd2ea0e1
31.8 KB
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录