diff --git a/.travis.yml b/.travis.yml index 44b755ee32d204c883f0d74e7ad0f78380918954..f9b4a7e08315a42a61a58d6c61c45771df962c4d 100644 --- a/.travis.yml +++ b/.travis.yml @@ -50,6 +50,7 @@ before_install: # protobuf version. - pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker - pip install rarfile + - eval "$(GIMME_GO_VERSION=1.8.3 gimme)" - | function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; } script: diff --git a/CMakeLists.txt b/CMakeLists.txt index 79210d043648de5d493f0b998eeb885c993a6106..2b6a80ca43cf131c6886455cb5a86a61246ac17c 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -126,7 +126,9 @@ endif(WITH_GPU) add_subdirectory(proto) add_subdirectory(paddle) +add_subdirectory(go/master/c) add_subdirectory(python) +add_subdirectory(go/pserver/cclient) if(WITH_DOC) add_subdirectory(doc) diff --git a/Dockerfile b/Dockerfile index b6f99ca539d077164c71d797a5ccda7b1b5c44ba..39af60966b6cab7d8b9e644f4ea658613f8ba518 100644 --- a/Dockerfile +++ b/Dockerfile @@ -30,7 +30,8 @@ RUN apt-get update && \ python-numpy python-matplotlib gcc g++ \ automake locales clang-format-3.8 swig doxygen cmake \ liblapack-dev liblapacke-dev libboost-dev \ - clang-3.8 llvm-3.8 libclang-3.8-dev && \ + clang-3.8 llvm-3.8 libclang-3.8-dev \ + net-tools && \ apt-get clean -y # Install Go diff --git a/cmake/cpplint.cmake b/cmake/cpplint.cmake index 02a5c0b2c9be782c459a255c6ffd6ba6441f2693..48f705818b70c92adef107fd3c973ae1ab3d34bb 100644 --- a/cmake/cpplint.cmake +++ b/cmake/cpplint.cmake @@ -59,7 +59,7 @@ macro(add_style_check_target TARGET_NAME) "--filter=${STYLE_FILTER}" "--write-success=${CUR_GEN}" ${filename} DEPENDS ${filename} - WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}) + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) endif() endforeach() endif() diff --git a/cmake/cudnn.cmake b/cmake/cudnn.cmake index 92dce20c698acb7257321bf50c569331a13b106b..69f40df51680a104c47d9335c070c570dcaff59a 100644 --- a/cmake/cudnn.cmake +++ b/cmake/cudnn.cmake @@ -11,23 +11,16 @@ find_path(CUDNN_INCLUDE_DIR cudnn.h get_filename_component(__libpath_hist ${CUDA_CUDART_LIBRARY} PATH) -if(NOT ${CMAKE_HOST_SYSTEM_PROCESSOR}) - execute_process( - COMMAND uname -m COMMAND tr -d '\n' - OUTPUT_VARIABLE HOST_ARCH - RESULT_VARIABLE UNAME_RESULT) - if(${UNAME_RESULT}) - set(HOST_ARCH "x86_64") - endif(${UNAME_RESULT}) -else(NOT ${CMAKE_HOST_SYSTEM_PROCESSOR}) - set(HOST_ARCH ${CMAKE_HOST_SYSTEM_PROCESSOR}) -endif(NOT ${CMAKE_HOST_SYSTEM_PROCESSOR}) +set(TARGET_ARCH "x86_64") +if(NOT ${CMAKE_SYSTEM_PROCESSOR}) + set(TARGET_ARCH ${CMAKE_SYSTEM_PROCESSOR}) +endif() list(APPEND CUDNN_CHECK_LIBRARY_DIRS ${CUDNN_ROOT} ${CUDNN_ROOT}/lib64 ${CUDNN_ROOT}/lib - ${CUDNN_ROOT}/lib/${HOST_ARCH}-linux-gnu + ${CUDNN_ROOT}/lib/${TARGET_ARCH}-linux-gnu $ENV{CUDNN_ROOT} $ENV{CUDNN_ROOT}/lib64 $ENV{CUDNN_ROOT}/lib diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake index cb67793cf974cb8cdd0779227e8642cf7437f7fb..2341e3785bd8e951e10e3f6bbf8a32f63e4ae44d 100644 --- a/cmake/external/openblas.cmake +++ b/cmake/external/openblas.cmake @@ -24,20 +24,25 @@ IF(NOT ${CBLAS_FOUND}) SET(CBLAS_LIBRARIES "${CBLAS_INSTALL_DIR}/lib/${LIBRARY_PREFIX}openblas${STATIC_LIBRARY_SUFFIX}" CACHE FILEPATH "openblas library." FORCE) - SET(COMMON_ARGS CC=${CMAKE_C_COMPILER} NO_SHARED=1 NO_LAPACK=1) + SET(COMMON_ARGS CC=${CMAKE_C_COMPILER} NO_SHARED=1 NO_LAPACK=1 libs) - IF(ANDROID) - # arm_soft_fp_abi branch of OpenBLAS to support softfp - # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi - SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") - SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0 libs) - ELSEIF(RPI) - # use hardfp - SET(OPENBLAS_COMMIT "v0.2.19") - SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 USE_THREAD=0 libs) + IF(CMAKE_CROSSCOMPILING) + IF(ANDROID) + # arm_soft_fp_abi branch of OpenBLAS to support softfp + # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi + SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") + SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0) + ELSEIF(RPI) + # use hardfp + SET(OPENBLAS_COMMIT "v0.2.19") + SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 USE_THREAD=0) + ENDIF() ELSE() SET(OPENBLAS_COMMIT "v0.2.19") - SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 libs NUM_THREADS=64) + SET(OPTIONAL_ARGS "") + IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$") + SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64) + ENDIF() ENDIF() ExternalProject_Add( diff --git a/cmake/generic.cmake b/cmake/generic.cmake index 052530608e6dd7bf86ae082500ad8c838dddaaea..43cd6b398b1caac55b938d576b96eb0282c00fda 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -182,7 +182,7 @@ function(go_library TARGET_NAME) COMMAND env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} build ${BUILD_MODE} -o "${CMAKE_CURRENT_BINARY_DIR}/${LIB_NAME}" ${go_library_SRCS} - WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}) + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) add_custom_target(${TARGET_NAME}_lib ALL DEPENDS ${TARGET_NAME}_timestamp ${go_library_DEPS}) add_library(${TARGET_NAME} STATIC IMPORTED) set_property(TARGET ${TARGET_NAME} PROPERTY @@ -199,7 +199,7 @@ function(go_binary TARGET_NAME) COMMAND env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} build -o "${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}" ${go_library_SRCS} - WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}) + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) add_custom_target(${TARGET_NAME} ALL DEPENDS ${TARGET_NAME}_timestamp ${go_binary_DEPS}) install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME} DESTINATION bin) endfunction(go_binary) @@ -213,7 +213,7 @@ function(go_test TARGET_NAME) COMMAND env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} test -c -o "${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}" ${go_test_SRCS} - WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}) + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) add_custom_target(${TARGET_NAME} ALL DEPENDS ${TARGET_NAME}_timestamp ${go_test_DEPS}) add_test(${TARGET_NAME} ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}) endfunction(go_test) diff --git a/demo/image_classification/.gitignore b/demo/image_classification/.gitignore deleted file mode 100644 index 6a05b8f6632db0977fceade8b48a89b9f7f6e6cc..0000000000000000000000000000000000000000 --- a/demo/image_classification/.gitignore +++ /dev/null @@ -1,9 +0,0 @@ -data/cifar-10-batches-py -data/cifar-out -cifar_vgg_model/* -plot.png -train.log -image_provider_copy_1.py -*pyc -train.list -test.list diff --git a/demo/image_classification/api_v2_resnet.py b/demo/image_classification/api_v2_resnet.py deleted file mode 100644 index 19d20540780becf504973a23b50445d4b65dc2ef..0000000000000000000000000000000000000000 --- a/demo/image_classification/api_v2_resnet.py +++ /dev/null @@ -1,74 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.v2 as paddle - -__all__ = ['resnet_cifar10'] - - -def conv_bn_layer(input, - ch_out, - filter_size, - stride, - padding, - active_type=paddle.activation.Relu(), - ch_in=None): - tmp = paddle.layer.img_conv( - input=input, - filter_size=filter_size, - num_channels=ch_in, - num_filters=ch_out, - stride=stride, - padding=padding, - act=paddle.activation.Linear(), - bias_attr=False) - return paddle.layer.batch_norm(input=tmp, act=active_type) - - -def shortcut(ipt, n_in, n_out, stride): - if n_in != n_out: - return conv_bn_layer(ipt, n_out, 1, stride, 0, - paddle.activation.Linear()) - else: - return ipt - - -def basicblock(ipt, ch_out, stride): - ch_in = ch_out * 2 - tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1) - tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear()) - short = shortcut(ipt, ch_in, ch_out, stride) - return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu()) - - -def layer_warp(block_func, ipt, features, count, stride): - tmp = block_func(ipt, features, stride) - for i in range(1, count): - tmp = block_func(tmp, features, 1) - return tmp - - -def resnet_cifar10(ipt, depth=32): - # depth should be one of 20, 32, 44, 56, 110, 1202 - assert (depth - 2) % 6 == 0 - n = (depth - 2) / 6 - nStages = {16, 64, 128} - conv1 = conv_bn_layer( - ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1) - res1 = layer_warp(basicblock, conv1, 16, n, 1) - res2 = layer_warp(basicblock, res1, 32, n, 2) - res3 = layer_warp(basicblock, res2, 64, n, 2) - pool = paddle.layer.img_pool( - input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg()) - return pool diff --git a/demo/image_classification/api_v2_train.py b/demo/image_classification/api_v2_train.py deleted file mode 100644 index 53cffa6fb4e8b2e19725f4f44bf7b9ffffb25232..0000000000000000000000000000000000000000 --- a/demo/image_classification/api_v2_train.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License - -import sys - -import paddle.v2 as paddle - -from api_v2_vgg import vgg_bn_drop - - -def main(): - datadim = 3 * 32 * 32 - classdim = 10 - - # PaddlePaddle init - paddle.init(use_gpu=False, trainer_count=1) - - image = paddle.layer.data( - name="image", type=paddle.data_type.dense_vector(datadim)) - - # Add neural network config - # option 1. resnet - # net = resnet_cifar10(image, depth=32) - # option 2. vgg - net = vgg_bn_drop(image) - - out = paddle.layer.fc(input=net, - size=classdim, - act=paddle.activation.Softmax()) - - lbl = paddle.layer.data( - name="label", type=paddle.data_type.integer_value(classdim)) - cost = paddle.layer.classification_cost(input=out, label=lbl) - - # Create parameters - parameters = paddle.parameters.create(cost) - - # Create optimizer - momentum_optimizer = paddle.optimizer.Momentum( - momentum=0.9, - regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128), - learning_rate=0.1 / 128.0, - learning_rate_decay_a=0.1, - learning_rate_decay_b=50000 * 100, - learning_rate_schedule='discexp', - batch_size=128) - - # End batch and end pass event handler - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - print "\nPass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) - else: - sys.stdout.write('.') - sys.stdout.flush() - if isinstance(event, paddle.event.EndPass): - result = trainer.test( - reader=paddle.batch( - paddle.dataset.cifar.test10(), batch_size=128), - feeding={'image': 0, - 'label': 1}) - print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) - - # Create trainer - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=momentum_optimizer) - trainer.train( - reader=paddle.batch( - paddle.reader.shuffle( - paddle.dataset.cifar.train10(), buf_size=50000), - batch_size=128), - num_passes=5, - event_handler=event_handler, - feeding={'image': 0, - 'label': 1}) - - -if __name__ == '__main__': - main() diff --git a/demo/image_classification/api_v2_vgg.py b/demo/image_classification/api_v2_vgg.py deleted file mode 100644 index 1e0e6b93adde30425f17aa9cd07542275f4fec37..0000000000000000000000000000000000000000 --- a/demo/image_classification/api_v2_vgg.py +++ /dev/null @@ -1,47 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.v2 as paddle - -__all__ = ['vgg_bn_drop'] - - -def vgg_bn_drop(input): - def conv_block(ipt, num_filter, groups, dropouts, num_channels=None): - return paddle.networks.img_conv_group( - input=ipt, - num_channels=num_channels, - pool_size=2, - pool_stride=2, - conv_num_filter=[num_filter] * groups, - conv_filter_size=3, - conv_act=paddle.activation.Relu(), - conv_with_batchnorm=True, - conv_batchnorm_drop_rate=dropouts, - pool_type=paddle.pooling.Max()) - - conv1 = conv_block(input, 64, 2, [0.3, 0], 3) - conv2 = conv_block(conv1, 128, 2, [0.4, 0]) - conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) - conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) - conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) - - drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5) - fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear()) - bn = paddle.layer.batch_norm( - input=fc1, - act=paddle.activation.Relu(), - layer_attr=paddle.attr.Extra(drop_rate=0.5)) - fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear()) - return fc2 diff --git a/demo/image_classification/data/download_cifar.sh b/demo/image_classification/data/download_cifar.sh deleted file mode 100755 index 532178d627fe19ab8ea79ecae73e5328b5294bea..0000000000000000000000000000000000000000 --- a/demo/image_classification/data/download_cifar.sh +++ /dev/null @@ -1,21 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz -tar zxf cifar-10-python.tar.gz -rm cifar-10-python.tar.gz -rm -rf cifar-out/* -echo Converting CIFAR data to images..... -python process_cifar.py ./cifar-10-batches-py ./cifar-out diff --git a/demo/image_classification/data/process_cifar.py b/demo/image_classification/data/process_cifar.py deleted file mode 100644 index db6666189e5b8008a6b66fb64afcdf98980e72bb..0000000000000000000000000000000000000000 --- a/demo/image_classification/data/process_cifar.py +++ /dev/null @@ -1,89 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -import sys -import os -import PIL.Image as Image -""" - Usage: python process_cifar input_dir output_dir -""" - - -def mkdir_not_exist(path): - """ - Make dir if the path does not exist. - path: the path to be created. - """ - if not os.path.exists(path): - os.mkdir(path) - - -def create_dir_structure(output_dir): - """ - Create the directory structure for the directory. - output_dir: the direcotry structure path. - """ - mkdir_not_exist(os.path.join(output_dir)) - mkdir_not_exist(os.path.join(output_dir, "train")) - mkdir_not_exist(os.path.join(output_dir, "test")) - - -def convert_batch(batch_path, label_set, label_map, output_dir, data_split): - """ - Convert CIFAR batch to the structure of Paddle format. - batch_path: the batch to be converted. - label_set: the set of labels. - output_dir: the output path. - data_split: whether it is training or testing data. - """ - data = np.load(batch_path) - for data, label, filename in zip(data['data'], data['labels'], - data['filenames']): - data = data.reshape((3, 32, 32)) - data = np.transpose(data, (1, 2, 0)) - label = label_map[label] - output_dir_this = os.path.join(output_dir, data_split, str(label)) - output_filename = os.path.join(output_dir_this, filename) - if not label in label_set: - label_set[label] = True - mkdir_not_exist(output_dir_this) - Image.fromarray(data).save(output_filename) - - -if __name__ == '__main__': - input_dir = sys.argv[1] - output_dir = sys.argv[2] - num_batch = 5 - create_dir_structure(output_dir) - label_map = { - 0: "airplane", - 1: "automobile", - 2: "bird", - 3: "cat", - 4: "deer", - 5: "dog", - 6: "frog", - 7: "horse", - 8: "ship", - 9: "truck" - } - labels = {} - for i in range(1, num_batch + 1): - convert_batch( - os.path.join(input_dir, "data_batch_%d" % i), labels, label_map, - output_dir, "train") - convert_batch( - os.path.join(input_dir, "test_batch"), {}, label_map, output_dir, - "test") diff --git a/demo/image_classification/image_provider.py b/demo/image_classification/image_provider.py deleted file mode 100644 index 6a315ff094c1af5f8250d8a22ff96740dddd9808..0000000000000000000000000000000000000000 --- a/demo/image_classification/image_provider.py +++ /dev/null @@ -1,89 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import io -import random - -import paddle.utils.image_util as image_util -from paddle.trainer.PyDataProvider2 import * - - -# -# {'img_size': 32, -# 'settings': a global object, -# 'color': True, -# 'mean_img_size': 32, -# 'meta': './data/cifar-out/batches/batches.meta', -# 'num_classes': 10, -# 'file_list': ('./data/cifar-out/batches/train_batch_000',), -# 'use_jpeg': True} -def hook(settings, img_size, mean_img_size, num_classes, color, meta, use_jpeg, - is_train, **kwargs): - settings.mean_img_size = mean_img_size - settings.img_size = img_size - settings.num_classes = num_classes - settings.color = color - settings.is_train = is_train - - if settings.color: - settings.img_raw_size = settings.img_size * settings.img_size * 3 - else: - settings.img_raw_size = settings.img_size * settings.img_size - - settings.meta_path = meta - settings.use_jpeg = use_jpeg - - settings.img_mean = image_util.load_meta(settings.meta_path, - settings.mean_img_size, - settings.img_size, settings.color) - - settings.logger.info('Image size: %s', settings.img_size) - settings.logger.info('Meta path: %s', settings.meta_path) - settings.input_types = { - 'image': dense_vector(settings.img_raw_size), - 'label': integer_value(settings.num_classes) - } - - settings.logger.info('DataProvider Initialization finished') - - -@provider(init_hook=hook, min_pool_size=0) -def processData(settings, file_list): - """ - The main function for loading data. - Load the batch, iterate all the images and labels in this batch. - file_list: the batch file list. - """ - with open(file_list, 'r') as fdata: - lines = [line.strip() for line in fdata] - random.shuffle(lines) - for file_name in lines: - with io.open(file_name.strip(), 'rb') as file: - data = cPickle.load(file) - indexes = list(range(len(data['images']))) - if settings.is_train: - random.shuffle(indexes) - for i in indexes: - if settings.use_jpeg == 1: - img = image_util.decode_jpeg(data['images'][i]) - else: - img = data['images'][i] - img_feat = image_util.preprocess_img( - img, settings.img_mean, settings.img_size, - settings.is_train, settings.color) - label = data['labels'][i] - yield { - 'image': img_feat.astype('float32'), - 'label': int(label) - } diff --git a/demo/image_classification/image_util.py b/demo/image_classification/image_util.py deleted file mode 100644 index f09605394a19e09d92e555eeefb0b5646625b618..0000000000000000000000000000000000000000 --- a/demo/image_classification/image_util.py +++ /dev/null @@ -1,221 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -from PIL import Image -from cStringIO import StringIO - - -def resize_image(img, target_size): - """ - Resize an image so that the shorter edge has length target_size. - img: the input image to be resized. - target_size: the target resized image size. - """ - percent = (target_size / float(min(img.size[0], img.size[1]))) - resized_size = int(round(img.size[0] * percent)), int( - round(img.size[1] * percent)) - img = img.resize(resized_size, Image.ANTIALIAS) - return img - - -def flip(im): - """ - Return the flipped image. - Flip an image along the horizontal direction. - im: input image, (H x W x K) ndarrays - """ - if len(im.shape) == 3: - return im[:, :, ::-1] - else: - return im[:, ::-1] - - -def crop_img(im, inner_size, color=True, test=True): - """ - Return cropped image. - The size of the cropped image is inner_size * inner_size. - im: (K x H x W) ndarrays - inner_size: the cropped image size. - color: whether it is color image. - test: whether in test mode. - If False, does random cropping and flipping. - If True, crop the center of images. - """ - if color: - height, width = max(inner_size, im.shape[1]), max(inner_size, - im.shape[2]) - padded_im = np.zeros((3, height, width)) - startY = (height - im.shape[1]) / 2 - startX = (width - im.shape[2]) / 2 - endY, endX = startY + im.shape[1], startX + im.shape[2] - padded_im[:, startY:endY, startX:endX] = im - else: - im = im.astype('float32') - height, width = max(inner_size, im.shape[0]), max(inner_size, - im.shape[1]) - padded_im = np.zeros((height, width)) - startY = (height - im.shape[0]) / 2 - startX = (width - im.shape[1]) / 2 - endY, endX = startY + im.shape[0], startX + im.shape[1] - padded_im[startY:endY, startX:endX] = im - if test: - startY = (height - inner_size) / 2 - startX = (width - inner_size) / 2 - else: - startY = np.random.randint(0, height - inner_size + 1) - startX = np.random.randint(0, width - inner_size + 1) - endY, endX = startY + inner_size, startX + inner_size - if color: - pic = padded_im[:, startY:endY, startX:endX] - else: - pic = padded_im[startY:endY, startX:endX] - if (not test) and (np.random.randint(2) == 0): - pic = flip(pic) - return pic - - -def decode_jpeg(jpeg_string): - np_array = np.array(Image.open(StringIO(jpeg_string))) - if len(np_array.shape) == 3: - np_array = np.transpose(np_array, (2, 0, 1)) - return np_array - - -def preprocess_img(im, img_mean, crop_size, is_train, color=True): - """ - Does data augmentation for images. - If is_train is false, cropping the center region from the image. - If is_train is true, randomly crop a region from the image, - and randomy does flipping. - im: (K x H x W) ndarrays - """ - im = im.astype('float32') - test = not is_train - pic = crop_img(im, crop_size, color, test) - pic -= img_mean - return pic.flatten() - - -def load_meta(meta_path, mean_img_size, crop_size, color=True): - """ - Return the loaded meta file. - Load the meta image, which is the mean of the images in the dataset. - The mean image is subtracted from every input image so that the expected mean - of each input image is zero. - """ - mean = np.load(meta_path)['data_mean'] - border = (mean_img_size - crop_size) / 2 - if color: - assert (mean_img_size * mean_img_size * 3 == mean.shape[0]) - mean = mean.reshape(3, mean_img_size, mean_img_size) - mean = mean[:, border:border + crop_size, border:border + - crop_size].astype('float32') - else: - assert (mean_img_size * mean_img_size == mean.shape[0]) - mean = mean.reshape(mean_img_size, mean_img_size) - mean = mean[border:border + crop_size, border:border + - crop_size].astype('float32') - return mean - - -def load_image(img_path, is_color=True): - """ - Load image and return. - img_path: image path. - is_color: is color image or not. - """ - img = Image.open(img_path) - img.load() - return img - - -def oversample(img, crop_dims): - """ - image : iterable of (H x W x K) ndarrays - crop_dims: (height, width) tuple for the crops. - Returned data contains ten crops of input image, namely, - four corner patches and the center patch as well as their - horizontal reflections. - """ - # Dimensions and center. - im_shape = np.array(img[0].shape) - crop_dims = np.array(crop_dims) - im_center = im_shape[:2] / 2.0 - - # Make crop coordinates - h_indices = (0, im_shape[0] - crop_dims[0]) - w_indices = (0, im_shape[1] - crop_dims[1]) - crops_ix = np.empty((5, 4), dtype=int) - curr = 0 - for i in h_indices: - for j in w_indices: - crops_ix[curr] = (i, j, i + crop_dims[0], j + crop_dims[1]) - curr += 1 - crops_ix[4] = np.tile(im_center, (1, 2)) + np.concatenate( - [-crop_dims / 2.0, crop_dims / 2.0]) - crops_ix = np.tile(crops_ix, (2, 1)) - - # Extract crops - crops = np.empty( - (10 * len(img), crop_dims[0], crop_dims[1], im_shape[-1]), - dtype=np.float32) - ix = 0 - for im in img: - for crop in crops_ix: - crops[ix] = im[crop[0]:crop[2], crop[1]:crop[3], :] - ix += 1 - crops[ix - 5:ix] = crops[ix - 5:ix, :, ::-1, :] # flip for mirrors - return crops - - -class ImageTransformer: - def __init__(self, - transpose=None, - channel_swap=None, - mean=None, - is_color=True): - self.transpose = transpose - self.channel_swap = None - self.mean = None - self.is_color = is_color - - def set_transpose(self, order): - if self.is_color: - assert 3 == len(order) - self.transpose = order - - def set_channel_swap(self, order): - if self.is_color: - assert 3 == len(order) - self.channel_swap = order - - def set_mean(self, mean): - # mean value, may be one value per channel - if mean.ndim == 1: - mean = mean[:, np.newaxis, np.newaxis] - else: - # elementwise mean - if self.is_color: - assert len(mean.shape) == 3 - self.mean = mean - - def transformer(self, data): - if self.transpose is not None: - data = data.transpose(self.transpose) - if self.channel_swap is not None: - data = data[self.channel_swap, :, :] - if self.mean is not None: - data -= self.mean - return data diff --git a/demo/image_classification/predict.sh b/demo/image_classification/predict.sh deleted file mode 100755 index 9d5785c9a1a4dac12f7940fa708b1a79c6ec8a93..0000000000000000000000000000000000000000 --- a/demo/image_classification/predict.sh +++ /dev/null @@ -1,20 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -model=cifar_vgg_model/pass-00299/ -image=data/cifar-out/test/airplane/seaplane_s_000978.png -use_gpu=1 -python prediction.py $model $image $use_gpu diff --git a/demo/image_classification/prediction.py b/demo/image_classification/prediction.py deleted file mode 100755 index 49c0ff600c40e0222093ff0a8a2f7e8e38ccba29..0000000000000000000000000000000000000000 --- a/demo/image_classification/prediction.py +++ /dev/null @@ -1,159 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os, sys -import numpy as np -import logging -from PIL import Image -from optparse import OptionParser - -import paddle.utils.image_util as image_util - -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import dense_vector -from paddle.trainer.config_parser import parse_config - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s') -logging.getLogger().setLevel(logging.INFO) - - -class ImageClassifier(): - def __init__(self, - train_conf, - use_gpu=True, - model_dir=None, - resize_dim=None, - crop_dim=None, - mean_file=None, - oversample=False, - is_color=True): - """ - train_conf: network configure. - model_dir: string, directory of model. - resize_dim: int, resized image size. - crop_dim: int, crop size. - mean_file: string, image mean file. - oversample: bool, oversample means multiple crops, namely five - patches (the four corner patches and the center - patch) as well as their horizontal reflections, - ten crops in all. - """ - self.train_conf = train_conf - self.model_dir = model_dir - if model_dir is None: - self.model_dir = os.path.dirname(train_conf) - - self.resize_dim = resize_dim - self.crop_dims = [crop_dim, crop_dim] - self.oversample = oversample - self.is_color = is_color - - self.transformer = image_util.ImageTransformer(is_color=is_color) - self.transformer.set_transpose((2, 0, 1)) - - self.mean_file = mean_file - mean = np.load(self.mean_file)['data_mean'] - mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1]) - self.transformer.set_mean(mean) # mean pixel - gpu = 1 if use_gpu else 0 - conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (gpu) - conf = parse_config(train_conf, conf_args) - swig_paddle.initPaddle("--use_gpu=%d" % (gpu)) - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - assert isinstance(self.network, swig_paddle.GradientMachine) - self.network.loadParameters(self.model_dir) - - data_size = 3 * self.crop_dims[0] * self.crop_dims[1] - slots = [dense_vector(data_size)] - self.converter = DataProviderConverter(slots) - - def get_data(self, img_path): - """ - 1. load image from img_path. - 2. resize or oversampling. - 3. transformer data: transpose, sub mean. - return K x H x W ndarray. - img_path: image path. - """ - image = image_util.load_image(img_path, self.is_color) - if self.oversample: - # image_util.resize_image: short side is self.resize_dim - image = image_util.resize_image(image, self.resize_dim) - image = np.array(image) - input = np.zeros( - (1, image.shape[0], image.shape[1], 3), dtype=np.float32) - input[0] = image.astype(np.float32) - input = image_util.oversample(input, self.crop_dims) - else: - image = image.resize(self.crop_dims, Image.ANTIALIAS) - input = np.zeros( - (1, self.crop_dims[0], self.crop_dims[1], 3), dtype=np.float32) - input[0] = np.array(image).astype(np.float32) - - data_in = [] - for img in input: - img = self.transformer.transformer(img).flatten() - data_in.append([img.tolist()]) - return data_in - - def forward(self, input_data): - in_arg = self.converter(input_data) - return self.network.forwardTest(in_arg) - - def forward(self, data, output_layer): - """ - input_data: py_paddle input data. - output_layer: specify the name of probability, namely the layer with - softmax activation. - return: the predicting probability of each label. - """ - input = self.converter(data) - self.network.forwardTest(input) - output = self.network.getLayerOutputs(output_layer) - # For oversampling, average predictions across crops. - # If not, the shape of output[name]: (1, class_number), - # the mean is also applicable. - return output[output_layer]['value'].mean(0) - - def predict(self, image=None, output_layer=None): - assert isinstance(image, basestring) - assert isinstance(output_layer, basestring) - data = self.get_data(image) - prob = self.forward(data, output_layer) - lab = np.argsort(-prob) - logging.info("Label of %s is: %d", image, lab[0]) - - -if __name__ == '__main__': - image_size = 32 - crop_size = 32 - multi_crop = True - config = "vgg_16_cifar.py" - output_layer = "__fc_layer_1__" - mean_path = "data/cifar-out/batches/batches.meta" - model_path = sys.argv[1] - image = sys.argv[2] - use_gpu = bool(int(sys.argv[3])) - - obj = ImageClassifier( - train_conf=config, - model_dir=model_path, - resize_dim=image_size, - crop_dim=crop_size, - mean_file=mean_path, - use_gpu=use_gpu, - oversample=multi_crop) - obj.predict(image, output_layer) diff --git a/demo/image_classification/preprocess.py b/demo/image_classification/preprocess.py deleted file mode 100755 index 2947ad239c36f9a02ed67ccf5906380cb70e37ce..0000000000000000000000000000000000000000 --- a/demo/image_classification/preprocess.py +++ /dev/null @@ -1,54 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.utils.preprocess_img import ImageClassificationDatasetCreater -from optparse import OptionParser - - -def option_parser(): - parser = OptionParser(usage="usage: python preprcoess.py "\ - "-i data_dir [options]") - parser.add_option( - "-i", - "--input", - action="store", - dest="input", - help="Input data directory.") - parser.add_option( - "-s", - "--size", - action="store", - dest="size", - help="Processed image size.") - parser.add_option( - "-c", - "--color", - action="store", - dest="color", - help="whether to use color images.") - return parser.parse_args() - - -if __name__ == '__main__': - options, args = option_parser() - data_dir = options.input - processed_image_size = int(options.size) - color = options.color == "1" - data_creator = ImageClassificationDatasetCreater( - data_dir, processed_image_size, color) - data_creator.train_list_name = "train.txt" - data_creator.test_list_name = "test.txt" - data_creator.num_per_batch = 1000 - data_creator.overwrite = True - data_creator.create_batches() diff --git a/demo/image_classification/preprocess.sh b/demo/image_classification/preprocess.sh deleted file mode 100755 index c7396c6393599ef3f2c55089eb05f2435b2b4b82..0000000000000000000000000000000000000000 --- a/demo/image_classification/preprocess.sh +++ /dev/null @@ -1,22 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -data_dir=./data/cifar-out - -python preprocess.py -i $data_dir -s 32 -c 1 - -echo "data/cifar-out/batches/train.txt" > train.list -echo "data/cifar-out/batches/test.txt" > test.list diff --git a/demo/image_classification/train.sh b/demo/image_classification/train.sh deleted file mode 100755 index e45bd47ad5925c6674d628a70a7ad7c4d5d5c173..0000000000000000000000000000000000000000 --- a/demo/image_classification/train.sh +++ /dev/null @@ -1,32 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -config=vgg_16_cifar.py -output=./cifar_vgg_model -log=train.log - -paddle train \ ---config=$config \ ---dot_period=10 \ ---log_period=100 \ ---test_all_data_in_one_period=1 \ ---use_gpu=1 \ ---trainer_count=1 \ ---num_passes=300 \ ---save_dir=$output \ -2>&1 | tee $log -paddle usage -l $log -e $? -n "image_classification_train" >/dev/null 2>&1 - -python -m paddle.utils.plotcurve -i $log > plot.png diff --git a/demo/image_classification/vgg_16_cifar.py b/demo/image_classification/vgg_16_cifar.py deleted file mode 100755 index 8ee4a64c15f885023a6e19812885b4f76bb12af9..0000000000000000000000000000000000000000 --- a/demo/image_classification/vgg_16_cifar.py +++ /dev/null @@ -1,58 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -is_predict = get_config_arg("is_predict", bool, False) - -####################Data Configuration ################## -if not is_predict: - data_dir = 'data/cifar-out/batches/' - meta_path = data_dir + 'batches.meta' - - args = { - 'meta': meta_path, - 'mean_img_size': 32, - 'img_size': 32, - 'num_classes': 10, - 'use_jpeg': 1, - 'color': "color" - } - - define_py_data_sources2( - train_list="train.list", - test_list="train.list", - module='image_provider', - obj='processData', - args=args) - -######################Algorithm Configuration ############# -settings( - batch_size=128, - learning_rate=0.1 / 128.0, - learning_method=MomentumOptimizer(0.9), - regularization=L2Regularization(0.0005 * 128)) - -#######################Network Configuration ############# -data_size = 3 * 32 * 32 -label_size = 10 -img = data_layer(name='image', size=data_size) -# small_vgg is predefined in trainer_config_helpers.networks -predict = small_vgg(input_image=img, num_channels=3, num_classes=label_size) - -if not is_predict: - lbl = data_layer(name="label", size=label_size) - outputs(classification_cost(input=predict, label=lbl)) -else: - outputs(predict) diff --git a/demo/introduction/.gitignore b/demo/introduction/.gitignore deleted file mode 100644 index c54f3f9480ce4ceefda98f77a812ec2d6cd4a5e3..0000000000000000000000000000000000000000 --- a/demo/introduction/.gitignore +++ /dev/null @@ -1,5 +0,0 @@ -dataprovider.pyc -empty.list -train.log -output -train.list diff --git a/demo/introduction/README.md b/demo/introduction/README.md deleted file mode 100644 index 0614a7afe645677ef0b65a17ea05f1dcfa45214f..0000000000000000000000000000000000000000 --- a/demo/introduction/README.md +++ /dev/null @@ -1,3 +0,0 @@ -This folder contains scripts used in PaddlePaddle introduction. -- use `bash train.sh` to train a simple linear regression model -- use `python evaluate_model.py` to read model parameters. You can see that `w` and `b` are very close to [2, 0.3]. diff --git a/demo/introduction/dataprovider.py b/demo/introduction/dataprovider.py deleted file mode 100644 index 5b48aad0408800676ae7da16eba2dcbb2124f25f..0000000000000000000000000000000000000000 --- a/demo/introduction/dataprovider.py +++ /dev/null @@ -1,26 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * -import random - - -# define data types of input: 2 real numbers -@provider( - input_types={'x': dense_vector(1), - 'y': dense_vector(1)}, use_seq=False) -def process(settings, input_file): - for i in xrange(2000): - x = random.random() - yield {'x': [x], 'y': [2 * x + 0.3]} diff --git a/demo/introduction/evaluate_model.py b/demo/introduction/evaluate_model.py deleted file mode 100755 index eeda43c5c86f3e49f758bf55b16a68387e64238c..0000000000000000000000000000000000000000 --- a/demo/introduction/evaluate_model.py +++ /dev/null @@ -1,39 +0,0 @@ -#!/usr/bin/env python -# -*- coding: UTF-8 -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Print model parameters in last model - -Usage: - python evaluate_model.py -""" -import numpy as np -import os - - -def load(file_name): - with open(file_name, 'rb') as f: - f.read(16) # skip header for float type. - return np.fromfile(f, dtype=np.float32) - - -def main(): - print 'w=%.6f, b=%.6f from pass 29' % (load('output/pass-00029/w'), - load('output/pass-00029/b')) - - -if __name__ == '__main__': - main() diff --git a/demo/introduction/train.sh b/demo/introduction/train.sh deleted file mode 100755 index 2ce6446d7c943ffc9bea8da43d153539f6f9f15f..0000000000000000000000000000000000000000 --- a/demo/introduction/train.sh +++ /dev/null @@ -1,22 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -paddle train \ - --config=trainer_config.py \ - --save_dir=./output \ - --num_passes=30 \ - 2>&1 |tee 'train.log' -paddle usage -l "train.log" -e $? -n "introduction" >/dev/null 2>&1 diff --git a/demo/introduction/trainer_config.py b/demo/introduction/trainer_config.py deleted file mode 100644 index 651dfaa4b7b4873810a0b393655541a62d1a311b..0000000000000000000000000000000000000000 --- a/demo/introduction/trainer_config.py +++ /dev/null @@ -1,38 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -# 1. read data. Suppose you saved above python code as dataprovider.py -define_py_data_sources2( - train_list=['no_matter.txt'], - test_list=None, - module='dataprovider', - obj='process', - args={}) - -# 2. learning algorithm -settings(batch_size=12, learning_rate=1e-3, learning_method=MomentumOptimizer()) - -# 3. Network configuration -x = data_layer(name='x', size=1) -y = data_layer(name='y', size=1) -y_predict = fc_layer( - input=x, - param_attr=ParamAttr(name='w'), - size=1, - act=LinearActivation(), - bias_attr=ParamAttr(name='b')) -cost = mse_cost(input=y_predict, label=y) -outputs(cost) diff --git a/demo/recommendation/.gitignore b/demo/recommendation/.gitignore deleted file mode 100644 index fd27ef62a87cae51f2392c0eba50a44490d029af..0000000000000000000000000000000000000000 --- a/demo/recommendation/.gitignore +++ /dev/null @@ -1,10 +0,0 @@ -log.txt -data/meta.bin -data/ml-1m -data/ratings.dat.train -data/ratings.dat.test -data/train.list -data/test.list -dataprovider_copy_1.py -*.pyc -output diff --git a/demo/recommendation/api_train_v2.py b/demo/recommendation/api_train_v2.py deleted file mode 100644 index f6a061799e3ac50236a68beedaf700dd6c698a05..0000000000000000000000000000000000000000 --- a/demo/recommendation/api_train_v2.py +++ /dev/null @@ -1,125 +0,0 @@ -import paddle.v2 as paddle -import cPickle -import copy - - -def main(): - paddle.init(use_gpu=False) - movie_title_dict = paddle.dataset.movielens.get_movie_title_dict() - uid = paddle.layer.data( - name='user_id', - type=paddle.data_type.integer_value( - paddle.dataset.movielens.max_user_id() + 1)) - usr_emb = paddle.layer.embedding(input=uid, size=32) - - usr_gender_id = paddle.layer.data( - name='gender_id', type=paddle.data_type.integer_value(2)) - usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16) - - usr_age_id = paddle.layer.data( - name='age_id', - type=paddle.data_type.integer_value( - len(paddle.dataset.movielens.age_table))) - usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16) - - usr_job_id = paddle.layer.data( - name='job_id', - type=paddle.data_type.integer_value(paddle.dataset.movielens.max_job_id( - ) + 1)) - - usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16) - - usr_combined_features = paddle.layer.fc( - input=[usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb], - size=200, - act=paddle.activation.Tanh()) - - mov_id = paddle.layer.data( - name='movie_id', - type=paddle.data_type.integer_value( - paddle.dataset.movielens.max_movie_id() + 1)) - mov_emb = paddle.layer.embedding(input=mov_id, size=32) - - mov_categories = paddle.layer.data( - name='category_id', - type=paddle.data_type.sparse_binary_vector( - len(paddle.dataset.movielens.movie_categories()))) - - mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32) - - mov_title_id = paddle.layer.data( - name='movie_title', - type=paddle.data_type.integer_value_sequence(len(movie_title_dict))) - mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32) - mov_title_conv = paddle.networks.sequence_conv_pool( - input=mov_title_emb, hidden_size=32, context_len=3) - - mov_combined_features = paddle.layer.fc( - input=[mov_emb, mov_categories_hidden, mov_title_conv], - size=200, - act=paddle.activation.Tanh()) - - inference = paddle.layer.cos_sim( - a=usr_combined_features, b=mov_combined_features, size=1, scale=5) - cost = paddle.layer.mse_cost( - input=inference, - label=paddle.layer.data( - name='score', type=paddle.data_type.dense_vector(1))) - - parameters = paddle.parameters.create(cost) - - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=paddle.optimizer.Adam( - learning_rate=1e-4)) - feeding = { - 'user_id': 0, - 'gender_id': 1, - 'age_id': 2, - 'job_id': 3, - 'movie_id': 4, - 'category_id': 5, - 'movie_title': 6, - 'score': 7 - } - - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - print "Pass %d Batch %d Cost %.2f" % ( - event.pass_id, event.batch_id, event.cost) - - trainer.train( - reader=paddle.batch( - paddle.reader.shuffle( - paddle.dataset.movielens.train(), buf_size=8192), - batch_size=256), - event_handler=event_handler, - feeding=feeding, - num_passes=1) - - user_id = 234 - movie_id = 345 - - user = paddle.dataset.movielens.user_info()[user_id] - movie = paddle.dataset.movielens.movie_info()[movie_id] - - feature = user.value() + movie.value() - - def reader(): - yield feature - - infer_dict = copy.copy(feeding) - del infer_dict['score'] - - prediction = paddle.infer( - output=inference, - parameters=parameters, - reader=paddle.batch( - reader, batch_size=32), - feeding=infer_dict) - print(prediction + 5) / 2 - - -if __name__ == '__main__': - main() diff --git a/demo/recommendation/common_utils.py b/demo/recommendation/common_utils.py deleted file mode 100755 index c20c65286621d701ad58409b539bbe9c813d453a..0000000000000000000000000000000000000000 --- a/demo/recommendation/common_utils.py +++ /dev/null @@ -1,30 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from paddle.trainer.PyDataProvider2 import * - - -def meta_to_header(meta, name): - metas = meta[name]['__meta__']['raw_meta'] - for each_meta in metas: - slot_name = each_meta.get('name', '%s_id' % name) - if each_meta['type'] == 'id': - yield slot_name, integer_value(each_meta['max']) - elif each_meta['type'] == 'embedding': - is_seq = each_meta['seq'] == 'sequence' - yield slot_name, integer_value( - len(each_meta['dict']), - seq_type=SequenceType.SEQUENCE - if is_seq else SequenceType.NO_SEQUENCE) - elif each_meta['type'] == 'one_hot_dense': - yield slot_name, dense_vector(len(each_meta['dict'])) diff --git a/demo/recommendation/data/config.json b/demo/recommendation/data/config.json deleted file mode 100644 index f26e74ce47bb7843a571e6033f051c046b31f054..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/config.json +++ /dev/null @@ -1,16 +0,0 @@ -{ - "user": { - "file": { - "name": "users.dat", - "delimiter": "::" - }, - "fields": ["id", "gender", "age", "occupation"] - }, - "movie": { - "file": { - "name": "movies.dat", - "delimiter": "::" - }, - "fields": ["id", "title", "genres"] - } -} diff --git a/demo/recommendation/data/config_generator.py b/demo/recommendation/data/config_generator.py deleted file mode 100644 index 4ca496a252dffc62ed62bb8f2a5ee1661a940580..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/config_generator.py +++ /dev/null @@ -1,127 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -config_generator.py - -Usage: - ./config_generator.py [--output_format=] - ./config_generator.py -h | --help - -Options: - -h --help Show this screen. - --output_format= Output Config format(json or yaml) [default: json]. -""" - -import json -import docopt -import copy - -DEFAULT_FILE = {"type": "split", "delimiter": ","} - -DEFAULT_FIELD = { - "id": { - "type": "id" - }, - "gender": { - "name": "gender", - "type": "embedding", - "dict": { - "type": "char_based" - } - }, - "age": { - "name": "age", - "type": "embedding", - "dict": { - "type": "whole_content", - "sort": True - } - }, - "occupation": { - "name": "occupation", - "type": "embedding", - "dict": { - "type": "whole_content", - "sort": "true" - } - }, - "title": { - "regex": { - "pattern": r"^(.*)\((\d+)\)$", - "group_id": 1, - "strip": True - }, - "name": "title", - "type": { - "name": "embedding", - "seq_type": "sequence", - }, - "dict": { - "type": "char_based" - } - }, - "genres": { - "type": "one_hot_dense", - "dict": { - "type": "split", - "delimiter": "|" - }, - "name": "genres" - } -} - - -def merge_dict(master_dict, slave_dict): - return dict(((k, master_dict.get(k) or slave_dict.get(k)) - for k in set(slave_dict) | set(master_dict))) - - -def main(filename, fmt): - with open(filename, 'r') as f: - conf = json.load(f) - obj = dict() - for k in conf: - val = conf[k] - file_dict = val['file'] - file_dict = merge_dict(file_dict, DEFAULT_FILE) - - fields = [] - for pos, field_key in enumerate(val['fields']): - assert isinstance(field_key, basestring) - field = copy.deepcopy(DEFAULT_FIELD[field_key]) - field['pos'] = pos - fields.append(field) - obj[k] = {"file": file_dict, "fields": fields} - meta = {"meta": obj} - # print meta - if fmt == 'json': - - def formatter(x): - import json - return json.dumps(x, indent=2) - elif fmt == 'yaml': - - def formatter(x): - import yaml - return yaml.safe_dump(x, default_flow_style=False) - else: - raise NotImplementedError("Dump format %s is not implemented" % fmt) - - print formatter(meta) - - -if __name__ == '__main__': - args = docopt.docopt(__doc__, version="0.1.0") - main(args[""], args["--output_format"]) diff --git a/demo/recommendation/data/meta_config.json b/demo/recommendation/data/meta_config.json deleted file mode 100644 index cc6a046e271dd0faaa47eeb5a5bef6d3604113fe..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/meta_config.json +++ /dev/null @@ -1,81 +0,0 @@ -{ - "meta": { - "movie": { - "fields": [ - { - "type": "id", - "pos": 0 - }, - { - "regex": { - "pattern": "^(.*)\\((\\d+)\\)$", - "group_id": 1, - "strip": true - }, - "type": { - "seq_type": "sequence", - "name": "embedding" - }, - "dict": { - "type": "char_based" - }, - "name": "title", - "pos": 1 - }, - { - "type": "one_hot_dense", - "dict": { - "delimiter": "|", - "type": "split" - }, - "name": "genres", - "pos": 2 - } - ], - "file": { - "delimiter": "::", - "type": "split", - "name": "movies.dat" - } - }, - "user": { - "fields": [ - { - "type": "id", - "pos": 0 - }, - { - "type": "embedding", - "dict": { - "type": "char_based" - }, - "name": "gender", - "pos": 1 - }, - { - "type": "embedding", - "dict": { - "sort": true, - "type": "whole_content" - }, - "name": "age", - "pos": 2 - }, - { - "type": "embedding", - "dict": { - "sort": "true", - "type": "whole_content" - }, - "name": "occupation", - "pos": 3 - } - ], - "file": { - "delimiter": "::", - "type": "split", - "name": "users.dat" - } - } - } -} diff --git a/demo/recommendation/data/meta_generator.py b/demo/recommendation/data/meta_generator.py deleted file mode 100644 index 38e4679d266c331a751114cd13f0e3453016cf26..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/meta_generator.py +++ /dev/null @@ -1,430 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Preprocess Movielens dataset, to get movie/user object. - -Usage: - ./preprocess.py [--config=] - ./preprocess.py -h | --help - -Options: - -h --help Show this screen. - --version Show version. - --config= Get MetaData config file [default: config.json]. -""" -import docopt -import os -import sys -import re -import collections - -try: - import cPickle as pickle -except ImportError: - import pickle - - -class UniqueIDGenerator(object): - def __init__(self): - self.pool = collections.defaultdict(self.__next_id__) - self.next_id = 0 - - def __next_id__(self): - tmp = self.next_id - self.next_id += 1 - return tmp - - def __call__(self, k): - return self.pool[k] - - def to_list(self): - ret_val = [None] * len(self.pool) - for k in self.pool.keys(): - ret_val[self.pool[k]] = k - return ret_val - - -class SortedIDGenerator(object): - def __init__(self): - self.__key_set__ = set() - self.dict = None - - def scan(self, key): - self.__key_set__.add(key) - - def finish_scan(self, compare=None, key=None, reverse=False): - self.__key_set__ = sorted( - list(self.__key_set__), cmp=compare, key=key, reverse=reverse) - self.dict = dict() - for idx, each_key in enumerate(self.__key_set__): - self.dict[each_key] = idx - - def __call__(self, key): - return self.dict[key] - - def to_list(self): - return self.__key_set__ - - -class SplitFileReader(object): - def __init__(self, work_dir, config): - assert isinstance(config, dict) - self.filename = config['name'] - self.delimiter = config.get('delimiter', ',') - self.work_dir = work_dir - - def read(self): - with open(os.path.join(self.work_dir, self.filename), 'r') as f: - for line in f: - line = line.strip() - if isinstance(self.delimiter, unicode): - self.delimiter = str(self.delimiter) - yield line.split(self.delimiter) - - @staticmethod - def create(work_dir, config): - assert isinstance(config, dict) - if config['type'] == 'split': - return SplitFileReader(work_dir, config) - - -class IFileReader(object): - READERS = [SplitFileReader] - - def read(self): - raise NotImplementedError() - - @staticmethod - def create(work_dir, config): - for reader_cls in IFileReader.READERS: - val = reader_cls.create(work_dir, config) - if val is not None: - return val - - -class IDFieldParser(object): - TYPE = 'id' - - def __init__(self, config): - self.__max_id__ = -sys.maxint - 1 - self.__min_id__ = sys.maxint - self.__id_count__ = 0 - - def scan(self, line): - idx = int(line) - self.__max_id__ = max(self.__max_id__, idx) - self.__min_id__ = min(self.__min_id__, idx) - self.__id_count__ += 1 - - def parse(self, line): - return int(line) - - def meta_field(self): - return { - "is_key": True, - 'max': self.__max_id__, - 'min': self.__min_id__, - 'count': self.__id_count__, - 'type': 'id' - } - - -class SplitEmbeddingDict(object): - def __init__(self, delimiter): - self.__id__ = UniqueIDGenerator() - self.delimiter = delimiter - - def scan(self, multi): - for val in multi.split(self.delimiter): - self.__id__(val) - - def parse(self, multi): - return map(self.__id__, multi.split(self.delimiter)) - - def meta_field(self): - return self.__id__.to_list() - - -class EmbeddingFieldParser(object): - TYPE = 'embedding' - - NO_SEQUENCE = "no_sequence" - SEQUENCE = "sequence" - - class CharBasedEmbeddingDict(object): - def __init__(self, is_seq=True): - self.__id__ = UniqueIDGenerator() - self.is_seq = is_seq - - def scan(self, s): - for ch in s: - self.__id__(ch) - - def parse(self, s): - return map(self.__id__, s) if self.is_seq else self.__id__(s[0]) - - def meta_field(self): - return self.__id__.to_list() - - class WholeContentDict(object): - def __init__(self, need_sort=True): - assert need_sort - self.__id__ = SortedIDGenerator() - self.__has_finished__ = False - - def scan(self, txt): - self.__id__.scan(txt) - - def meta_field(self): - if not self.__has_finished__: - self.__id__.finish_scan() - self.__has_finished__ = True - return self.__id__.to_list() - - def parse(self, txt): - return self.__id__(txt) - - def __init__(self, config): - try: - self.seq_type = config['type']['seq_type'] - except TypeError: - self.seq_type = EmbeddingFieldParser.NO_SEQUENCE - - if config['dict']['type'] == 'char_based': - self.dict = EmbeddingFieldParser.CharBasedEmbeddingDict( - self.seq_type == EmbeddingFieldParser.SEQUENCE) - elif config['dict']['type'] == 'split': - self.dict = SplitEmbeddingDict(config['dict'].get('delimiter', ',')) - elif config['dict']['type'] == 'whole_content': - self.dict = EmbeddingFieldParser.WholeContentDict(config['dict'][ - 'sort']) - else: - print config - assert False - - self.name = config['name'] - - def scan(self, s): - self.dict.scan(s) - - def meta_field(self): - return { - 'name': self.name, - 'dict': self.dict.meta_field(), - 'type': 'embedding', - 'seq': self.seq_type - } - - def parse(self, s): - return self.dict.parse(s) - - -class OneHotDenseFieldParser(object): - TYPE = 'one_hot_dense' - - def __init__(self, config): - if config['dict']['type'] == 'split': - self.dict = SplitEmbeddingDict(config['dict']['delimiter']) - self.name = config['name'] - - def scan(self, s): - self.dict.scan(s) - - def meta_field(self): - # print self.dict.meta_field() - return { - 'dict': self.dict.meta_field(), - 'name': self.name, - 'type': 'one_hot_dense' - } - - def parse(self, s): - ids = self.dict.parse(s) - retv = [0.0] * len(self.dict.meta_field()) - for idx in ids: - retv[idx] = 1.0 - # print retv - return retv - - -class FieldParserFactory(object): - PARSERS = [IDFieldParser, EmbeddingFieldParser, OneHotDenseFieldParser] - - @staticmethod - def create(config): - if isinstance(config['type'], basestring): - config_type = config['type'] - elif isinstance(config['type'], dict): - config_type = config['type']['name'] - - assert config_type is not None - - for each_parser_cls in FieldParserFactory.PARSERS: - if config_type == each_parser_cls.TYPE: - return each_parser_cls(config) - print config - - -class CompositeFieldParser(object): - def __init__(self, parser, extractor): - self.extractor = extractor - self.parser = parser - - def scan(self, *args, **kwargs): - self.parser.scan(self.extractor.extract(*args, **kwargs)) - - def parse(self, *args, **kwargs): - return self.parser.parse(self.extractor.extract(*args, **kwargs)) - - def meta_field(self): - return self.parser.meta_field() - - -class PositionContentExtractor(object): - def __init__(self, pos): - self.pos = pos - - def extract(self, line): - assert isinstance(line, list) - return line[self.pos] - - -class RegexPositionContentExtractor(PositionContentExtractor): - def __init__(self, pos, pattern, group_id, strip=True): - PositionContentExtractor.__init__(self, pos) - pattern = pattern.strip() - self.pattern = re.compile(pattern) - self.group_id = group_id - self.strip = strip - - def extract(self, line): - line = PositionContentExtractor.extract(self, line) - match = self.pattern.match(line) - # print line, self.pattern.pattern, match - assert match is not None - txt = match.group(self.group_id) - if self.strip: - txt.strip() - return txt - - -class ContentExtractorFactory(object): - def extract(self, line): - pass - - @staticmethod - def create(config): - if 'pos' in config: - if 'regex' not in config: - return PositionContentExtractor(config['pos']) - else: - extra_args = config['regex'] - return RegexPositionContentExtractor( - pos=config['pos'], **extra_args) - - -class MetaFile(object): - def __init__(self, work_dir): - self.work_dir = work_dir - self.obj = dict() - - def parse(self, config): - config = config['meta'] - - ret_obj = dict() - for key in config.keys(): - val = config[key] - assert 'file' in val - reader = IFileReader.create(self.work_dir, val['file']) - assert reader is not None - assert 'fields' in val and isinstance(val['fields'], list) - fields_config = val['fields'] - field_parsers = map(MetaFile.__field_config_mapper__, fields_config) - - for each_parser in field_parsers: - assert each_parser is not None - - for each_block in reader.read(): - for each_parser in field_parsers: - each_parser.scan(each_block) - - metas = map(lambda x: x.meta_field(), field_parsers) - # print metas - key_index = filter( - lambda x: x is not None, - map(lambda (idx, meta): idx if 'is_key' in meta and meta['is_key'] else None, - enumerate(metas)))[0] - - key_map = [] - for i in range(min(key_index, len(metas))): - key_map.append(i) - for i in range(key_index + 1, len(metas)): - key_map.append(i) - - obj = {'__meta__': {'raw_meta': metas, 'feature_map': key_map}} - - for each_block in reader.read(): - idx = field_parsers[key_index].parse(each_block) - val = [] - for i, each_parser in enumerate(field_parsers): - if i != key_index: - val.append(each_parser.parse(each_block)) - obj[idx] = val - ret_obj[key] = obj - self.obj = ret_obj - return ret_obj - - @staticmethod - def __field_config_mapper__(conf): - assert isinstance(conf, dict) - extrator = ContentExtractorFactory.create(conf) - field_parser = FieldParserFactory.create(conf) - assert extrator is not None - assert field_parser is not None - return CompositeFieldParser(field_parser, extrator) - - def dump(self, fp): - pickle.dump(self.obj, fp, pickle.HIGHEST_PROTOCOL) - - -def preprocess(binary_filename, dataset_dir, config, **kwargs): - assert isinstance(config, str) - with open(config, 'r') as config_file: - file_loader = None - if config.lower().endswith('.yaml'): - import yaml - file_loader = yaml - elif config.lower().endswith('.json'): - import json - file_loader = json - config = file_loader.load(config_file) - meta = MetaFile(dataset_dir) - meta.parse(config) - with open(binary_filename, 'wb') as outf: - meta.dump(outf) - - -if __name__ == '__main__': - args = docopt.docopt(__doc__, version='0.1.0') - kwargs = dict() - for key in args.keys(): - if key != '--help': - param_name = key - assert isinstance(param_name, str) - param_name = param_name.replace('<', '') - param_name = param_name.replace('>', '') - param_name = param_name.replace('--', '') - kwargs[param_name] = args[key] - preprocess(**kwargs) diff --git a/demo/recommendation/data/ml_data.sh b/demo/recommendation/data/ml_data.sh deleted file mode 100755 index 2268d876389e0bdf5ead405e74d278d276626f82..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/ml_data.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -set -ex -cd "$(dirname "$0")" -# download the dataset -wget http://files.grouplens.org/datasets/movielens/ml-1m.zip -# unzip the dataset -unzip ml-1m.zip -# remove the unused zip file -rm ml-1m.zip diff --git a/demo/recommendation/data/split.py b/demo/recommendation/data/split.py deleted file mode 100644 index be6869c22f04be1db0f8e9c35c73c851e4c490b0..0000000000000000000000000000000000000000 --- a/demo/recommendation/data/split.py +++ /dev/null @@ -1,66 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Separate movielens 1m dataset to train/test file. - -Usage: - ./separate.py [--test_ratio=] [--delimiter=] - ./separate.py -h | --help - -Options: - -h --help Show this screen. - --version Show version. - --test_ratio= Test ratio for separate [default: 0.1]. - --delimiter= File delimiter [default: ,]. -""" -import docopt -import collections -import random - - -def process(test_ratio, input_file, delimiter, **kwargs): - test_ratio = float(test_ratio) - rating_dict = collections.defaultdict(list) - with open(input_file, 'r') as f: - for line in f: - user_id = int(line.split(delimiter)[0]) - rating_dict[user_id].append(line.strip()) - - with open(input_file + ".train", 'w') as train_file: - with open(input_file + ".test", 'w') as test_file: - for k in rating_dict.keys(): - lines = rating_dict[k] - assert isinstance(lines, list) - random.shuffle(lines) - test_len = int(len(lines) * test_ratio) - for line in lines[:test_len]: - print >> test_file, line - - for line in lines[test_len:]: - print >> train_file, line - - -if __name__ == '__main__': - args = docopt.docopt(__doc__, version='0.1.0') - kwargs = dict() - for key in args.keys(): - if key != '--help': - param_name = key - assert isinstance(param_name, str) - param_name = param_name.replace('<', '') - param_name = param_name.replace('>', '') - param_name = param_name.replace('--', '') - kwargs[param_name] = args[key] - process(**kwargs) diff --git a/demo/recommendation/dataprovider.py b/demo/recommendation/dataprovider.py deleted file mode 100755 index c4ff96d80e81926049c9a71d6d9d991c0b568c25..0000000000000000000000000000000000000000 --- a/demo/recommendation/dataprovider.py +++ /dev/null @@ -1,88 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * -import common_utils # parse - - -def __list_to_map__(lst): - ret_val = dict() - for each in lst: - k, v = each - ret_val[k] = v - return ret_val - - -def hook(settings, meta, **kwargs): - """ - Init hook is invoked before process data. It will set obj.slots and store - data meta. - - :param obj: global object. It will passed to process routine. - :type obj: object - :param meta: the meta file object, which passed from trainer_config. Meta - file record movie/user features. - :param kwargs: unused other arguments. - """ - del kwargs # unused kwargs - - # Header define slots that used for paddle. - # first part is movie features. - # second part is user features. - # final part is rating score. - # header is a list of [USE_SEQ_OR_NOT?, SlotType] - movie_headers = list(common_utils.meta_to_header(meta, 'movie')) - settings.movie_names = [h[0] for h in movie_headers] - headers = movie_headers - user_headers = list(common_utils.meta_to_header(meta, 'user')) - settings.user_names = [h[0] for h in user_headers] - headers.extend(user_headers) - headers.append(("rating", dense_vector(1))) # Score - - # slot types. - settings.input_types = __list_to_map__(headers) - settings.meta = meta - - -@provider(init_hook=hook, cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, filename): - with open(filename, 'r') as f: - for line in f: - # Get a rating from file. - user_id, movie_id, score = map(int, line.split('::')[:-1]) - - # Scale score to [-5, +5] - score = float(score) * 2 - 5.0 - - # Get movie/user features by movie_id, user_id - movie_meta = settings.meta['movie'][movie_id] - user_meta = settings.meta['user'][user_id] - - outputs = [('movie_id', movie_id - 1)] - - # Then add movie features - for i, each_meta in enumerate(movie_meta): - outputs.append((settings.movie_names[i + 1], each_meta)) - - # Then add user id. - outputs.append(('user_id', user_id - 1)) - - # Then add user features. - for i, each_meta in enumerate(user_meta): - outputs.append((settings.user_names[i + 1], each_meta)) - - # Finally, add score - outputs.append(('rating', [score])) - # Return data to paddle - yield __list_to_map__(outputs) diff --git a/demo/recommendation/evaluate.py b/demo/recommendation/evaluate.py deleted file mode 100755 index 3afa7a1e9db5fefb1bbf5aaa174b8168afae4058..0000000000000000000000000000000000000000 --- a/demo/recommendation/evaluate.py +++ /dev/null @@ -1,37 +0,0 @@ -#!/usr/bin/python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import sys -import re -import math - - -def get_best_pass(log_filename): - with open(log_filename, 'r') as f: - text = f.read() - pattern = re.compile('Test.*? cost=([0-9]+\.[0-9]+).*?pass-([0-9]+)', - re.S) - results = re.findall(pattern, text) - sorted_results = sorted(results, key=lambda result: float(result[0])) - return sorted_results[0] - - -log_filename = sys.argv[1] -log = get_best_pass(log_filename) -predict_error = math.sqrt(float(log[0])) / 2 -print 'Best pass is %s, error is %s, which means predict get error as %f' % ( - log[1], log[0], predict_error) - -evaluate_pass = "output/pass-%s" % log[1] -print "evaluating from pass %s" % evaluate_pass diff --git a/demo/recommendation/evaluate.sh b/demo/recommendation/evaluate.sh deleted file mode 100755 index 02b2857de028bc9c05d7ddd67012043b671b2764..0000000000000000000000000000000000000000 --- a/demo/recommendation/evaluate.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | sort | head -n 1 -} - -LOG=`get_best_pass log.txt` -LOG=(${LOG}) -echo 'Best pass is '${LOG[1]}, ' error is '${LOG[0]}, 'which means predict get error as '`echo ${LOG[0]} | python -c 'import math; print math.sqrt(float(raw_input()))/2'` - -evaluate_pass="output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass diff --git a/demo/recommendation/prediction.py b/demo/recommendation/prediction.py deleted file mode 100755 index 8ad993eab3a9f637cfff752bfedbbc62eaf3c8d5..0000000000000000000000000000000000000000 --- a/demo/recommendation/prediction.py +++ /dev/null @@ -1,51 +0,0 @@ -#!/bin/env python2 -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from py_paddle import swig_paddle, DataProviderConverter - -from common_utils import * -from paddle.trainer.config_parser import parse_config - -try: - import cPickle as pickle -except ImportError: - import pickle -import sys - -if __name__ == '__main__': - model_path = sys.argv[1] - swig_paddle.initPaddle('--use_gpu=0') - conf = parse_config("trainer_config.py", "is_predict=1") - network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - assert isinstance(network, swig_paddle.GradientMachine) - network.loadParameters(model_path) - with open('./data/meta.bin', 'rb') as f: - meta = pickle.load(f) - headers = [h[1] for h in meta_to_header(meta, 'movie')] - headers.extend([h[1] for h in meta_to_header(meta, 'user')]) - cvt = DataProviderConverter(headers) - while True: - movie_id = int(raw_input("Input movie_id: ")) - user_id = int(raw_input("Input user_id: ")) - movie_meta = meta['movie'][movie_id] # Query Data From Meta. - user_meta = meta['user'][user_id] - data = [movie_id - 1] - data.extend(movie_meta) - data.append(user_id - 1) - data.extend(user_meta) - print "Prediction Score is %.2f" % ( - (network.forwardTest(cvt.convert([data]))[0]['value'][0][0] + 5) - / 2) diff --git a/demo/recommendation/preprocess.sh b/demo/recommendation/preprocess.sh deleted file mode 100755 index eeb81ce3cb47e65c0aeb303e7571024ba82dad65..0000000000000000000000000000000000000000 --- a/demo/recommendation/preprocess.sh +++ /dev/null @@ -1,40 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -UNAME_STR=`uname` - -if [[ ${UNAME_STR} == 'Linux' ]]; then - SHUF_PROG='shuf' -else - SHUF_PROG='gshuf' -fi - - -cd "$(dirname "$0")" -delimiter='::' -dir=ml-1m -cd data -echo 'generate meta config file' -python config_generator.py config.json > meta_config.json -echo 'generate meta file' -python meta_generator.py $dir meta.bin --config=meta_config.json -echo 'split train/test file' -python split.py $dir/ratings.dat --delimiter=${delimiter} --test_ratio=0.1 -echo 'shuffle train file' -${SHUF_PROG} $dir/ratings.dat.train > ratings.dat.train -cp $dir/ratings.dat.test . -echo "./data/ratings.dat.train" > train.list -echo "./data/ratings.dat.test" > test.list diff --git a/demo/recommendation/requirements.txt b/demo/recommendation/requirements.txt deleted file mode 100644 index 1ea154584a428b6a389309f1f8def502e0aadfce..0000000000000000000000000000000000000000 --- a/demo/recommendation/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -PyYAML -docopt diff --git a/demo/recommendation/run.sh b/demo/recommendation/run.sh deleted file mode 100755 index 22aef556082ba429e9ca7c6dd3ec72699b9dbcf4..0000000000000000000000000000000000000000 --- a/demo/recommendation/run.sh +++ /dev/null @@ -1,25 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -paddle train \ - --config=trainer_config.py \ - --save_dir=./output \ - --use_gpu=false \ - --trainer_count=4\ - --test_all_data_in_one_period=true \ - --log_period=100 \ - --dot_period=1 \ - --num_passes=50 2>&1 | tee 'log.txt' -paddle usage -l log.txt -e $? -n "recommendation" >/dev/null 2>&1 diff --git a/demo/recommendation/trainer_config.py b/demo/recommendation/trainer_config.py deleted file mode 100755 index 25f529d7d7c430f179107fb189ade34760ab309d..0000000000000000000000000000000000000000 --- a/demo/recommendation/trainer_config.py +++ /dev/null @@ -1,98 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer_config_helpers import * - -try: - import cPickle as pickle -except ImportError: - import pickle - -is_predict = get_config_arg('is_predict', bool, False) - -META_FILE = 'data/meta.bin' - -with open(META_FILE, 'rb') as f: - # load meta file - meta = pickle.load(f) - -settings( - batch_size=1600, learning_rate=1e-3, learning_method=RMSPropOptimizer()) - - -def construct_feature(name): - """ - Construct movie/user features. - - This method read from meta data. Then convert feature to neural network due - to feature type. The map relation as follow. - - * id: embedding => fc - * embedding: - is_sequence: embedding => context_projection => fc => pool - not sequence: embedding => fc - * one_hot_dense: fc => fc - - Then gather all features vector, and use a fc layer to combined them as - return. - - :param name: 'movie' or 'user' - :type name: basestring - :return: combined feature output - :rtype: LayerOutput - """ - __meta__ = meta[name]['__meta__']['raw_meta'] - fusion = [] - for each_meta in __meta__: - type_name = each_meta['type'] - slot_name = each_meta.get('name', '%s_id' % name) - if type_name == 'id': - slot_dim = each_meta['max'] - embedding = embedding_layer( - input=data_layer( - slot_name, size=slot_dim), size=256) - fusion.append(fc_layer(input=embedding, size=256)) - elif type_name == 'embedding': - is_seq = each_meta['seq'] == 'sequence' - slot_dim = len(each_meta['dict']) - din = data_layer(slot_name, slot_dim) - embedding = embedding_layer(input=din, size=256) - if is_seq: - fusion.append( - text_conv_pool( - input=embedding, context_len=5, hidden_size=256)) - else: - fusion.append(fc_layer(input=embedding, size=256)) - elif type_name == 'one_hot_dense': - slot_dim = len(each_meta['dict']) - hidden = fc_layer(input=data_layer(slot_name, slot_dim), size=256) - fusion.append(fc_layer(input=hidden, size=256)) - - return fc_layer(name="%s_fusion" % name, input=fusion, size=256) - - -movie_feature = construct_feature("movie") -user_feature = construct_feature("user") -similarity = cos_sim(a=movie_feature, b=user_feature) -if not is_predict: - outputs(mse_cost(input=similarity, label=data_layer('rating', size=1))) - - define_py_data_sources2( - 'data/train.list', - 'data/test.list', - module='dataprovider', - obj='process', - args={'meta': meta}) -else: - outputs(similarity) diff --git a/demo/semantic_role_labeling/.gitignore b/demo/semantic_role_labeling/.gitignore deleted file mode 100644 index 65c9b674c7d1dad53b7d1c6ee1dcbdb72553888d..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/.gitignore +++ /dev/null @@ -1,14 +0,0 @@ -*.pyc -train.log -data/feature -data/conll05st-release/ -data/src.dict -data/test.wsj.props -data/test.wsj.seq_pair -data/test.wsj.words -data/tgt.dict -output -data/emb -data/targetDict.txt -data/verbDict.txt -data/wordDict.txt diff --git a/demo/semantic_role_labeling/api_train_v2.py b/demo/semantic_role_labeling/api_train_v2.py deleted file mode 100644 index 3af636aef5879b43641d55bd7c9b0b8a1242ff8b..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/api_train_v2.py +++ /dev/null @@ -1,277 +0,0 @@ -import math -import numpy as np -import gzip -import logging -import paddle.v2.dataset.conll05 as conll05 -import paddle.v2.evaluator as evaluator -import paddle.v2 as paddle - -logger = logging.getLogger('paddle') - -word_dict, verb_dict, label_dict = conll05.get_dict() -word_dict_len = len(word_dict) -label_dict_len = len(label_dict) -pred_len = len(verb_dict) - -mark_dict_len = 2 -word_dim = 32 -mark_dim = 5 -hidden_dim = 512 -depth = 8 -default_std = 1 / math.sqrt(hidden_dim) / 3.0 -mix_hidden_lr = 1e-3 - - -def d_type(size): - return paddle.data_type.integer_value_sequence(size) - - -def db_lstm(): - #8 features - word = paddle.layer.data(name='word_data', type=d_type(word_dict_len)) - predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len)) - - ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len)) - ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len)) - ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len)) - ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len)) - ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len)) - mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len)) - - emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True) - std_0 = paddle.attr.Param(initial_std=0.) - std_default = paddle.attr.Param(initial_std=default_std) - - predicate_embedding = paddle.layer.embedding( - size=word_dim, - input=predicate, - param_attr=paddle.attr.Param( - name='vemb', initial_std=default_std)) - mark_embedding = paddle.layer.embedding( - size=mark_dim, input=mark, param_attr=std_0) - - word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] - emb_layers = [ - paddle.layer.embedding( - size=word_dim, input=x, param_attr=emb_para) for x in word_input - ] - emb_layers.append(predicate_embedding) - emb_layers.append(mark_embedding) - - hidden_0 = paddle.layer.mixed( - size=hidden_dim, - bias_attr=std_default, - input=[ - paddle.layer.full_matrix_projection( - input=emb, param_attr=std_default) for emb in emb_layers - ]) - - lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0) - hidden_para_attr = paddle.attr.Param( - initial_std=default_std, learning_rate=mix_hidden_lr) - - lstm_0 = paddle.layer.lstmemory( - input=hidden_0, - act=paddle.activation.Relu(), - gate_act=paddle.activation.Sigmoid(), - state_act=paddle.activation.Sigmoid(), - bias_attr=std_0, - param_attr=lstm_para_attr) - - #stack L-LSTM and R-LSTM with direct edges - input_tmp = [hidden_0, lstm_0] - - for i in range(1, depth): - mix_hidden = paddle.layer.mixed( - size=hidden_dim, - bias_attr=std_default, - input=[ - paddle.layer.full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - paddle.layer.full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ]) - - lstm = paddle.layer.lstmemory( - input=mix_hidden, - act=paddle.activation.Relu(), - gate_act=paddle.activation.Sigmoid(), - state_act=paddle.activation.Sigmoid(), - reverse=((i % 2) == 1), - bias_attr=std_0, - param_attr=lstm_para_attr) - - input_tmp = [mix_hidden, lstm] - - feature_out = paddle.layer.mixed( - size=label_dict_len, - bias_attr=std_default, - input=[ - paddle.layer.full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - paddle.layer.full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ], ) - - return feature_out - - -def load_parameter(file_name, h, w): - with open(file_name, 'rb') as f: - f.read(16) # skip header. - return np.fromfile(f, dtype=np.float32).reshape(h, w) - - -def train(): - paddle.init(use_gpu=False, trainer_count=1) - - # define network topology - feature_out = db_lstm() - target = paddle.layer.data(name='target', type=d_type(label_dict_len)) - crf_cost = paddle.layer.crf(size=label_dict_len, - input=feature_out, - label=target, - param_attr=paddle.attr.Param( - name='crfw', - initial_std=default_std, - learning_rate=mix_hidden_lr)) - - crf_dec = paddle.layer.crf_decoding( - size=label_dict_len, - input=feature_out, - label=target, - param_attr=paddle.attr.Param(name='crfw')) - evaluator.sum(input=crf_dec) - - # create parameters - parameters = paddle.parameters.create(crf_cost) - parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32)) - - # create optimizer - optimizer = paddle.optimizer.Momentum( - momentum=0, - learning_rate=2e-2, - regularization=paddle.optimizer.L2Regularization(rate=8e-4), - model_average=paddle.optimizer.ModelAverage( - average_window=0.5, max_average_window=10000), ) - - trainer = paddle.trainer.SGD(cost=crf_cost, - parameters=parameters, - update_equation=optimizer, - extra_layers=crf_dec) - - reader = paddle.batch( - paddle.reader.shuffle( - conll05.test(), buf_size=8192), batch_size=10) - - feeding = { - 'word_data': 0, - 'ctx_n2_data': 1, - 'ctx_n1_data': 2, - 'ctx_0_data': 3, - 'ctx_p1_data': 4, - 'ctx_p2_data': 5, - 'verb_data': 6, - 'mark_data': 7, - 'target': 8 - } - - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - logger.info("Pass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics)) - if event.batch_id and event.batch_id % 1000 == 0: - result = trainer.test(reader=reader, feeding=feeding) - logger.info("\nTest with Pass %d, Batch %d, %s" % - (event.pass_id, event.batch_id, result.metrics)) - - if isinstance(event, paddle.event.EndPass): - # save parameters - with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f: - parameters.to_tar(f) - - result = trainer.test(reader=reader, feeding=feeding) - logger.info("\nTest with Pass %d, %s" % - (event.pass_id, result.metrics)) - - trainer.train( - reader=reader, - event_handler=event_handler, - num_passes=10, - feeding=feeding) - - -def infer_a_batch(inferer, test_data, word_dict, pred_dict, label_dict): - probs = inferer.infer(input=test_data, field='id') - assert len(probs) == sum(len(x[0]) for x in test_data) - - for idx, test_sample in enumerate(test_data): - start_id = 0 - pred_str = "%s\t" % (pred_dict[test_sample[6][0]]) - - for w, tag in zip(test_sample[0], - probs[start_id:start_id + len(test_sample[0])]): - pred_str += "%s[%s] " % (word_dict[w], label_dict[tag]) - print(pred_str.strip()) - start_id += len(test_sample[0]) - - -def infer(): - label_dict_reverse = dict((value, key) - for key, value in label_dict.iteritems()) - word_dict_reverse = dict((value, key) - for key, value in word_dict.iteritems()) - pred_dict_reverse = dict((value, key) - for key, value in verb_dict.iteritems()) - - test_creator = paddle.dataset.conll05.test() - - paddle.init(use_gpu=False, trainer_count=1) - - # define network topology - feature_out = db_lstm() - predict = paddle.layer.crf_decoding( - size=label_dict_len, - input=feature_out, - param_attr=paddle.attr.Param(name='crfw')) - - test_pass = 0 - with gzip.open('params_pass_%d.tar.gz' % (test_pass)) as f: - parameters = paddle.parameters.Parameters.from_tar(f) - inferer = paddle.inference.Inference( - output_layer=predict, parameters=parameters) - - # prepare test data - test_data = [] - test_batch_size = 50 - - for idx, item in enumerate(test_creator()): - test_data.append(item[0:8]) - - if idx and (not idx % test_batch_size): - infer_a_batch( - inferer, - test_data, - word_dict_reverse, - pred_dict_reverse, - label_dict_reverse, ) - test_data = [] - infer_a_batch( - inferer, - test_data, - word_dict_reverse, - pred_dict_reverse, - label_dict_reverse, ) - test_data = [] - - -def main(is_inferring=False): - if is_inferring: - infer() - else: - train() - - -if __name__ == '__main__': - main(is_inferring=False) diff --git a/demo/semantic_role_labeling/data/extract_dict_feature.py b/demo/semantic_role_labeling/data/extract_dict_feature.py deleted file mode 100644 index da44111976a0dec68345fc139d0aa459ca9211c2..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/extract_dict_feature.py +++ /dev/null @@ -1,81 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import os -from optparse import OptionParser - - -def extract_dict_features(pair_file, feature_file): - - with open(pair_file) as fin, open(feature_file, 'w') as feature_out: - for line in fin: - sentence, predicate, labels = line.strip().split('\t') - sentence_list = sentence.split() - labels_list = labels.split() - - verb_index = labels_list.index('B-V') - - mark = [0] * len(labels_list) - if verb_index > 0: - mark[verb_index - 1] = 1 - ctx_n1 = sentence_list[verb_index - 1] - else: - ctx_n1 = 'bos' - - if verb_index > 1: - mark[verb_index - 2] = 1 - ctx_n2 = sentence_list[verb_index - 2] - else: - ctx_n2 = 'bos' - - mark[verb_index] = 1 - ctx_0 = sentence_list[verb_index] - - if verb_index < len(labels_list) - 1: - mark[verb_index + 1] = 1 - ctx_p1 = sentence_list[verb_index + 1] - else: - ctx_p1 = 'eos' - - if verb_index < len(labels_list) - 2: - mark[verb_index + 2] = 1 - ctx_p2 = sentence_list[verb_index + 2] - else: - ctx_p2 = 'eos' - - - feature_str = sentence + '\t' \ - + predicate + '\t' \ - + ctx_n2 + '\t' \ - + ctx_n1 + '\t' \ - + ctx_0 + '\t' \ - + ctx_p1 + '\t' \ - + ctx_p2 + '\t' \ - + ' '.join([str(i) for i in mark]) + '\t' \ - + labels - - feature_out.write(feature_str + '\n') - - -if __name__ == '__main__': - - usage = '-p pair_file -f feature_file' - parser = OptionParser(usage) - parser.add_option('-p', dest='pair_file', help='the pair file') - parser.add_option('-f', dest='feature_file', help='the feature file') - - (options, args) = parser.parse_args() - - extract_dict_features(options.pair_file, options.feature_file) diff --git a/demo/semantic_role_labeling/data/extract_pairs.py b/demo/semantic_role_labeling/data/extract_pairs.py deleted file mode 100644 index 94a8488c16734eb1882d54f7ec36f4b9308c09d4..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/extract_pairs.py +++ /dev/null @@ -1,122 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import os -from optparse import OptionParser - - -def read_labels(props_file): - ''' - a sentence maybe has more than one verb, each verb has its label sequence - label[], is a 3-dimension list. - the first dim is to store all sentence's label seqs, len is the sentence number - the second dim is to store all label sequences for one sentences - the third dim is to store each label for one word - ''' - labels = [] - with open(props_file) as fin: - label_seqs_for_one_sentences = [] - one_seg_in_file = [] - for line in fin: - line = line.strip() - if line == '': - for i in xrange(len(one_seg_in_file[0])): - a_kind_lable = [x[i] for x in one_seg_in_file] - label_seqs_for_one_sentences.append(a_kind_lable) - labels.append(label_seqs_for_one_sentences) - one_seg_in_file = [] - label_seqs_for_one_sentences = [] - else: - part = line.split() - one_seg_in_file.append(part) - return labels - - -def read_sentences(words_file): - sentences = [] - with open(words_file) as fin: - s = '' - for line in fin: - line = line.strip() - if line == '': - sentences.append(s) - s = '' - else: - s += line + ' ' - return sentences - - -def transform_labels(sentences, labels): - sen_lab_pair = [] - for i in xrange(len(sentences)): - if len(labels[i]) == 1: - continue - else: - verb_list = [] - for x in labels[i][0]: - if x != '-': - verb_list.append(x) - - for j in xrange(1, len(labels[i])): - label_list = labels[i][j] - current_tag = 'O' - is_in_bracket = False - label_seq = [] - verb_word = '' - for ll in label_list: - if ll == '*' and is_in_bracket == False: - label_seq.append('O') - elif ll == '*' and is_in_bracket == True: - label_seq.append('I-' + current_tag) - elif ll == '*)': - label_seq.append('I-' + current_tag) - is_in_bracket = False - elif ll.find('(') != -1 and ll.find(')') != -1: - current_tag = ll[1:ll.find('*')] - label_seq.append('B-' + current_tag) - is_in_bracket = False - elif ll.find('(') != -1 and ll.find(')') == -1: - current_tag = ll[1:ll.find('*')] - label_seq.append('B-' + current_tag) - is_in_bracket = True - else: - print 'error:', ll - sen_lab_pair.append((sentences[i], verb_list[j - 1], label_seq)) - return sen_lab_pair - - -def write_file(sen_lab_pair, output_file): - with open(output_file, 'w') as fout: - for x in sen_lab_pair: - sentence = x[0] - label_seq = ' '.join(x[2]) - assert len(sentence.split()) == len(x[2]) - fout.write(sentence + '\t' + x[1] + '\t' + label_seq + '\n') - - -if __name__ == '__main__': - - usage = '-w words_file -p props_file -o output_file' - parser = OptionParser(usage) - parser.add_option('-w', dest='words_file', help='the words file') - parser.add_option('-p', dest='props_file', help='the props file') - parser.add_option('-o', dest='output_file', help='the output_file') - (options, args) = parser.parse_args() - - sentences = read_sentences(options.words_file) - labels = read_labels(options.props_file) - sen_lab_pair = transform_labels(sentences, labels) - - write_file(sen_lab_pair, options.output_file) diff --git a/demo/semantic_role_labeling/data/get_data.sh b/demo/semantic_role_labeling/data/get_data.sh deleted file mode 100755 index a0ef26a13b9a03392cb8b6207d6d21b7761e38e8..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/get_data.sh +++ /dev/null @@ -1,29 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -wget http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt -wget http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb -tar -xzvf conll05st-tests.tar.gz -rm conll05st-tests.tar.gz -cp ./conll05st-release/test.wsj/words/test.wsj.words.gz . -cp ./conll05st-release/test.wsj/props/test.wsj.props.gz . -gunzip test.wsj.words.gz -gunzip test.wsj.props.gz - -python extract_pairs.py -w test.wsj.words -p test.wsj.props -o test.wsj.seq_pair -python extract_dict_feature.py -p test.wsj.seq_pair -f feature diff --git a/demo/semantic_role_labeling/data/test.list b/demo/semantic_role_labeling/data/test.list deleted file mode 100644 index ec370e897a7811b572613150ccb6f665c3adb974..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/test.list +++ /dev/null @@ -1 +0,0 @@ -./data/feature diff --git a/demo/semantic_role_labeling/data/train.list b/demo/semantic_role_labeling/data/train.list deleted file mode 100644 index ec370e897a7811b572613150ccb6f665c3adb974..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/data/train.list +++ /dev/null @@ -1 +0,0 @@ -./data/feature diff --git a/demo/semantic_role_labeling/dataprovider.py b/demo/semantic_role_labeling/dataprovider.py deleted file mode 100644 index 360c57ea6283ca43986610abf1831742bfc0c3ef..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/dataprovider.py +++ /dev/null @@ -1,71 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * - -UNK_IDX = 0 - - -def hook(settings, word_dict, label_dict, predicate_dict, **kwargs): - settings.word_dict = word_dict - settings.label_dict = label_dict - settings.predicate_dict = predicate_dict - - #all inputs are integral and sequential type - settings.slots = [ - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(word_dict)), - integer_value_sequence(len(predicate_dict)), integer_value_sequence(2), - integer_value_sequence(len(label_dict)) - ] - - -def get_batch_size(yeild_data): - return len(yeild_data[0]) - - -@provider( - init_hook=hook, - should_shuffle=True, - calc_batch_size=get_batch_size, - can_over_batch_size=True, - cache=CacheType.CACHE_PASS_IN_MEM) -def process(settings, file_name): - with open(file_name, 'r') as fdata: - for line in fdata: - sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \ - line.strip().split('\t') - - words = sentence.split() - sen_len = len(words) - word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words] - - predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len - ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len - ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len - ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len - ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len - ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len - - marks = mark.split() - mark_slot = [int(w) for w in marks] - - label_list = label.split() - label_slot = [settings.label_dict.get(w) for w in label_list] - yield word_slot, ctx_n2_slot, ctx_n1_slot, \ - ctx_0_slot, ctx_p1_slot, ctx_p2_slot, predicate_slot, mark_slot, label_slot diff --git a/demo/semantic_role_labeling/db_lstm.py b/demo/semantic_role_labeling/db_lstm.py deleted file mode 100644 index 04e2a559b19bd4b9aec0242eb43edf6ab1e7624e..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/db_lstm.py +++ /dev/null @@ -1,218 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import math -import os -import sys -from paddle.trainer_config_helpers import * - -#file paths -word_dict_file = './data/wordDict.txt' -label_dict_file = './data/targetDict.txt' -predicate_file = './data/verbDict.txt' -train_list_file = './data/train.list' -test_list_file = './data/test.list' - -is_test = get_config_arg('is_test', bool, False) -is_predict = get_config_arg('is_predict', bool, False) - -if not is_predict: - #load dictionaries - word_dict = dict() - label_dict = dict() - predicate_dict = dict() - with open(word_dict_file, 'r') as f_word, \ - open(label_dict_file, 'r') as f_label, \ - open(predicate_file, 'r') as f_pre: - for i, line in enumerate(f_word): - w = line.strip() - word_dict[w] = i - - for i, line in enumerate(f_label): - w = line.strip() - label_dict[w] = i - - for i, line in enumerate(f_pre): - w = line.strip() - predicate_dict[w] = i - - if is_test: - train_list_file = None - - #define data provider - define_py_data_sources2( - train_list=train_list_file, - test_list=test_list_file, - module='dataprovider', - obj='process', - args={ - 'word_dict': word_dict, - 'label_dict': label_dict, - 'predicate_dict': predicate_dict - }) - - word_dict_len = len(word_dict) - label_dict_len = len(label_dict) - pred_len = len(predicate_dict) - -else: - word_dict_len = get_config_arg('dict_len', int) - label_dict_len = get_config_arg('label_len', int) - pred_len = get_config_arg('pred_len', int) - -############################## Hyper-parameters ################################## -mark_dict_len = 2 -word_dim = 32 -mark_dim = 5 -hidden_dim = 512 -depth = 8 - -########################### Optimizer ####################################### - -settings( - batch_size=150, - learning_method=MomentumOptimizer(momentum=0), - learning_rate=2e-2, - regularization=L2Regularization(8e-4), - is_async=False, - model_average=ModelAverage( - average_window=0.5, max_average_window=10000), ) - -####################################### network ############################## -#8 features and 1 target -word = data_layer(name='word_data', size=word_dict_len) -predicate = data_layer(name='verb_data', size=pred_len) - -ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len) -ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len) -ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len) -ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len) -ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len) -mark = data_layer(name='mark_data', size=mark_dict_len) - -if not is_predict: - target = data_layer(name='target', size=label_dict_len) - -default_std = 1 / math.sqrt(hidden_dim) / 3.0 - -emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.) -std_0 = ParameterAttribute(initial_std=0.) -std_default = ParameterAttribute(initial_std=default_std) - -predicate_embedding = embedding_layer( - size=word_dim, - input=predicate, - param_attr=ParameterAttribute( - name='vemb', initial_std=default_std)) -mark_embedding = embedding_layer( - name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0) - -word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] -emb_layers = [ - embedding_layer( - size=word_dim, input=x, param_attr=emb_para) for x in word_input -] -emb_layers.append(predicate_embedding) -emb_layers.append(mark_embedding) - -hidden_0 = mixed_layer( - name='hidden0', - size=hidden_dim, - bias_attr=std_default, - input=[ - full_matrix_projection( - input=emb, param_attr=std_default) for emb in emb_layers - ]) - -mix_hidden_lr = 1e-3 -lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0) -hidden_para_attr = ParameterAttribute( - initial_std=default_std, learning_rate=mix_hidden_lr) - -lstm_0 = lstmemory( - name='lstm0', - input=hidden_0, - act=ReluActivation(), - gate_act=SigmoidActivation(), - state_act=SigmoidActivation(), - bias_attr=std_0, - param_attr=lstm_para_attr) - -#stack L-LSTM and R-LSTM with direct edges -input_tmp = [hidden_0, lstm_0] - -for i in range(1, depth): - - mix_hidden = mixed_layer( - name='hidden' + str(i), - size=hidden_dim, - bias_attr=std_default, - input=[ - full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ]) - - lstm = lstmemory( - name='lstm' + str(i), - input=mix_hidden, - act=ReluActivation(), - gate_act=SigmoidActivation(), - state_act=SigmoidActivation(), - reverse=((i % 2) == 1), - bias_attr=std_0, - param_attr=lstm_para_attr) - - input_tmp = [mix_hidden, lstm] - -feature_out = mixed_layer( - name='output', - size=label_dict_len, - bias_attr=std_default, - input=[ - full_matrix_projection( - input=input_tmp[0], param_attr=hidden_para_attr), - full_matrix_projection( - input=input_tmp[1], param_attr=lstm_para_attr) - ], ) - -if not is_predict: - crf_l = crf_layer( - name='crf', - size=label_dict_len, - input=feature_out, - label=target, - param_attr=ParameterAttribute( - name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr)) - - crf_dec_l = crf_decoding_layer( - name='crf_dec_l', - size=label_dict_len, - input=feature_out, - label=target, - param_attr=ParameterAttribute(name='crfw')) - - eval = sum_evaluator(input=crf_dec_l) - - outputs(crf_l) - -else: - crf_dec_l = crf_decoding_layer( - name='crf_dec_l', - size=label_dict_len, - input=feature_out, - param_attr=ParameterAttribute(name='crfw')) - - outputs(crf_dec_l) diff --git a/demo/semantic_role_labeling/predict.py b/demo/semantic_role_labeling/predict.py deleted file mode 100644 index 372fd090b6e8f08f5bb34697772c2e4976810595..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/predict.py +++ /dev/null @@ -1,193 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import numpy as np -from optparse import OptionParser -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import integer_value_sequence -from paddle.trainer.config_parser import parse_config -""" -Usage: run following command to show help message. - python predict.py -h -""" -UNK_IDX = 0 - - -class Prediction(): - def __init__(self, train_conf, dict_file, model_dir, label_file, - predicate_dict_file): - """ - train_conf: trainer configure. - dict_file: word dictionary file name. - model_dir: directory of model. - """ - - self.dict = {} - self.labels = {} - self.predicate_dict = {} - self.labels_reverse = {} - self.load_dict_label(dict_file, label_file, predicate_dict_file) - - len_dict = len(self.dict) - len_label = len(self.labels) - len_pred = len(self.predicate_dict) - - conf = parse_config( - train_conf, 'dict_len=' + str(len_dict) + ',label_len=' + - str(len_label) + ',pred_len=' + str(len_pred) + ',is_predict=True') - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - self.network.loadParameters(model_dir) - - slots = [ - integer_value_sequence(len_dict), integer_value_sequence(len_dict), - integer_value_sequence(len_dict), integer_value_sequence(len_dict), - integer_value_sequence(len_dict), integer_value_sequence(len_dict), - integer_value_sequence(len_pred), integer_value_sequence(2) - ] - self.converter = DataProviderConverter(slots) - - def load_dict_label(self, dict_file, label_file, predicate_dict_file): - """ - Load dictionary from self.dict_file. - """ - for line_count, line in enumerate(open(dict_file, 'r')): - self.dict[line.strip()] = line_count - - for line_count, line in enumerate(open(label_file, 'r')): - self.labels[line.strip()] = line_count - self.labels_reverse[line_count] = line.strip() - - for line_count, line in enumerate(open(predicate_dict_file, 'r')): - self.predicate_dict[line.strip()] = line_count - - def get_data(self, data_file): - """ - Get input data of paddle format. - """ - with open(data_file, 'r') as fdata: - for line in fdata: - sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = line.strip( - ).split('\t') - words = sentence.split() - sen_len = len(words) - - word_slot = [self.dict.get(w, UNK_IDX) for w in words] - predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX) - ] * sen_len - ctx_n2_slot = [self.dict.get(ctx_n2, UNK_IDX)] * sen_len - ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len - ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len - ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len - ctx_p2_slot = [self.dict.get(ctx_p2, UNK_IDX)] * sen_len - - marks = mark.split() - mark_slot = [int(w) for w in marks] - - yield word_slot, ctx_n2_slot, ctx_n1_slot, \ - ctx_0_slot, ctx_p1_slot, ctx_p2_slot, predicate_slot, mark_slot - - def predict(self, data_file, output_file): - """ - data_file: file name of input data. - """ - input = self.converter(self.get_data(data_file)) - output = self.network.forwardTest(input) - lab = output[0]["id"].tolist() - - with open(data_file, 'r') as fin, open(output_file, 'w') as fout: - index = 0 - for line in fin: - sen = line.split('\t')[0] - len_sen = len(sen.split()) - line_labels = lab[index:index + len_sen] - index += len_sen - fout.write(sen + '\t' + ' '.join( - [self.labels_reverse[i] for i in line_labels]) + '\n') - - -def option_parser(): - usage = ( - "python predict.py -c config -w model_dir " - "-d word dictionary -l label_file -i input_file -p pred_dict_file") - parser = OptionParser(usage="usage: %s [options]" % usage) - parser.add_option( - "-c", - "--tconf", - action="store", - dest="train_conf", - help="network config") - parser.add_option( - "-d", - "--dict", - action="store", - dest="dict_file", - help="dictionary file") - parser.add_option( - "-l", - "--label", - action="store", - dest="label_file", - default=None, - help="label file") - parser.add_option( - "-p", - "--predict_dict_file", - action="store", - dest="predict_dict_file", - default=None, - help="predict_dict_file") - parser.add_option( - "-i", - "--data", - action="store", - dest="data_file", - help="data file to predict") - parser.add_option( - "-w", - "--model", - action="store", - dest="model_path", - default=None, - help="model path") - - parser.add_option( - "-o", - "--output_file", - action="store", - dest="output_file", - default=None, - help="output file") - return parser.parse_args() - - -def main(): - options, args = option_parser() - train_conf = options.train_conf - data_file = options.data_file - dict_file = options.dict_file - model_path = options.model_path - label_file = options.label_file - predict_dict_file = options.predict_dict_file - output_file = options.output_file - - swig_paddle.initPaddle("--use_gpu=0") - predict = Prediction(train_conf, dict_file, model_path, label_file, - predict_dict_file) - predict.predict(data_file, output_file) - - -if __name__ == '__main__': - main() diff --git a/demo/semantic_role_labeling/predict.sh b/demo/semantic_role_labeling/predict.sh deleted file mode 100755 index 873aad670d16803ce321ab60baabe9fe29ea64bf..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/predict.sh +++ /dev/null @@ -1,43 +0,0 @@ -#!/bin/bash - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' | \ - sort -n | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -best_model_path="output/pass-${LOG[1]}" - -config_file=db_lstm.py -dict_file=./data/wordDict.txt -label_file=./data/targetDict.txt -predicate_dict_file=./data/verbDict.txt -input_file=./data/feature -output_file=predict.res - -python predict.py \ - -c $config_file \ - -w $best_model_path \ - -l $label_file \ - -p $predicate_dict_file \ - -d $dict_file \ - -i $input_file \ - -o $output_file diff --git a/demo/semantic_role_labeling/test.sh b/demo/semantic_role_labeling/test.sh deleted file mode 100755 index 095bbff2ea42627a13d8ebab436f5a05abc09743..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/test.sh +++ /dev/null @@ -1,41 +0,0 @@ -#!/bin/bash - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* cost=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' |\ - sort -n | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -evaluate_pass="output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass -model_list=./model.list -touch $model_list | echo $evaluate_pass > $model_list - -paddle train \ - --config=./db_lstm.py \ - --model_list=$model_list \ - --job=test \ - --use_gpu=false \ - --config_args=is_test=1 \ - --test_all_data_in_one_period=1 \ -2>&1 | tee 'test.log' -paddle usage -l test.log -e $? -n "semantic_role_labeling_test" >/dev/null 2>&1 diff --git a/demo/semantic_role_labeling/train.sh b/demo/semantic_role_labeling/train.sh deleted file mode 100755 index eee14010d7b04a1b824f39090fa82fc532085e0d..0000000000000000000000000000000000000000 --- a/demo/semantic_role_labeling/train.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -paddle train \ - --config=./db_lstm.py \ - --use_gpu=0 \ - --log_period=5000 \ - --trainer_count=1 \ - --show_parameter_stats_period=5000 \ - --save_dir=./output \ - --num_passes=10000 \ - --average_test_period=10000000 \ - --init_model_path=./data \ - --load_missing_parameter_strategy=rand \ - --test_all_data_in_one_period=1 \ - 2>&1 | tee 'train.log' -paddle usage -l train.log -e $? -n "semantic_role_labeling_train" >/dev/null 2>&1 diff --git a/demo/sentiment/.gitignore b/demo/sentiment/.gitignore deleted file mode 100644 index bf2a9ab1ce3c937bf06179074cd952dc53591dfd..0000000000000000000000000000000000000000 --- a/demo/sentiment/.gitignore +++ /dev/null @@ -1,11 +0,0 @@ -data/aclImdb -data/imdb -data/pre-imdb -data/mosesdecoder-master -logs/ -model_output -dataprovider_copy_1.py -model.list -test.log -train.log -*.pyc diff --git a/demo/sentiment/data/get_imdb.sh b/demo/sentiment/data/get_imdb.sh deleted file mode 100755 index 7600af6fbb900ee845702f1297779c1f0ed9bf84..0000000000000000000000000000000000000000 --- a/demo/sentiment/data/get_imdb.sh +++ /dev/null @@ -1,51 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -set -e -set -x - -DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR - -#download the dataset -echo "Downloading aclImdb..." -#http://ai.stanford.edu/%7Eamaas/data/sentiment/ -wget http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz - -echo "Downloading mosesdecoder..." -#https://github.com/moses-smt/mosesdecoder -wget https://github.com/moses-smt/mosesdecoder/archive/master.zip - -#extract package -echo "Unzipping..." -tar -zxvf aclImdb_v1.tar.gz -unzip master.zip - -#move train and test set to imdb_data directory -#in order to process when traing -mkdir -p imdb/train -mkdir -p imdb/test - -cp -r aclImdb/train/pos/ imdb/train/pos -cp -r aclImdb/train/neg/ imdb/train/neg - -cp -r aclImdb/test/pos/ imdb/test/pos -cp -r aclImdb/test/neg/ imdb/test/neg - -#remove compressed package -rm aclImdb_v1.tar.gz -rm master.zip - -echo "Done." diff --git a/demo/sentiment/dataprovider.py b/demo/sentiment/dataprovider.py deleted file mode 100755 index 4b7f5d0e504aef3884a04cbed8c16503a4079772..0000000000000000000000000000000000000000 --- a/demo/sentiment/dataprovider.py +++ /dev/null @@ -1,37 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from paddle.trainer.PyDataProvider2 import * - - -def hook(settings, dictionary, **kwargs): - settings.word_dict = dictionary - settings.input_types = [ - integer_value_sequence(len(settings.word_dict)), integer_value(2) - ] - settings.logger.info('dict len : %d' % (len(settings.word_dict))) - - -@provider(init_hook=hook) -def process(settings, file_name): - with open(file_name, 'r') as fdata: - for line_count, line in enumerate(fdata): - label, comment = line.strip().split('\t\t') - label = int(label) - words = comment.split() - word_slot = [ - settings.word_dict[w] for w in words if w in settings.word_dict - ] - if not word_slot: - continue - yield word_slot, label diff --git a/demo/sentiment/predict.py b/demo/sentiment/predict.py deleted file mode 100755 index 64c78e0d6b9297e7a321a4f070517593b0bfe332..0000000000000000000000000000000000000000 --- a/demo/sentiment/predict.py +++ /dev/null @@ -1,154 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os, sys -import numpy as np -from optparse import OptionParser -from py_paddle import swig_paddle, DataProviderConverter -from paddle.trainer.PyDataProvider2 import integer_value_sequence -from paddle.trainer.config_parser import parse_config -""" -Usage: run following command to show help message. - python predict.py -h -""" - - -class SentimentPrediction(): - def __init__(self, train_conf, dict_file, model_dir=None, label_file=None): - """ - train_conf: trainer configure. - dict_file: word dictionary file name. - model_dir: directory of model. - """ - self.train_conf = train_conf - self.dict_file = dict_file - self.word_dict = {} - self.dict_dim = self.load_dict() - self.model_dir = model_dir - if model_dir is None: - self.model_dir = os.path.dirname(train_conf) - - self.label = None - if label_file is not None: - self.load_label(label_file) - - conf = parse_config(train_conf, "is_predict=1") - self.network = swig_paddle.GradientMachine.createFromConfigProto( - conf.model_config) - self.network.loadParameters(self.model_dir) - input_types = [integer_value_sequence(self.dict_dim)] - self.converter = DataProviderConverter(input_types) - - def load_dict(self): - """ - Load dictionary from self.dict_file. - """ - for line_count, line in enumerate(open(self.dict_file, 'r')): - self.word_dict[line.strip().split('\t')[0]] = line_count - return len(self.word_dict) - - def load_label(self, label_file): - """ - Load label. - """ - self.label = {} - for v in open(label_file, 'r'): - self.label[int(v.split('\t')[1])] = v.split('\t')[0] - - def get_index(self, data): - """ - transform word into integer index according to the dictionary. - """ - words = data.strip().split() - word_slot = [self.word_dict[w] for w in words if w in self.word_dict] - return word_slot - - def batch_predict(self, data_batch): - input = self.converter(data_batch) - output = self.network.forwardTest(input) - prob = output[0]["value"] - labs = np.argsort(-prob) - for idx, lab in enumerate(labs): - if self.label is None: - print("predicting label is %d" % (lab[0])) - else: - print("predicting label is %s" % (self.label[lab[0]])) - - -def option_parser(): - usage = "python predict.py -n config -w model_dir -d dictionary -i input_file " - parser = OptionParser(usage="usage: %s [options]" % usage) - parser.add_option( - "-n", - "--tconf", - action="store", - dest="train_conf", - help="network config") - parser.add_option( - "-d", - "--dict", - action="store", - dest="dict_file", - help="dictionary file") - parser.add_option( - "-b", - "--label", - action="store", - dest="label", - default=None, - help="dictionary file") - parser.add_option( - "-c", - "--batch_size", - type="int", - action="store", - dest="batch_size", - default=1, - help="the batch size for prediction") - parser.add_option( - "-w", - "--model", - action="store", - dest="model_path", - default=None, - help="model path") - return parser.parse_args() - - -def main(): - options, args = option_parser() - train_conf = options.train_conf - batch_size = options.batch_size - dict_file = options.dict_file - model_path = options.model_path - label = options.label - swig_paddle.initPaddle("--use_gpu=0") - predict = SentimentPrediction(train_conf, dict_file, model_path, label) - - batch = [] - for line in sys.stdin: - words = predict.get_index(line) - if words: - batch.append([words]) - else: - print('All the words in [%s] are not in the dictionary.' % line) - if len(batch) == batch_size: - predict.batch_predict(batch) - batch = [] - if len(batch) > 0: - predict.batch_predict(batch) - - -if __name__ == '__main__': - main() diff --git a/demo/sentiment/predict.sh b/demo/sentiment/predict.sh deleted file mode 100755 index c72a8e8641516543ef267fcb4b448630246d1e8d..0000000000000000000000000000000000000000 --- a/demo/sentiment/predict.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -#Note the default model is pass-00002, you shold make sure the model path -#exists or change the mode path. -model=model_output/pass-00002/ -config=trainer_config.py -label=data/pre-imdb/labels.list -cat ./data/aclImdb/test/pos/10007_10.txt | python predict.py \ - --tconf=$config\ - --model=$model \ - --label=$label \ - --dict=./data/pre-imdb/dict.txt \ - --batch_size=1 diff --git a/demo/sentiment/preprocess.py b/demo/sentiment/preprocess.py deleted file mode 100755 index 29b3682b747c66574590de5ea70574981cc536bb..0000000000000000000000000000000000000000 --- a/demo/sentiment/preprocess.py +++ /dev/null @@ -1,359 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import sys -import random -import operator -import numpy as np -from subprocess import Popen, PIPE -from os.path import join as join_path -from optparse import OptionParser - -from paddle.utils.preprocess_util import * -""" -Usage: run following command to show help message. - python preprocess.py -h -""" - - -def save_dict(dict, filename, is_reverse=True): - """ - Save dictionary into file. - dict: input dictionary. - filename: output file name, string. - is_reverse: True, descending order by value. - False, ascending order by value. - """ - f = open(filename, 'w') - for k, v in sorted(dict.items(), key=operator.itemgetter(1),\ - reverse=is_reverse): - f.write('%s\t%s\n' % (k, v)) - f.close() - - -def tokenize(sentences): - """ - Use tokenizer.perl to tokenize input sentences. - tokenizer.perl is tool of Moses. - sentences : a list of input sentences. - return: a list of processed text. - """ - dir = './data/mosesdecoder-master/scripts/tokenizer/tokenizer.perl' - tokenizer_cmd = [dir, '-l', 'en', '-q', '-'] - assert isinstance(sentences, list) - text = "\n".join(sentences) - tokenizer = Popen(tokenizer_cmd, stdin=PIPE, stdout=PIPE) - tok_text, _ = tokenizer.communicate(text) - toks = tok_text.split('\n')[:-1] - return toks - - -def read_lines(path): - """ - path: String, file path. - return a list of sequence. - """ - seqs = [] - with open(path, 'r') as f: - for line in f.readlines(): - line = line.strip() - if len(line): - seqs.append(line) - return seqs - - -class SentimentDataSetCreate(): - """ - A class to process data for sentiment analysis task. - """ - - def __init__(self, - data_path, - output_path, - use_okenizer=True, - multi_lines=False): - """ - data_path: string, traing and testing dataset path - output_path: string, output path, store processed dataset - multi_lines: whether a file has multi lines. - In order to shuffle fully, it needs to read all files into - memory, then shuffle them if one file has multi lines. - """ - self.output_path = output_path - self.data_path = data_path - - self.train_dir = 'train' - self.test_dir = 'test' - - self.train_list = "train.list" - self.test_list = "test.list" - - self.label_list = "labels.list" - self.classes_num = 0 - - self.batch_size = 50000 - self.batch_dir = 'batches' - - self.dict_file = "dict.txt" - self.dict_with_test = False - self.dict_size = 0 - self.word_count = {} - - self.tokenizer = use_okenizer - self.overwrite = False - - self.multi_lines = multi_lines - - self.train_dir = join_path(data_path, self.train_dir) - self.test_dir = join_path(data_path, self.test_dir) - self.train_list = join_path(output_path, self.train_list) - self.test_list = join_path(output_path, self.test_list) - self.label_list = join_path(output_path, self.label_list) - self.dict_file = join_path(output_path, self.dict_file) - - def data_list(self, path): - """ - create dataset from path - path: data path - return: data list - """ - label_set = get_label_set_from_dir(path) - data = [] - for lab_name in label_set.keys(): - file_paths = list_files(join_path(path, lab_name)) - for p in file_paths: - data.append({"label" : label_set[lab_name],\ - "seq_path": p}) - return data, label_set - - def create_dict(self, data): - """ - create dict for input data. - data: list, [sequence, sequnce, ...] - """ - for seq in data: - for w in seq.strip().lower().split(): - if w not in self.word_count: - self.word_count[w] = 1 - else: - self.word_count[w] += 1 - - def create_dataset(self): - """ - create file batches and dictionary of train data set. - If the self.overwrite is false and train.list already exists in - self.output_path, this function will not create and save file - batches from the data set path. - return: dictionary size, class number. - """ - out_path = self.output_path - if out_path and not os.path.exists(out_path): - os.makedirs(out_path) - - # If self.overwrite is false or self.train_list has existed, - # it will not process dataset. - if not (self.overwrite or not os.path.exists(self.train_list)): - print "%s already exists." % self.train_list - return - - # Preprocess train data. - train_data, train_lab_set = self.data_list(self.train_dir) - print "processing train set..." - file_lists = self.save_data(train_data, "train", self.batch_size, True, - True) - save_list(file_lists, self.train_list) - - # If have test data path, preprocess test data. - if os.path.exists(self.test_dir): - test_data, test_lab_set = self.data_list(self.test_dir) - assert (train_lab_set == test_lab_set) - print "processing test set..." - file_lists = self.save_data(test_data, "test", self.batch_size, - False, self.dict_with_test) - save_list(file_lists, self.test_list) - - # save labels set. - save_dict(train_lab_set, self.label_list, False) - self.classes_num = len(train_lab_set.keys()) - - # save dictionary. - save_dict(self.word_count, self.dict_file, True) - self.dict_size = len(self.word_count) - - def save_data(self, - data, - prefix="", - batch_size=50000, - is_shuffle=False, - build_dict=False): - """ - Create batches for a Dataset object. - data: the Dataset object to process. - prefix: the prefix of each batch. - batch_size: number of data in each batch. - build_dict: whether to build dictionary for data - - return: list of batch names - """ - if is_shuffle and self.multi_lines: - return self.save_data_multi_lines(data, prefix, batch_size, - build_dict) - - if is_shuffle: - random.shuffle(data) - num_batches = int(math.ceil(len(data) / float(batch_size))) - batch_names = [] - for i in range(num_batches): - batch_name = join_path(self.output_path, - "%s_part_%03d" % (prefix, i)) - begin = i * batch_size - end = min((i + 1) * batch_size, len(data)) - # read a batch of data - label_list, data_list = self.get_data_list(begin, end, data) - if build_dict: - self.create_dict(data_list) - self.save_file(label_list, data_list, batch_name) - batch_names.append(batch_name) - - return batch_names - - def get_data_list(self, begin, end, data): - """ - begin: int, begining index of data. - end: int, ending index of data. - data: a list of {"seq_path": seqquence path, "label": label index} - - return a list of label and a list of sequence. - """ - label_list = [] - data_list = [] - for j in range(begin, end): - seqs = read_lines(data[j]["seq_path"]) - lab = int(data[j]["label"]) - #File may have multiple lines. - for seq in seqs: - data_list.append(seq) - label_list.append(lab) - if self.tokenizer: - data_list = tokenize(data_list) - return label_list, data_list - - def save_data_multi_lines(self, - data, - prefix="", - batch_size=50000, - build_dict=False): - """ - In order to shuffle fully, there is no need to load all data if - each file only contains one sample, it only needs to shuffle list - of file name. But one file contains multi lines, each line is one - sample. It needs to read all data into memory to shuffle fully. - This interface is mainly for data containning multi lines in each - file, which consumes more memory if there is a great mount of data. - - data: the Dataset object to process. - prefix: the prefix of each batch. - batch_size: number of data in each batch. - build_dict: whether to build dictionary for data - - return: list of batch names - """ - assert self.multi_lines - label_list = [] - data_list = [] - - # read all data - label_list, data_list = self.get_data_list(0, len(data), data) - if build_dict: - self.create_dict(data_list) - - length = len(label_list) - perm_list = np.array([i for i in xrange(length)]) - random.shuffle(perm_list) - - num_batches = int(math.ceil(length / float(batch_size))) - batch_names = [] - for i in range(num_batches): - batch_name = join_path(self.output_path, - "%s_part_%03d" % (prefix, i)) - begin = i * batch_size - end = min((i + 1) * batch_size, length) - sub_label = [label_list[perm_list[i]] for i in range(begin, end)] - sub_data = [data_list[perm_list[i]] for i in range(begin, end)] - self.save_file(sub_label, sub_data, batch_name) - batch_names.append(batch_name) - - return batch_names - - def save_file(self, label_list, data_list, filename): - """ - Save data into file. - label_list: a list of int value. - data_list: a list of sequnece. - filename: output file name. - """ - f = open(filename, 'w') - print "saving file: %s" % filename - for lab, seq in zip(label_list, data_list): - f.write('%s\t\t%s\n' % (lab, seq)) - f.close() - - -def option_parser(): - parser = OptionParser(usage="usage: python preprcoess.py "\ - "-i data_dir [options]") - parser.add_option( - "-i", - "--data", - action="store", - dest="input", - help="Input data directory.") - parser.add_option( - "-o", - "--output", - action="store", - dest="output", - default=None, - help="Output directory.") - parser.add_option( - "-t", - "--tokenizer", - action="store", - dest="use_tokenizer", - default=True, - help="Whether to use tokenizer.") - parser.add_option("-m", "--multi_lines", action="store", - dest="multi_lines", default=False, - help="If input text files have multi lines and they "\ - "need to be shuffled, you should set -m True,") - return parser.parse_args() - - -def main(): - options, args = option_parser() - data_dir = options.input - output_dir = options.output - use_tokenizer = options.use_tokenizer - multi_lines = options.multi_lines - if output_dir is None: - outname = os.path.basename(options.input) - output_dir = join_path(os.path.dirname(data_dir), 'pre-' + outname) - data_creator = SentimentDataSetCreate(data_dir, output_dir, use_tokenizer, - multi_lines) - data_creator.create_dataset() - - -if __name__ == '__main__': - main() diff --git a/demo/sentiment/preprocess.sh b/demo/sentiment/preprocess.sh deleted file mode 100755 index 19ec34d4f016365d18db01ddec559d26202b19c6..0000000000000000000000000000000000000000 --- a/demo/sentiment/preprocess.sh +++ /dev/null @@ -1,22 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -echo "Start to preprcess..." - -data_dir="./data/imdb" -python preprocess.py -i $data_dir - -echo "Done." diff --git a/demo/sentiment/sentiment_net.py b/demo/sentiment/sentiment_net.py deleted file mode 100644 index a01577ca5ae025b7bec67c6d54c7dbd931dbee74..0000000000000000000000000000000000000000 --- a/demo/sentiment/sentiment_net.py +++ /dev/null @@ -1,145 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from os.path import join as join_path - -from paddle.trainer_config_helpers import * - - -def sentiment_data(data_dir=None, - is_test=False, - is_predict=False, - train_list="train.list", - test_list="test.list", - dict_file="dict.txt"): - """ - Predefined data provider for sentiment analysis. - is_test: whether this config is used for test. - is_predict: whether this config is used for prediction. - train_list: text file name, containing a list of training set. - test_list: text file name, containing a list of testing set. - dict_file: text file name, containing dictionary. - """ - dict_dim = len(open(join_path(data_dir, "dict.txt")).readlines()) - class_dim = len(open(join_path(data_dir, 'labels.list')).readlines()) - if is_predict: - return dict_dim, class_dim - - if data_dir is not None: - train_list = join_path(data_dir, train_list) - test_list = join_path(data_dir, test_list) - dict_file = join_path(data_dir, dict_file) - - train_list = train_list if not is_test else None - word_dict = dict() - with open(dict_file, 'r') as f: - for i, line in enumerate(open(dict_file, 'r')): - word_dict[line.split('\t')[0]] = i - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={'dictionary': word_dict}) - - return dict_dim, class_dim - - -def bidirectional_lstm_net(input_dim, - class_dim=2, - emb_dim=128, - lstm_dim=128, - is_predict=False): - data = data_layer("word", input_dim) - emb = embedding_layer(input=data, size=emb_dim) - bi_lstm = bidirectional_lstm(input=emb, size=lstm_dim) - dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5) - output = fc_layer(input=dropout, size=class_dim, act=SoftmaxActivation()) - - if not is_predict: - lbl = data_layer("label", 1) - outputs(classification_cost(input=output, label=lbl)) - else: - outputs(output) - - -def stacked_lstm_net(input_dim, - class_dim=2, - emb_dim=128, - hid_dim=512, - stacked_num=3, - is_predict=False): - """ - A Wrapper for sentiment classification task. - This network uses bi-directional recurrent network, - consisting three LSTM layers. This configure is referred to - the paper as following url, but use fewer layrs. - http://www.aclweb.org/anthology/P15-1109 - - input_dim: here is word dictionary dimension. - class_dim: number of categories. - emb_dim: dimension of word embedding. - hid_dim: dimension of hidden layer. - stacked_num: number of stacked lstm-hidden layer. - is_predict: is predicting or not. - Some layers is not needed in network when predicting. - """ - hid_lr = 1e-3 - assert stacked_num % 2 == 1 - - layer_attr = ExtraLayerAttribute(drop_rate=0.5) - fc_para_attr = ParameterAttribute(learning_rate=hid_lr) - lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=1.) - para_attr = [fc_para_attr, lstm_para_attr] - bias_attr = ParameterAttribute(initial_std=0., l2_rate=0.) - relu = ReluActivation() - linear = LinearActivation() - - data = data_layer("word", input_dim) - emb = embedding_layer(input=data, size=emb_dim) - - fc1 = fc_layer(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr) - lstm1 = lstmemory( - input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr) - - inputs = [fc1, lstm1] - for i in range(2, stacked_num + 1): - fc = fc_layer( - input=inputs, - size=hid_dim, - act=linear, - param_attr=para_attr, - bias_attr=bias_attr) - lstm = lstmemory( - input=fc, - reverse=(i % 2) == 0, - act=relu, - bias_attr=bias_attr, - layer_attr=layer_attr) - inputs = [fc, lstm] - - fc_last = pooling_layer(input=inputs[0], pooling_type=MaxPooling()) - lstm_last = pooling_layer(input=inputs[1], pooling_type=MaxPooling()) - output = fc_layer( - input=[fc_last, lstm_last], - size=class_dim, - act=SoftmaxActivation(), - bias_attr=bias_attr, - param_attr=para_attr) - - if is_predict: - outputs(output) - else: - outputs(classification_cost(input=output, label=data_layer('label', 1))) diff --git a/demo/sentiment/test.sh b/demo/sentiment/test.sh deleted file mode 100755 index 85c4f3ccfc3ede23fcf701769b9701ecbf57c789..0000000000000000000000000000000000000000 --- a/demo/sentiment/test.sh +++ /dev/null @@ -1,40 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -function get_best_pass() { - cat $1 | grep -Pzo 'Test .*\n.*pass-.*' | \ - sed -r 'N;s/Test.* classification_error_evaluator=([0-9]+\.[0-9]+).*\n.*pass-([0-9]+)/\1 \2/g' |\ - sort -n | head -n 1 -} - -log=train.log -LOG=`get_best_pass $log` -LOG=(${LOG}) -evaluate_pass="model_output/pass-${LOG[1]}" - -echo 'evaluating from pass '$evaluate_pass - -model_list=./model.list -touch $model_list | echo $evaluate_pass > $model_list -net_conf=trainer_config.py -paddle train --config=$net_conf \ - --model_list=$model_list \ - --job=test \ - --use_gpu=false \ - --trainer_count=4 \ - --config_args=is_test=1 \ - 2>&1 | tee 'test.log' -paddle usage -l test.log -e $? -n "sentiment_test" >/dev/null 2>&1 diff --git a/demo/sentiment/train.sh b/demo/sentiment/train.sh deleted file mode 100755 index 14620f733bf03444e5ba3b3b792dfbed6146ecde..0000000000000000000000000000000000000000 --- a/demo/sentiment/train.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e - -config=trainer_config.py -output=./model_output -paddle train --config=$config \ - --save_dir=$output \ - --job=train \ - --use_gpu=false \ - --trainer_count=4 \ - --num_passes=10 \ - --log_period=10 \ - --dot_period=20 \ - --show_parameter_stats_period=100 \ - --test_all_data_in_one_period=1 \ - 2>&1 | tee 'train.log' -paddle usage -l train.log -e $? -n "sentiment_train" >/dev/null 2>&1 diff --git a/demo/sentiment/train_v2.py b/demo/sentiment/train_v2.py deleted file mode 100644 index 1c856556bd0cb32f60eba322469b3621c37e1349..0000000000000000000000000000000000000000 --- a/demo/sentiment/train_v2.py +++ /dev/null @@ -1,159 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import paddle.v2 as paddle - - -def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128): - data = paddle.layer.data("word", - paddle.data_type.integer_value_sequence(input_dim)) - emb = paddle.layer.embedding(input=data, size=emb_dim) - conv_3 = paddle.networks.sequence_conv_pool( - input=emb, context_len=3, hidden_size=hid_dim) - conv_4 = paddle.networks.sequence_conv_pool( - input=emb, context_len=4, hidden_size=hid_dim) - output = paddle.layer.fc(input=[conv_3, conv_4], - size=class_dim, - act=paddle.activation.Softmax()) - lbl = paddle.layer.data("label", paddle.data_type.integer_value(2)) - cost = paddle.layer.classification_cost(input=output, label=lbl) - return cost - - -def stacked_lstm_net(input_dim, - class_dim=2, - emb_dim=128, - hid_dim=512, - stacked_num=3): - """ - A Wrapper for sentiment classification task. - This network uses bi-directional recurrent network, - consisting three LSTM layers. This configure is referred to - the paper as following url, but use fewer layrs. - http://www.aclweb.org/anthology/P15-1109 - - input_dim: here is word dictionary dimension. - class_dim: number of categories. - emb_dim: dimension of word embedding. - hid_dim: dimension of hidden layer. - stacked_num: number of stacked lstm-hidden layer. - """ - assert stacked_num % 2 == 1 - - layer_attr = paddle.attr.Extra(drop_rate=0.5) - fc_para_attr = paddle.attr.Param(learning_rate=1e-3) - lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.) - para_attr = [fc_para_attr, lstm_para_attr] - bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.) - relu = paddle.activation.Relu() - linear = paddle.activation.Linear() - - data = paddle.layer.data("word", - paddle.data_type.integer_value_sequence(input_dim)) - emb = paddle.layer.embedding(input=data, size=emb_dim) - - fc1 = paddle.layer.fc(input=emb, - size=hid_dim, - act=linear, - bias_attr=bias_attr) - lstm1 = paddle.layer.lstmemory( - input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr) - - inputs = [fc1, lstm1] - for i in range(2, stacked_num + 1): - fc = paddle.layer.fc(input=inputs, - size=hid_dim, - act=linear, - param_attr=para_attr, - bias_attr=bias_attr) - lstm = paddle.layer.lstmemory( - input=fc, - reverse=(i % 2) == 0, - act=relu, - bias_attr=bias_attr, - layer_attr=layer_attr) - inputs = [fc, lstm] - - fc_last = paddle.layer.pooling( - input=inputs[0], pooling_type=paddle.pooling.Max()) - lstm_last = paddle.layer.pooling( - input=inputs[1], pooling_type=paddle.pooling.Max()) - output = paddle.layer.fc(input=[fc_last, lstm_last], - size=class_dim, - act=paddle.activation.Softmax(), - bias_attr=bias_attr, - param_attr=para_attr) - - lbl = paddle.layer.data("label", paddle.data_type.integer_value(2)) - cost = paddle.layer.classification_cost(input=output, label=lbl) - return cost - - -if __name__ == '__main__': - # init - paddle.init(use_gpu=False) - - #data - print 'load dictionary...' - word_dict = paddle.dataset.imdb.word_dict() - dict_dim = len(word_dict) - class_dim = 2 - train_reader = paddle.batch( - paddle.reader.shuffle( - lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000), - batch_size=100) - test_reader = paddle.batch( - lambda: paddle.dataset.imdb.test(word_dict), batch_size=100) - - feeding = {'word': 0, 'label': 1} - - # network config - # Please choose the way to build the network - # by uncommenting the corresponding line. - cost = convolution_net(dict_dim, class_dim=class_dim) - # cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3) - - # create parameters - parameters = paddle.parameters.create(cost) - - # create optimizer - adam_optimizer = paddle.optimizer.Adam( - learning_rate=2e-3, - regularization=paddle.optimizer.L2Regularization(rate=8e-4), - model_average=paddle.optimizer.ModelAverage(average_window=0.5)) - - # End batch and end pass event handler - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - print "\nPass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics) - else: - sys.stdout.write('.') - sys.stdout.flush() - if isinstance(event, paddle.event.EndPass): - result = trainer.test(reader=test_reader, feeding=feeding) - print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) - - # create trainer - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=adam_optimizer) - - trainer.train( - reader=train_reader, - event_handler=event_handler, - feeding=feeding, - num_passes=2) diff --git a/demo/sentiment/trainer_config.py b/demo/sentiment/trainer_config.py deleted file mode 100644 index f1cadaa728ac58107e15f77b5994d31da088caf7..0000000000000000000000000000000000000000 --- a/demo/sentiment/trainer_config.py +++ /dev/null @@ -1,39 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from sentiment_net import * -from paddle.trainer_config_helpers import * - -# whether this config is used for test -is_test = get_config_arg('is_test', bool, False) -# whether this config is used for prediction -is_predict = get_config_arg('is_predict', bool, False) - -data_dir = "./data/pre-imdb" -dict_dim, class_dim = sentiment_data(data_dir, is_test, is_predict) - -################## Algorithm Config ##################### - -settings( - batch_size=128, - learning_rate=2e-3, - learning_method=AdamOptimizer(), - model_average=ModelAverage(0.5), - regularization=L2Regularization(8e-4), - gradient_clipping_threshold=25) - -#################### Network Config ###################### -stacked_lstm_net( - dict_dim, class_dim=class_dim, stacked_num=3, is_predict=is_predict) -# bidirectional_lstm_net(dict_dim, class_dim=class_dim, is_predict=is_predict) diff --git a/demo/seqToseq/.gitignore b/demo/seqToseq/.gitignore deleted file mode 100644 index 21cec2c2c1f3422cbb0ad133281dc1ecdd076a96..0000000000000000000000000000000000000000 --- a/demo/seqToseq/.gitignore +++ /dev/null @@ -1,17 +0,0 @@ -data/wmt14 -data/pre-wmt14 -data/wmt14_model -data/paraphrase -data/pre-paraphrase -data/paraphrase_model -translation/gen.log -translation/gen_result -translation/train.log -paraphrase/train.log -dataprovider_copy_1.py -translation/thirdparty.tgz -translation/thirdparty/train.conf -translation/thirdparty/dataprovider.py -translation/thirdparty/seqToseq_net.py -translation/thirdparty/*.dict -*.pyc diff --git a/demo/seqToseq/api_train_v2.py b/demo/seqToseq/api_train_v2.py deleted file mode 100644 index bb535f09260613098681db212ffc91631acf67e2..0000000000000000000000000000000000000000 --- a/demo/seqToseq/api_train_v2.py +++ /dev/null @@ -1,236 +0,0 @@ -import sys - -import paddle.v2 as paddle - - -def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False): - ### Network Architecture - word_vector_dim = 512 # dimension of word vector - decoder_size = 512 # dimension of hidden unit in GRU Decoder network - encoder_size = 512 # dimension of hidden unit in GRU Encoder network - - beam_size = 3 - max_length = 250 - - #### Encoder - src_word_id = paddle.layer.data( - name='source_language_word', - type=paddle.data_type.integer_value_sequence(source_dict_dim)) - src_embedding = paddle.layer.embedding( - input=src_word_id, - size=word_vector_dim, - param_attr=paddle.attr.ParamAttr(name='_source_language_embedding')) - src_forward = paddle.networks.simple_gru( - name='src_forward_gru', input=src_embedding, size=encoder_size) - src_backward = paddle.networks.simple_gru( - name='src_backward_gru', - input=src_embedding, - size=encoder_size, - reverse=True) - encoded_vector = paddle.layer.concat(input=[src_forward, src_backward]) - - #### Decoder - with paddle.layer.mixed(size=decoder_size) as encoded_proj: - encoded_proj += paddle.layer.full_matrix_projection( - input=encoded_vector) - - backward_first = paddle.layer.first_seq(input=src_backward) - - with paddle.layer.mixed( - name="decoder_boot_mixed", - size=decoder_size, - act=paddle.activation.Tanh()) as decoder_boot: - decoder_boot += paddle.layer.full_matrix_projection( - input=backward_first) - - def gru_decoder_with_attention(enc_vec, enc_proj, current_word): - - decoder_mem = paddle.layer.memory( - name='gru_decoder', size=decoder_size, boot_layer=decoder_boot) - - context = paddle.networks.simple_attention( - name="simple_attention", - encoded_sequence=enc_vec, - encoded_proj=enc_proj, - decoder_state=decoder_mem) - - with paddle.layer.mixed( - name="input_recurrent", - size=decoder_size * 3, - # enable error clipping - layer_attr=paddle.attr.ExtraAttr( - error_clipping_threshold=100.0)) as decoder_inputs: - decoder_inputs += paddle.layer.full_matrix_projection(input=context) - decoder_inputs += paddle.layer.full_matrix_projection( - input=current_word) - - gru_step = paddle.layer.gru_step( - name='gru_decoder', - input=decoder_inputs, - output_mem=decoder_mem, - # uncomment to enable local threshold for gradient clipping - # param_attr=paddle.attr.ParamAttr(gradient_clipping_threshold=9.9), - size=decoder_size) - - with paddle.layer.mixed( - name="gru_step_output", - size=target_dict_dim, - bias_attr=True, - act=paddle.activation.Softmax()) as out: - out += paddle.layer.full_matrix_projection(input=gru_step) - return out - - decoder_group_name = "decoder_group" - group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True) - group_input2 = paddle.layer.StaticInputV2(input=encoded_proj, is_seq=True) - group_inputs = [group_input1, group_input2] - - if not is_generating: - trg_embedding = paddle.layer.embedding( - input=paddle.layer.data( - name='target_language_word', - type=paddle.data_type.integer_value_sequence(target_dict_dim)), - size=word_vector_dim, - param_attr=paddle.attr.ParamAttr(name='_target_language_embedding')) - group_inputs.append(trg_embedding) - - # For decoder equipped with attention mechanism, in training, - # target embeding (the groudtruth) is the data input, - # while encoded source sequence is accessed to as an unbounded memory. - # Here, the StaticInput defines a read-only memory - # for the recurrent_group. - decoder = paddle.layer.recurrent_group( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs) - - lbl = paddle.layer.data( - name='target_language_next_word', - type=paddle.data_type.integer_value_sequence(target_dict_dim)) - cost = paddle.layer.classification_cost(input=decoder, label=lbl) - - return cost - else: - # In generation, the decoder predicts a next target word based on - # the encoded source sequence and the last generated target word. - - # The encoded source sequence (encoder's output) must be specified by - # StaticInput, which is a read-only memory. - # Embedding of the last generated word is automatically gotten by - # GeneratedInputs, which is initialized by a start mark, such as , - # and must be included in generation. - - trg_embedding = paddle.layer.GeneratedInputV2( - size=target_dict_dim, - embedding_name='_target_language_embedding', - embedding_size=word_vector_dim) - group_inputs.append(trg_embedding) - - beam_gen = paddle.layer.beam_search( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs, - bos_id=0, - eos_id=1, - beam_size=beam_size, - max_length=max_length) - - return beam_gen - - -def main(): - paddle.init( - use_gpu=False, - trainer_count=1, - # log gradient clipping info - log_clipping=True, - # log error clipping info - log_error_clipping=True) - is_generating = False - - # source and target dict dim. - dict_size = 30000 - source_dict_dim = target_dict_dim = dict_size - - # train the network - if not is_generating: - cost = seqToseq_net(source_dict_dim, target_dict_dim) - parameters = paddle.parameters.create(cost) - - # define optimize method and trainer - optimizer = paddle.optimizer.Adam( - learning_rate=5e-5, - # uncomment to enable global threshold for gradient clipping - # gradient_clipping_threshold=10.0, - regularization=paddle.optimizer.L2Regularization(rate=8e-4)) - trainer = paddle.trainer.SGD(cost=cost, - parameters=parameters, - update_equation=optimizer) - # define data reader - wmt14_reader = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.wmt14.train(dict_size), buf_size=8192), - batch_size=5) - - # define event_handler callback - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 10 == 0: - print "\nPass %d, Batch %d, Cost %f, %s" % ( - event.pass_id, event.batch_id, event.cost, - event.metrics) - else: - sys.stdout.write('.') - sys.stdout.flush() - - # start to train - trainer.train( - reader=wmt14_reader, event_handler=event_handler, num_passes=2) - - # generate a english sequence to french - else: - # use the first 3 samples for generation - gen_creator = paddle.dataset.wmt14.gen(dict_size) - gen_data = [] - gen_num = 3 - for item in gen_creator(): - gen_data.append((item[0], )) - if len(gen_data) == gen_num: - break - - beam_gen = seqToseq_net(source_dict_dim, target_dict_dim, is_generating) - # get the pretrained model, whose bleu = 26.92 - parameters = paddle.dataset.wmt14.model() - # prob is the prediction probabilities, and id is the prediction word. - beam_result = paddle.infer( - output_layer=beam_gen, - parameters=parameters, - input=gen_data, - field=['prob', 'id']) - - # get the dictionary - src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) - - # the delimited element of generated sequences is -1, - # the first element of each generated sequence is the sequence length - seq_list = [] - seq = [] - for w in beam_result[1]: - if w != -1: - seq.append(w) - else: - seq_list.append(' '.join([trg_dict.get(w) for w in seq[1:]])) - seq = [] - - prob = beam_result[0] - beam_size = 3 - for i in xrange(gen_num): - print "\n*******************************************************\n" - print "src:", ' '.join( - [src_dict.get(w) for w in gen_data[i][0]]), "\n" - for j in xrange(beam_size): - print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j] - - -if __name__ == '__main__': - main() diff --git a/demo/seqToseq/data/paraphrase_data.sh b/demo/seqToseq/data/paraphrase_data.sh deleted file mode 100755 index e6497c91286d44b5ef3b66c5f824e36a09728720..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/paraphrase_data.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x - -# download the in-house paraphrase dataset -wget http://paddlepaddle.bj.bcebos.com/model_zoo/embedding/paraphrase.tar.gz - -# untar the dataset -tar -zxvf paraphrase.tar.gz -rm paraphrase.tar.gz diff --git a/demo/seqToseq/data/paraphrase_model.sh b/demo/seqToseq/data/paraphrase_model.sh deleted file mode 100755 index d0e7f214a38c4dad0fdf7c10ba3b76eb0ab40f06..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/paraphrase_model.sh +++ /dev/null @@ -1,37 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x - -dim=32 -pretrained_dir='../../model_zoo/embedding/' -preModel=$pretrained_dir'model_'$dim'.emb' -preDict=$pretrained_dir'baidu.dict' - -usrDict_dir='pre-paraphrase/' -srcDict=$usrDict_dir'src.dict' -trgDict=$usrDict_dir'trg.dict' - -usrModel_dir='paraphrase_model/' -mkdir $usrModel_dir -srcModel=$usrModel_dir'_source_language_embedding' -trgModel=$usrModel_dir'_target_language_embedding' - -echo 'extract desired parameters based on user dictionary' -script=$pretrained_dir'extract_para.py' -python $script --preModel $preModel --preDict $preDict \ - --usrModel $srcModel --usrDict $srcDict -d $dim -python $script --preModel $preModel --preDict $preDict \ - --usrModel $trgModel --usrDict $trgDict -d $dim diff --git a/demo/seqToseq/data/wmt14_data.sh b/demo/seqToseq/data/wmt14_data.sh deleted file mode 100755 index 43f67168d2a876ba5401e0f8490a88adac9c5551..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/wmt14_data.sh +++ /dev/null @@ -1,53 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x -mkdir wmt14 -cd wmt14 - -# download the dataset -wget http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz -wget http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz - -# untar the dataset -tar -zxvf bitexts.tgz -tar -zxvf dev+test.tgz -gunzip bitexts.selected/* -mv bitexts.selected train -rm bitexts.tgz -rm dev+test.tgz - -# separate the dev and test dataset -mkdir test gen -mv dev/ntst1213.* test -mv dev/ntst14.* gen -rm -rf dev - -set +x -# rename the suffix, .fr->.src, .en->.trg -for dir in train test gen -do - filelist=`ls $dir` - cd $dir - for file in $filelist - do - if [ ${file##*.} = "fr" ]; then - mv $file ${file/%fr/src} - elif [ ${file##*.} = 'en' ]; then - mv $file ${file/%en/trg} - fi - done - cd .. -done diff --git a/demo/seqToseq/data/wmt14_model.sh b/demo/seqToseq/data/wmt14_model.sh deleted file mode 100755 index c4b55b90a3eb98f94e0eb3be028c6de1ef57326b..0000000000000000000000000000000000000000 --- a/demo/seqToseq/data/wmt14_model.sh +++ /dev/null @@ -1,23 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x - -# download the pretrained model -wget http://paddlepaddle.bj.bcebos.com/model_zoo/wmt14_model.tar.gz - -# untar the model -tar -zxvf wmt14_model.tar.gz -rm wmt14_model.tar.gz diff --git a/demo/seqToseq/dataprovider.py b/demo/seqToseq/dataprovider.py deleted file mode 100755 index c2b49804be582d7d0bc3ef6332741be03936eb24..0000000000000000000000000000000000000000 --- a/demo/seqToseq/dataprovider.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddle.trainer.PyDataProvider2 import * - -UNK_IDX = 2 -START = "" -END = "" - - -def hook(settings, src_dict_path, trg_dict_path, is_generating, file_list, - **kwargs): - # job_mode = 1: training mode - # job_mode = 0: generating mode - settings.job_mode = not is_generating - - def fun(dict_path): - out_dict = dict() - with open(dict_path, "r") as fin: - out_dict = { - line.strip(): line_count - for line_count, line in enumerate(fin) - } - return out_dict - - settings.src_dict = fun(src_dict_path) - settings.trg_dict = fun(trg_dict_path) - - settings.logger.info("src dict len : %d" % (len(settings.src_dict))) - - if settings.job_mode: - settings.slots = { - 'source_language_word': - integer_value_sequence(len(settings.src_dict)), - 'target_language_word': - integer_value_sequence(len(settings.trg_dict)), - 'target_language_next_word': - integer_value_sequence(len(settings.trg_dict)) - } - settings.logger.info("trg dict len : %d" % (len(settings.trg_dict))) - else: - settings.slots = { - 'source_language_word': - integer_value_sequence(len(settings.src_dict)), - 'sent_id': - integer_value_sequence(len(open(file_list[0], "r").readlines())) - } - - -def _get_ids(s, dictionary): - words = s.strip().split() - return [dictionary[START]] + \ - [dictionary.get(w, UNK_IDX) for w in words] + \ - [dictionary[END]] - - -@provider(init_hook=hook, pool_size=50000) -def process(settings, file_name): - with open(file_name, 'r') as f: - for line_count, line in enumerate(f): - line_split = line.strip().split('\t') - if settings.job_mode and len(line_split) != 2: - continue - src_seq = line_split[0] # one source sequence - src_ids = _get_ids(src_seq, settings.src_dict) - - if settings.job_mode: - trg_seq = line_split[1] # one target sequence - trg_words = trg_seq.split() - trg_ids = [settings.trg_dict.get(w, UNK_IDX) for w in trg_words] - - # remove sequence whose length > 80 in training mode - if len(src_ids) > 80 or len(trg_ids) > 80: - continue - trg_ids_next = trg_ids + [settings.trg_dict[END]] - trg_ids = [settings.trg_dict[START]] + trg_ids - yield { - 'source_language_word': src_ids, - 'target_language_word': trg_ids, - 'target_language_next_word': trg_ids_next - } - else: - yield {'source_language_word': src_ids, 'sent_id': [line_count]} diff --git a/demo/seqToseq/paraphrase/train.conf b/demo/seqToseq/paraphrase/train.conf deleted file mode 100644 index be79c5e771c0e864fd1776cedb3ef37c997b6df6..0000000000000000000000000000000000000000 --- a/demo/seqToseq/paraphrase/train.conf +++ /dev/null @@ -1,33 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -sys.path.append("..") - -from seqToseq_net import * - -is_generating = False -### Data Definiation -train_conf = seq_to_seq_data(data_dir = "./data/pre-paraphrase", - is_generating = is_generating) - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - -### Network Architecture -gru_encoder_decoder(train_conf, is_generating, word_vector_dim = 32) diff --git a/demo/seqToseq/paraphrase/train.sh b/demo/seqToseq/paraphrase/train.sh deleted file mode 100755 index 9bb6dbdb1d4c5e35bfb31855e0331f0250a69a20..0000000000000000000000000000000000000000 --- a/demo/seqToseq/paraphrase/train.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -cd .. - -paddle train \ - --config='paraphrase/train.conf' \ - --save_dir='paraphrase/model' \ - --init_model_path='data/paraphrase_model' \ - --load_missing_parameter_strategy=rand \ - --use_gpu=false \ - --num_passes=16 \ - --show_parameter_stats_period=100 \ - --trainer_count=4 \ - --log_period=10 \ - --dot_period=5 \ - 2>&1 | tee 'paraphrase/train.log' -paddle usage -l 'paraphrase/train.log' -e $? -n "seqToseq_paraphrase_train" >/dev/null 2>&1 diff --git a/demo/seqToseq/preprocess.py b/demo/seqToseq/preprocess.py deleted file mode 100755 index 03f371331a0755e5939e457f4bdfb1770b8dad88..0000000000000000000000000000000000000000 --- a/demo/seqToseq/preprocess.py +++ /dev/null @@ -1,219 +0,0 @@ -#!/bin/env python -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Example: - python preprocess.py -i INPUT [-d DICTSIZE] [-m] - -Options: - -h, --help show this help message and exit - -i INPUT input original dataset path - -d DICTSIZE specified word count of dictionary - -m --mergeDict merge source and target dictionary -""" -import os -import sys - -import string -from optparse import OptionParser -from paddle.utils.preprocess_util import save_list, DatasetCreater - - -class SeqToSeqDatasetCreater(DatasetCreater): - """ - A class to process data for sequence to sequence application. - """ - - def __init__(self, data_path, output_path): - """ - data_path: the path to store the train data, test data and gen data - output_path: the path to store the processed dataset - """ - DatasetCreater.__init__(self, data_path) - self.gen_dir_name = 'gen' - self.gen_list_name = 'gen.list' - self.output_path = output_path - - def concat_file(self, file_path, file1, file2, output_path, output): - """ - Concat file1 and file2 to be one output file - The i-th line of output = i-th line of file1 + '\t' + i-th line of file2 - file_path: the path to store file1 and file2 - output_path: the path to store output file - """ - file1 = os.path.join(file_path, file1) - file2 = os.path.join(file_path, file2) - output = os.path.join(output_path, output) - if not os.path.exists(output): - os.system('paste ' + file1 + ' ' + file2 + ' > ' + output) - - def cat_file(self, dir_path, suffix, output_path, output): - """ - Cat all the files in dir_path with suffix to be one output file - dir_path: the base directory to store input file - suffix: suffix of file name - output_path: the path to store output file - """ - cmd = 'cat ' - file_list = os.listdir(dir_path) - file_list.sort() - for file in file_list: - if file.endswith(suffix): - cmd += os.path.join(dir_path, file) + ' ' - output = os.path.join(output_path, output) - if not os.path.exists(output): - os.system(cmd + '> ' + output) - - def build_dict(self, file_path, dict_path, dict_size=-1): - """ - Create the dictionary for the file, Note that - 1. Valid characters include all printable characters - 2. There is distinction between uppercase and lowercase letters - 3. There is 3 special token: - : the start of a sequence - : the end of a sequence - : a word not included in dictionary - file_path: the path to store file - dict_path: the path to store dictionary - dict_size: word count of dictionary - if is -1, dictionary will contains all the words in file - """ - if not os.path.exists(dict_path): - dictory = dict() - with open(file_path, "r") as fdata: - for line in fdata: - line = line.split('\t') - for line_split in line: - words = line_split.strip().split() - for word in words: - if word not in dictory: - dictory[word] = 1 - else: - dictory[word] += 1 - output = open(dict_path, "w+") - output.write('\n\n\n') - count = 3 - for key, value in sorted( - dictory.items(), key=lambda d: d[1], reverse=True): - output.write(key + "\n") - count += 1 - if count == dict_size: - break - self.dict_size = count - - def create_dataset(self, - dict_size=-1, - mergeDict=False, - suffixes=['.src', '.trg']): - """ - Create seqToseq dataset - """ - # dataset_list and dir_list has one-to-one relationship - train_dataset = os.path.join(self.data_path, self.train_dir_name) - test_dataset = os.path.join(self.data_path, self.test_dir_name) - gen_dataset = os.path.join(self.data_path, self.gen_dir_name) - dataset_list = [train_dataset, test_dataset, gen_dataset] - - train_dir = os.path.join(self.output_path, self.train_dir_name) - test_dir = os.path.join(self.output_path, self.test_dir_name) - gen_dir = os.path.join(self.output_path, self.gen_dir_name) - dir_list = [train_dir, test_dir, gen_dir] - - # create directory - for dir in dir_list: - if not os.path.exists(dir): - os.mkdir(dir) - - # checkout dataset should be parallel corpora - suffix_len = len(suffixes[0]) - for dataset in dataset_list: - file_list = os.listdir(dataset) - if len(file_list) % 2 == 1: - raise RuntimeError("dataset should be parallel corpora") - file_list.sort() - for i in range(0, len(file_list), 2): - if file_list[i][:-suffix_len] != file_list[i + 1][:-suffix_len]: - raise RuntimeError( - "source and target file name should be equal") - - # cat all the files with the same suffix in dataset - for suffix in suffixes: - for dataset in dataset_list: - outname = os.path.basename(dataset) + suffix - self.cat_file(dataset, suffix, dataset, outname) - - # concat parallel corpora and create file.list - print 'concat parallel corpora for dataset' - id = 0 - list = ['train.list', 'test.list', 'gen.list'] - for dataset in dataset_list: - outname = os.path.basename(dataset) - self.concat_file(dataset, outname + suffixes[0], - outname + suffixes[1], dir_list[id], outname) - save_list([os.path.join(dir_list[id], outname)], - os.path.join(self.output_path, list[id])) - id += 1 - - # build dictionary for train data - dict = ['src.dict', 'trg.dict'] - dict_path = [ - os.path.join(self.output_path, dict[0]), - os.path.join(self.output_path, dict[1]) - ] - if mergeDict: - outname = os.path.join(train_dir, train_dataset.split('/')[-1]) - print 'build src dictionary for train data' - self.build_dict(outname, dict_path[0], dict_size) - print 'build trg dictionary for train data' - os.system('cp ' + dict_path[0] + ' ' + dict_path[1]) - else: - outname = os.path.join(train_dataset, self.train_dir_name) - for id in range(0, 2): - suffix = suffixes[id] - print 'build ' + suffix[1:] + ' dictionary for train data' - self.build_dict(outname + suffix, dict_path[id], dict_size) - print 'dictionary size is', self.dict_size - - -def main(): - usage = "usage: \n" \ - "python %prog -i INPUT [-d DICTSIZE] [-m]" - parser = OptionParser(usage) - parser.add_option( - "-i", action="store", dest="input", help="input original dataset path") - parser.add_option( - "-d", - action="store", - dest="dictsize", - help="specified word count of dictionary") - parser.add_option( - "-m", - "--mergeDict", - action="store_true", - dest="mergeDict", - help="merge source and target dictionary") - (options, args) = parser.parse_args() - if options.input[-1] == os.path.sep: - options.input = options.input[:-1] - outname = os.path.basename(options.input) - output_path = os.path.join(os.path.dirname(options.input), 'pre-' + outname) - dictsize = int(options.dictsize) if options.dictsize else -1 - if not os.path.exists(output_path): - os.mkdir(output_path) - data_creator = SeqToSeqDatasetCreater(options.input, output_path) - data_creator.create_dataset(dictsize, options.mergeDict) - - -if __name__ == "__main__": - main() diff --git a/demo/seqToseq/seqToseq_net.py b/demo/seqToseq/seqToseq_net.py deleted file mode 100644 index 3d1f86ec3b7eda4fceaf3a1e406e3d0a1a4a2f60..0000000000000000000000000000000000000000 --- a/demo/seqToseq/seqToseq_net.py +++ /dev/null @@ -1,204 +0,0 @@ -# edit-mode: -*- python -*- - -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import os -from paddle.trainer_config_helpers import * - - -def seq_to_seq_data(data_dir, - is_generating, - dict_size=30000, - train_list='train.list', - test_list='test.list', - gen_list='gen.list', - gen_result='gen_result'): - """ - Predefined seqToseq train data provider for application - is_generating: whether this config is used for generating - dict_size: word count of dictionary - train_list: a text file containing a list of training data - test_list: a text file containing a list of testing data - gen_list: a text file containing a list of generating data - gen_result: a text file containing generating result - """ - src_lang_dict = os.path.join(data_dir, 'src.dict') - trg_lang_dict = os.path.join(data_dir, 'trg.dict') - - if is_generating: - train_list = None - test_list = os.path.join(data_dir, gen_list) - else: - train_list = os.path.join(data_dir, train_list) - test_list = os.path.join(data_dir, test_list) - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={ - "src_dict_path": src_lang_dict, - "trg_dict_path": trg_lang_dict, - "is_generating": is_generating - }) - - return { - "src_dict_path": src_lang_dict, - "trg_dict_path": trg_lang_dict, - "gen_result": gen_result - } - - -def gru_encoder_decoder(data_conf, - is_generating, - word_vector_dim=512, - encoder_size=512, - decoder_size=512, - beam_size=3, - max_length=250, - error_clipping=50): - """ - A wrapper for an attention version of GRU Encoder-Decoder network - is_generating: whether this config is used for generating - encoder_size: dimension of hidden unit in GRU Encoder network - decoder_size: dimension of hidden unit in GRU Decoder network - word_vector_dim: dimension of word vector - beam_size: expand width in beam search - max_length: a stop condition of sequence generation - """ - for k, v in data_conf.iteritems(): - globals()[k] = v - source_dict_dim = len(open(src_dict_path, "r").readlines()) - target_dict_dim = len(open(trg_dict_path, "r").readlines()) - gen_trans_file = gen_result - - src_word_id = data_layer(name='source_language_word', size=source_dict_dim) - src_embedding = embedding_layer( - input=src_word_id, - size=word_vector_dim, - param_attr=ParamAttr(name='_source_language_embedding')) - src_forward = simple_gru( - input=src_embedding, - size=encoder_size, - naive=True, - gru_layer_attr=ExtraLayerAttribute( - error_clipping_threshold=error_clipping)) - src_backward = simple_gru( - input=src_embedding, - size=encoder_size, - reverse=True, - naive=True, - gru_layer_attr=ExtraLayerAttribute( - error_clipping_threshold=error_clipping)) - encoded_vector = concat_layer(input=[src_forward, src_backward]) - - with mixed_layer(size=decoder_size) as encoded_proj: - encoded_proj += full_matrix_projection(input=encoded_vector) - - backward_first = first_seq(input=src_backward) - with mixed_layer( - size=decoder_size, - act=TanhActivation(), ) as decoder_boot: - decoder_boot += full_matrix_projection(input=backward_first) - - def gru_decoder_with_attention(enc_vec, enc_proj, current_word): - decoder_mem = memory( - name='gru_decoder', size=decoder_size, boot_layer=decoder_boot) - - context = simple_attention( - encoded_sequence=enc_vec, - encoded_proj=enc_proj, - decoder_state=decoder_mem, ) - - with mixed_layer(size=decoder_size * 3) as decoder_inputs: - decoder_inputs += full_matrix_projection(input=context) - decoder_inputs += full_matrix_projection(input=current_word) - - gru_step = gru_step_naive_layer( - name='gru_decoder', - input=decoder_inputs, - output_mem=decoder_mem, - size=decoder_size, - layer_attr=ExtraLayerAttribute( - error_clipping_threshold=error_clipping)) - - with mixed_layer( - size=target_dict_dim, bias_attr=True, - act=SoftmaxActivation()) as out: - out += full_matrix_projection(input=gru_step) - return out - - decoder_group_name = "decoder_group" - group_inputs = [ - StaticInput( - input=encoded_vector, is_seq=True), StaticInput( - input=encoded_proj, is_seq=True) - ] - - if not is_generating: - trg_embedding = embedding_layer( - input=data_layer( - name='target_language_word', size=target_dict_dim), - size=word_vector_dim, - param_attr=ParamAttr(name='_target_language_embedding')) - group_inputs.append(trg_embedding) - - # For decoder equipped with attention mechanism, in training, - # target embeding (the groudtruth) is the data input, - # while encoded source sequence is accessed to as an unbounded memory. - # Here, the StaticInput defines a read-only memory - # for the recurrent_group. - decoder = recurrent_group( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs) - - lbl = data_layer(name='target_language_next_word', size=target_dict_dim) - cost = classification_cost(input=decoder, label=lbl) - outputs(cost) - else: - # In generation, the decoder predicts a next target word based on - # the encoded source sequence and the last generated target word. - - # The encoded source sequence (encoder's output) must be specified by - # StaticInput, which is a read-only memory. - # Embedding of the last generated word is automatically gotten by - # GeneratedInputs, which is initialized by a start mark, such as , - # and must be included in generation. - - trg_embedding = GeneratedInput( - size=target_dict_dim, - embedding_name='_target_language_embedding', - embedding_size=word_vector_dim) - group_inputs.append(trg_embedding) - - beam_gen = beam_search( - name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs, - bos_id=0, - eos_id=1, - beam_size=beam_size, - max_length=max_length) - - seqtext_printer_evaluator( - input=beam_gen, - id_input=data_layer( - name="sent_id", size=1), - dict_file=trg_dict_path, - result_file=gen_trans_file) - outputs(beam_gen) diff --git a/demo/seqToseq/translation/eval_bleu.sh b/demo/seqToseq/translation/eval_bleu.sh deleted file mode 100755 index 54c2ed237e93adb3456dbe62f75626d36c2d90bc..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/eval_bleu.sh +++ /dev/null @@ -1,42 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -gen_file=$1 -beam_size=$2 - -# find top1 generating result -top1=$(printf '%s_top1.txt' `basename $gen_file .txt`) -if [ $beam_size -eq 1 ]; then - awk -F "\t" '{sub(" ","",$2);sub(" ","",$2);print $2}' $gen_file >$top1 -else - awk 'BEGIN{ - FS="\t"; - OFS="\t"; - read_pos = 2} { - if (NR == read_pos){ - sub(" ","",$3); - sub(" ","",$3); - print $3; - read_pos += (2 + res_num); - }}' res_num=$beam_size $gen_file >$top1 -fi - -# evalute bleu value -bleu_script=multi-bleu.perl -standard_res=../data/wmt14/gen/ntst14.trg -bleu_res=`perl $bleu_script $standard_res <$top1` - -echo $bleu_res -rm $top1 diff --git a/demo/seqToseq/translation/gen.conf b/demo/seqToseq/translation/gen.conf deleted file mode 100644 index e9bea4e4559ff31ad83c4474e91de7e7acc77e9f..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/gen.conf +++ /dev/null @@ -1,36 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -sys.path.append("..") - -from seqToseq_net import * - -# whether this config is used for generating -is_generating = True - -### Data Definiation -gen_conf = seq_to_seq_data(data_dir = "./data/pre-wmt14", - is_generating = is_generating, - gen_result = "./translation/gen_result") - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 1, - learning_rate = 0) - -### Network Architecture -gru_encoder_decoder(gen_conf, is_generating) diff --git a/demo/seqToseq/translation/gen.sh b/demo/seqToseq/translation/gen.sh deleted file mode 100755 index 64b78f5e9654e7b206740f92e224e0164108c9f1..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/gen.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -cd .. - -paddle train \ - --job=test \ - --config='translation/gen.conf' \ - --save_dir='data/wmt14_model' \ - --use_gpu=false \ - --num_passes=13 \ - --test_pass=12 \ - --trainer_count=1 \ - 2>&1 | tee 'translation/gen.log' -paddle usage -l 'translation/gen.log' -e $? -n "seqToseq_translation_gen" >/dev/null 2>&1 diff --git a/demo/seqToseq/translation/moses_bleu.sh b/demo/seqToseq/translation/moses_bleu.sh deleted file mode 100755 index 2f230d7f4c736da003966fbdb277f6b8b1ec952c..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/moses_bleu.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -set -x -echo "Downloading multi-bleu.perl" -wget https://raw.githubusercontent.com/moses-smt/mosesdecoder/master/scripts/generic/multi-bleu.perl --no-check-certificate diff --git a/demo/seqToseq/translation/train.conf b/demo/seqToseq/translation/train.conf deleted file mode 100644 index 72b7ccdbb95dbda8f06674079db9a3257bb31622..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/train.conf +++ /dev/null @@ -1,36 +0,0 @@ -#edit-mode: -*- python -*- -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -sys.path.append("..") - -from seqToseq_net import * - -# whether this config is used for generating -is_generating = False - -### Data Definiation -data_dir = "./data/pre-wmt14" -train_conf = seq_to_seq_data(data_dir = data_dir, - is_generating = is_generating) - -### Algorithm Configuration -settings( - learning_method = AdamOptimizer(), - batch_size = 50, - learning_rate = 5e-4) - -### Network Architecture -gru_encoder_decoder(train_conf, is_generating) diff --git a/demo/seqToseq/translation/train.sh b/demo/seqToseq/translation/train.sh deleted file mode 100755 index b0ec9854b118cbb9ed39d6bed0cdd845403926a4..0000000000000000000000000000000000000000 --- a/demo/seqToseq/translation/train.sh +++ /dev/null @@ -1,28 +0,0 @@ -#!/bin/bash -# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -set -e -cd .. - -paddle train \ ---config='translation/train.conf' \ ---save_dir='translation/model' \ ---use_gpu=false \ ---num_passes=16 \ ---show_parameter_stats_period=100 \ ---trainer_count=4 \ ---log_period=10 \ ---dot_period=5 \ -2>&1 | tee 'translation/train.log' -paddle usage -l 'translation/train.log' -e $? -n "seqToseq_translation_train" >/dev/null 2>&1 diff --git a/demo/word2vec/api_train_v2.py b/demo/word2vec/api_train_v2.py deleted file mode 100644 index c0940f0e56eafa22f8aeb7052c0ddc79d8862917..0000000000000000000000000000000000000000 --- a/demo/word2vec/api_train_v2.py +++ /dev/null @@ -1,100 +0,0 @@ -import gzip -import math - -import paddle.v2 as paddle - -embsize = 32 -hiddensize = 256 -N = 5 - - -def wordemb(inlayer): - wordemb = paddle.layer.embedding( - input=inlayer, - size=embsize, - param_attr=paddle.attr.Param( - name="_proj", - initial_std=0.001, - learning_rate=1, - l2_rate=0, - sparse_update=True)) - return wordemb - - -def main(): - # for local training - cluster_train = False - - if not cluster_train: - paddle.init(use_gpu=False, trainer_count=1) - else: - paddle.init( - use_gpu=False, - trainer_count=2, - port=7164, - ports_num=1, - ports_num_for_sparse=1, - num_gradient_servers=1) - word_dict = paddle.dataset.imikolov.build_dict() - dict_size = len(word_dict) - firstword = paddle.layer.data( - name="firstw", type=paddle.data_type.integer_value(dict_size)) - secondword = paddle.layer.data( - name="secondw", type=paddle.data_type.integer_value(dict_size)) - thirdword = paddle.layer.data( - name="thirdw", type=paddle.data_type.integer_value(dict_size)) - fourthword = paddle.layer.data( - name="fourthw", type=paddle.data_type.integer_value(dict_size)) - nextword = paddle.layer.data( - name="fifthw", type=paddle.data_type.integer_value(dict_size)) - - Efirst = wordemb(firstword) - Esecond = wordemb(secondword) - Ethird = wordemb(thirdword) - Efourth = wordemb(fourthword) - - contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) - hidden1 = paddle.layer.fc(input=contextemb, - size=hiddensize, - act=paddle.activation.Sigmoid(), - layer_attr=paddle.attr.Extra(drop_rate=0.5), - bias_attr=paddle.attr.Param(learning_rate=2), - param_attr=paddle.attr.Param( - initial_std=1. / math.sqrt(embsize * 8), - learning_rate=1)) - predictword = paddle.layer.fc(input=hidden1, - size=dict_size, - bias_attr=paddle.attr.Param(learning_rate=2), - act=paddle.activation.Softmax()) - - def event_handler(event): - if isinstance(event, paddle.event.EndIteration): - if event.batch_id % 100 == 0: - with gzip.open("batch-" + str(event.batch_id) + ".tar.gz", - 'w') as f: - trainer.save_parameter_to_tar(f) - result = trainer.test( - paddle.batch( - paddle.dataset.imikolov.test(word_dict, N), 32)) - print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( - event.pass_id, event.batch_id, event.cost, event.metrics, - result.metrics) - - cost = paddle.layer.classification_cost(input=predictword, label=nextword) - - parameters = paddle.parameters.create(cost) - adagrad = paddle.optimizer.AdaGrad( - learning_rate=3e-3, - regularization=paddle.optimizer.L2Regularization(8e-4)) - trainer = paddle.trainer.SGD(cost, - parameters, - adagrad, - is_local=not cluster_train) - trainer.train( - paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32), - num_passes=30, - event_handler=event_handler) - - -if __name__ == '__main__': - main() diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index 1efa74ecda4170332d96603ca2253c68468474f9..c7b017bc07b25bc606fd838a5fb9d3715f4faecb 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -59,6 +59,11 @@ context_projection .. autoclass:: paddle.v2.layer.context_projection :noindex: +row_conv +-------- +.. autoclass:: paddle.v2.layer.row_conv + :noindex: + Image Pooling Layer =================== @@ -130,7 +135,7 @@ recurrent_group --------------- .. autoclass:: paddle.v2.layer.recurrent_group :noindex: - + lstm_step --------- .. autoclass:: paddle.v2.layer.lstm_step @@ -145,12 +150,12 @@ beam_search ------------ .. autoclass:: paddle.v2.layer.beam_search :noindex: - + get_output ---------- .. autoclass:: paddle.v2.layer.get_output :noindex: - + Mixed Layer =========== @@ -203,7 +208,7 @@ trans_full_matrix_projection ---------------------------- .. autoclass:: paddle.v2.layer.trans_full_matrix_projection :noindex: - + Aggregate Layers ================ @@ -346,6 +351,12 @@ sampling_id .. autoclass:: paddle.v2.layer.sampling_id :noindex: +multiplex +--------- +.. autoclass:: paddle.v2.layer.multiplex + :noindex: + + Slicing and Joining Layers ========================== @@ -434,10 +445,26 @@ smooth_l1_cost .. autoclass:: paddle.v2.layer.smooth_l1_cost :noindex: -Check Layer +Check Layer ============ eos --- .. autoclass:: paddle.v2.layer.eos :noindex: + +Miscs +===== + +dropout +-------------- +.. autoclass:: paddle.v2.layer.dropout + :noindex: + +Activation with learnable parameter +=================================== + +prelu +-------- +.. autoclass:: paddle.v2.layer.prelu + :noindex: diff --git a/doc/api/v2/config/networks.rst b/doc/api/v2/config/networks.rst index b2a617fff134035c04eeabbbaf6d9cbe2a525f1c..6e813ab1a820d068ea3e54cad6178f1cf928eadc 100644 --- a/doc/api/v2/config/networks.rst +++ b/doc/api/v2/config/networks.rst @@ -125,11 +125,3 @@ simple_attention :members: simple_attention :noindex: -Miscs -===== - -dropout_layer --------------- -.. automodule:: paddle.v2.networks - :members: dropout_layer - :noindex: diff --git a/doc/design/cluster_train/pserver_client.md b/doc/design/cluster_train/pserver_client.md index b3e4079010490b69db1de28157f0cab80cad2381..474b8c572cd92fc87e9f7f3f2b19d12cccd158de 100644 --- a/doc/design/cluster_train/pserver_client.md +++ b/doc/design/cluster_train/pserver_client.md @@ -74,14 +74,25 @@ typedef enum { typedef struct { char* name; paddle_element_type element_type; - void* content; + unsigned char* content; int content_len; } paddle_parameter, paddle_gradient; -typedef struct paddle_pserver_client paddle_pserver_client; +typedef int paddle_pserver_client; -paddle_pserver_client* paddle_new_pserver_client(); -void paddle_pserver_client_release(paddle_pserver_client* client); +/** + * @brief creates a pserver client that talks to etcd for coordination. + */ +paddle_pserver_client paddle_new_etcd_pserver_client(char* etcd_addr); + +/** + * @brief creates a pserver client given pserver addresses. + * + * @param pserver_addrs comma-separated pserver addresses. + * @param selected if current pserver client is selected to initialize all parameter servers. + */ +paddle_pserver_client paddle_new_pserver_client(char* pserver_addrs, int selected); +void paddle_pserver_client_release(paddle_pserver_client c); /** * @brief paddle_begin_init_params begins to initialize parameters on @@ -95,7 +106,7 @@ void paddle_pserver_client_release(paddle_pserver_client* client); * @return 1 if the trainer is selected to initialize parameter * servers, otherwise 0. */ -int paddle_begin_init_params(paddle_pserver_client* client); +int paddle_begin_init_params(paddle_pserver_client client); /** * @brief paddle_init_param initializes the parameter on parameter @@ -109,7 +120,7 @@ int paddle_begin_init_params(paddle_pserver_client* client); * @paddle_begin_init_param). Or simply exit the program and wait for * the cluster management system to restart the trainer. */ -int paddle_init_param(paddle_pserver_client* client, paddle_parameter param, const unsigned char* param_config_proto, int config_len); +int paddle_init_param(paddle_pserver_client client, paddle_parameter param, const unsigned char* param_config_proto, int config_len); /** * @brief paddle_finish_init_params tells parameter servers client has @@ -120,7 +131,7 @@ int paddle_init_param(paddle_pserver_client* client, paddle_parameter param, con * @paddle_begin_init_param). Or simply exit the program and wait for * the cluster management system to restart the trainer. */ -int paddle_finish_init_params(paddle_pserver_client* client); +int paddle_finish_init_params(paddle_pserver_client client); /** * @brief paddle_send_grads sends gradients to parameter servers for @@ -131,7 +142,7 @@ int paddle_finish_init_params(paddle_pserver_client* client); * @param learning_rate the learning rate for the gradients. * @return 0 if successful, otherwise -1. */ -int paddle_send_grads(paddle_pserver_client* client, const paddle_gradient* grads, int len); +int paddle_send_grads(paddle_pserver_client client, const paddle_gradient* grads, int len); /** * @brief paddle_get_params gets parameters from parameter servers. @@ -139,13 +150,15 @@ int paddle_send_grads(paddle_pserver_client* client, const paddle_gradient* grad * paddle_get_params will block until parameters are initialized on * the parameter servers. * - * @param names the array of names of the parameters to get. - * @param dst the destination array of parameters to save to. + * @param dst the destination array of parameter pointers to save to. + * The parameter pointer must be pre-popullated with required parameter name, + * and the content of parameter must be pre-allocated of the size of required + * parameter on pserver. * @param len the length of the names array and the paddle_parameter * array. * @return 0 if successful, otherwise -1. */ -int paddle_get_params(paddle_pserver_client* client, const char** names, paddle_parameter* dst, int len); +int paddle_get_params(paddle_pserver_client client, paddle_parameter** dst, int len); /** * @brief paddle_save_model indicates parameters to save the parameter @@ -154,5 +167,5 @@ int paddle_get_params(paddle_pserver_client* client, const char** names, paddle_ * @param path the path to save parameters. * @return 0 if successful, otherwise -1. */ -int paddle_save_model(paddle_pserver_client* client, const char* path); +int paddle_save_model(paddle_pserver_client client, const char* path); ``` diff --git a/doc/design/cluster_train/remote_parameter_updater.md b/doc/design/cluster_train/remote_parameter_updater.md new file mode 100644 index 0000000000000000000000000000000000000000..6e8e5938455b869e0f3367794c41250340b37f77 --- /dev/null +++ b/doc/design/cluster_train/remote_parameter_updater.md @@ -0,0 +1,21 @@ +# Design Doc: Remote Parameter Updater for Cluster Train + +For an overview of distribute training, please refer to [distributed training design doc](README.md). In this design doc, we will discuss the parameter updater that will use parameter server cclient [The Client Library of Parameter Server Design Doc](pserver_client.md) to manage and update parameters. + +## Parameter Updater + +Parameter Updater is used by trainer to manage and update parameter, there are mainly two kind of parameter updater: local and remote, since this design is for cluster train, we will only discuss remote parameter updater here. + +### Remote Parameter Updater + +Remote Parameter Updater manage parameters through remote parameter server with the client that communicate with pserver([The Client Library of Parameter Server Design Doc](pserver_client.md)) + +In PaddlePaddle Python V2 API, trainer is implemented in python, and the trainer will hold a instance of parameter updater and call it's functions directly. In this design, we will also expose the api of RemoteParameterUpdater to python with swig. + +#### Sparse Remote Parameter Updater + +Since we will only implement dense parameter management new, the mechanism for sparse parameter will be discussed in next stage. + +### Interface Design + +TBD diff --git a/doc/getstarted/build_and_install/build_from_source_en.md b/doc/getstarted/build_and_install/build_from_source_en.md index 69f4501f370dcc9d603ec54a63d68568d66e832e..c0608ede8e57b224dae4b3d510d704a8b0918b53 100644 --- a/doc/getstarted/build_and_install/build_from_source_en.md +++ b/doc/getstarted/build_and_install/build_from_source_en.md @@ -22,6 +22,7 @@ To compile the source code, your computer must be equipped with the following de - **CMake**: CMake >= 3.0 (at least CMake 3.4 on Mac OS X) - **BLAS**: MKL, OpenBlas or ATLAS - **Python**: only support Python 2.7 +- **Go** **Note:** For CUDA 7.0 and CUDA 7.5, GCC 5.0 and up are not supported! For CUDA 8.0, GCC versions later than 5.3 are not supported! @@ -107,6 +108,18 @@ As a simple example, consider the following: sudo apt-get install -y python python-pip python-numpy libpython-dev bison sudo pip install 'protobuf==3.1.0.post1' + # Install Go + # You can follow https://golang.org/doc/install for a detailed explanation. + wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \ + tar -C $HOME -xzf go.tgz && \ + mkdir $HOME/gopath && \ + rm go.tgz + + # Setup environment variables + export GOROOT=$HOME/go + export GOPATH=$HOME/gopath + export PATH=$PATH:$GOROOT/bin + # install cmake 3.4 curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \ cd cmake-3.4.1 && ./bootstrap && make -j4 && sudo make install && \ diff --git a/doc/getstarted/index_cn.rst b/doc/getstarted/index_cn.rst index 0cb27f802c40ef123fdc9c6799aad3b2a5f554c0..aa418c657a4ba16cce61c030066f4d3e14e891cc 100644 --- a/doc/getstarted/index_cn.rst +++ b/doc/getstarted/index_cn.rst @@ -7,4 +7,4 @@ build_and_install/index_cn.rst concepts/use_concepts_cn.rst -- `深度学习入门课程 `_ +- `深度学习入门课程 `_ diff --git a/doc/getstarted/index_en.rst b/doc/getstarted/index_en.rst index 9f771e93e8b63eb98e31ec12667bd1aa007af20e..be3253e3d41b99a2b696e2c5ef6463ed49680d69 100644 --- a/doc/getstarted/index_en.rst +++ b/doc/getstarted/index_en.rst @@ -6,4 +6,4 @@ GET STARTED build_and_install/index_en.rst -- `Deep Learning 101 `_ +- `Deep Learning 101 `_ diff --git a/doc/howto/deep_model/rnn/index_cn.rst b/doc/howto/deep_model/rnn/index_cn.rst index 9e805ca85191b793c8798a239927a318c70b96f5..9ecab5594cff47cde4700b7ce0f58013a960a16e 100644 --- a/doc/howto/deep_model/rnn/index_cn.rst +++ b/doc/howto/deep_model/rnn/index_cn.rst @@ -4,6 +4,7 @@ RNN相关模型 .. toctree:: :maxdepth: 1 + rnn_config_cn.rst recurrent_group_cn.md hierarchical_layer_cn.rst hrnn_rnn_api_compare_cn.rst diff --git a/doc/howto/deep_model/rnn/index_en.rst b/doc/howto/deep_model/rnn/index_en.rst index 13a153b05c578e0af82ee29db5ea27fd4b6d6f59..7adc79873d699fdfd5a85034bcef964dd1f19132 100644 --- a/doc/howto/deep_model/rnn/index_en.rst +++ b/doc/howto/deep_model/rnn/index_en.rst @@ -1,2 +1,7 @@ RNN Models ========== + +.. toctree:: + :maxdepth: 1 + + rnn_config_en.rst diff --git a/doc/howto/deep_model/rnn/rnn_config_cn.rst b/doc/howto/deep_model/rnn/rnn_config_cn.rst index ac2bd0775f4ab2e0a0c37462e2c23001123b152b..4d684cf8ad5a8082cf31fb27027119b3d3e700b6 100644 --- a/doc/howto/deep_model/rnn/rnn_config_cn.rst +++ b/doc/howto/deep_model/rnn/rnn_config_cn.rst @@ -5,36 +5,13 @@ RNN配置 中配置循环神经网络(RNN)。PaddlePaddle 高度支持灵活和高效的循环神经网络配置。 在本教程中,您将了解如何: -- 准备用来学习循环神经网络的序列数据。 - 配置循环神经网络架构。 - 使用学习完成的循环神经网络模型生成序列。 我们将使用 vanilla 循环神经网络和 sequence to sequence 模型来指导你完成这些步骤。sequence to sequence -模型的代码可以在\ ``demo / seqToseq``\ 找到。 - -准备序列数据 ------------- - -PaddlePaddle -不需要对序列数据进行任何预处理,例如填充。唯一需要做的是将相应类型设置为输入。例如,以下代码段定义了三个输入。 -它们都是序列,它们的大小是\ ``src_dict``\ ,\ ``trg_dict``\ 和\ ``trg_dict``\ : - -.. code:: python - - settings.input_types = [ - integer_value_sequence(len(settings.src_dict)), - integer_value_sequence(len(settings.trg_dict)), - integer_value_sequence(len(settings.trg_dict))] - -在\ ``process``\ 函数中,每个\ ``yield``\ 函数将返回三个整数列表。每个整数列表被视为一个整数序列: - -.. code:: python - - yield src_ids, trg_ids, trg_ids_next - -有关如何编写数据提供程序的更多细节描述,请参考 :ref:`api_pydataprovider2` 。完整的数据提供文件在 -``demo/seqToseq/dataprovider.py``\ 。 +模型的代码可以在 `book/08.machine_translation `_ 找到。 +wmt14数据的提供文件在 `python/paddle/v2/dataset/wmt14.py `_ 。 配置循环神经网络架构 -------------------- @@ -85,19 +62,19 @@ vanilla act=None, rnn_layer_attr=None): def __rnn_step__(ipt): - out_mem = memory(name=name, size=size) - rnn_out = mixed_layer(input = [full_matrix_projection(ipt), - full_matrix_projection(out_mem)], - name = name, - bias_attr = rnn_bias_attr, - act = act, - layer_attr = rnn_layer_attr, - size = size) + out_mem = paddle.layer.memory(name=name, size=size) + rnn_out = paddle.layer.mixed(input = [paddle.layer.full_matrix_projection(input=ipt), + paddle.layer.full_matrix_projection(input=out_mem)], + name = name, + bias_attr = rnn_bias_attr, + act = act, + layer_attr = rnn_layer_attr, + size = size) return rnn_out - return recurrent_group(name='%s_recurrent_group' % name, - step=__rnn_step__, - reverse=reverse, - input=input) + return paddle.layer.recurrent_group(name='%s_recurrent_group' % name, + step=__rnn_step__, + reverse=reverse, + input=input) PaddlePaddle 使用“Memory”(记忆模块)实现单步函数。\ **Memory**\ 是在PaddlePaddle中构造循环神经网络时最重要的概念。 @@ -140,43 +117,52 @@ Sequence to Sequence Model with Attention .. code:: python # 定义源语句的数据层 - src_word_id = data_layer(name='source_language_word', size=source_dict_dim) + src_word_id = paddle.layer.data( + name='source_language_word', + type=paddle.data_type.integer_value_sequence(source_dict_dim)) # 计算每个词的词向量 - src_embedding = embedding_layer( + src_embedding = paddle.layer.embedding( input=src_word_id, size=word_vector_dim, - param_attr=ParamAttr(name='_source_language_embedding')) + param_attr=paddle.attr.ParamAttr(name='_source_language_embedding')) # 应用前向循环神经网络 - src_forward = grumemory(input=src_embedding, size=encoder_size) + src_forward = paddle.networks.simple_gru( + input=src_embedding, size=encoder_size) # 应用反向递归神经网络(reverse=True表示反向循环神经网络) - src_backward = grumemory(input=src_embedding, - size=encoder_size, - reverse=True) + src_backward = paddle.networks.simple_gru( + input=src_embedding, size=encoder_size, reverse=True) # 将循环神经网络的前向和反向部分混合在一起 - encoded_vector = concat_layer(input=[src_forward, src_backward]) + encoded_vector = paddle.layer.concat(input=[src_forward, src_backward]) # 投射编码向量到 decoder_size - encoder_proj = mixed_layer(input = [full_matrix_projection(encoded_vector)], - size = decoder_size) + encoded_proj = paddle.layer.mixed( + size=decoder_size, + input=paddle.layer.full_matrix_projection(encoded_vector)) # 计算反向RNN的第一个实例 - backward_first = first_seq(input=src_backward) + backward_first = paddle.layer.first_seq(input=src_backward) # 投射反向RNN的第一个实例到 decoder size - decoder_boot = mixed_layer(input=[full_matrix_projection(backward_first)], size=decoder_size, act=TanhActivation()) + decoder_boot = paddle.layer.mixed( + size=decoder_size, + act=paddle.activation.Tanh(), + input=paddle.layer.full_matrix_projection(backward_first)) 解码器使用 ``recurrent_group`` 来定义循环神经网络。单步函数和输出函数在 ``gru_decoder_with_attention`` 中定义: .. code:: python - group_inputs=[StaticInput(input=encoded_vector,is_seq=True), - StaticInput(input=encoded_proj,is_seq=True)] - trg_embedding = embedding_layer( - input=data_layer(name='target_language_word', - size=target_dict_dim), - size=word_vector_dim, - param_attr=ParamAttr(name='_target_language_embedding')) + group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True) + group_input2 = paddle.layer.StaticInput(input=encoded_proj, is_seq=True) + group_inputs = [group_input1, group_input2] + trg_embedding = paddle.layer.embedding( + input=paddle.layer.data( + name='target_language_word', + type=paddle.data_type.integer_value_sequence(target_dict_dim)), + size=word_vector_dim, + param_attr=paddle.attr.ParamAttr(name='_target_language_embedding')) + group_inputs.append(trg_embedding) group_inputs.append(trg_embedding) # 对于配备有注意力机制的解码器,在训练中, @@ -185,9 +171,10 @@ Sequence to Sequence Model with Attention # StaticInput 意味着不同时间步的输入都是相同的值, # 否则它以一个序列输入,不同时间步的输入是不同的。 # 所有输入序列应该有相同的长度。 - decoder = recurrent_group(name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs) + decoder = paddle.layer.recurrent_group( + name=decoder_group_name, + step=gru_decoder_with_attention, + input=group_inputs) 单步函数的实现如下所示。首先,它定义解码网络的\ **Memory**\ 。然后定义 attention,门控循环单元单步函数和输出函数: @@ -198,27 +185,32 @@ attention,门控循环单元单步函数和输出函数: # 定义解码器的Memory # Memory的输出定义在 gru_step 内 # 注意 gru_step 应该与它的Memory名字相同 - decoder_mem = memory(name='gru_decoder', - size=decoder_size, - boot_layer=decoder_boot) + decoder_mem = paddle.layer.memory( + name='gru_decoder', size=decoder_size, boot_layer=decoder_boot) # 计算 attention 加权编码向量 - context = simple_attention(encoded_sequence=enc_vec, - encoded_proj=enc_proj, - decoder_state=decoder_mem) + context = paddle.networks.simple_attention( + encoded_sequence=enc_vec, + encoded_proj=enc_proj, + decoder_state=decoder_mem) # 混合当前词向量和attention加权编码向量 - decoder_inputs = mixed_layer(inputs = [full_matrix_projection(context), - full_matrix_projection(current_word)], - size = decoder_size * 3) + decoder_inputs = paddle.layer.mixed( + size=decoder_size * 3, + input=[ + paddle.layer.full_matrix_projection(input=context), + paddle.layer.full_matrix_projection(input=current_word) + ]) # 定义门控循环单元循环神经网络单步函数 - gru_step = gru_step_layer(name='gru_decoder', - input=decoder_inputs, - output_mem=decoder_mem, - size=decoder_size) + gru_step = paddle.layer.gru_step( + name='gru_decoder', + input=decoder_inputs, + output_mem=decoder_mem, + size=decoder_size) # 定义输出函数 - out = mixed_layer(input=[full_matrix_projection(input=gru_step)], - size=target_dict_dim, - bias_attr=True, - act=SoftmaxActivation()) + out = paddle.layer.mixed( + size=target_dict_dim, + bias_attr=True, + act=paddle.activation.Softmax(), + input=paddle.layer.full_matrix_projection(input=gru_step)) return out 生成序列 @@ -238,41 +230,32 @@ attention,门控循环单元单步函数和输出函数: - ``beam_size``: beam search 算法中的beam大小。 - ``max_length``: 生成序列的最大长度。 -- 使用 ``seqtext_printer_evaluator`` - 根据索引矩阵和字典打印文本。这个函数需要设置: - - - ``id_input``: 数据的整数ID,用于标识生成的文件中的相应输出。 - - ``dict_file``: 用于将词ID转换为词的字典文件。 - - ``result_file``: 生成结果文件的路径。 - 代码如下: .. code:: python - group_inputs=[StaticInput(input=encoded_vector,is_seq=True), - StaticInput(input=encoded_proj,is_seq=True)] + group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True) + group_input2 = paddle.layer.StaticInput(input=encoded_proj, is_seq=True) + group_inputs = [group_input1, group_input2] # 在生成时,解码器基于编码源序列和最后生成的目标词预测下一目标词。 # 编码源序列(编码器输出)必须由只读Memory的 StaticInput 指定。 # 这里, GeneratedInputs 自动获取上一个生成的词,并在最开始初始化为起始词,如 。 - trg_embedding = GeneratedInput( - size=target_dict_dim, - embedding_name='_target_language_embedding', - embedding_size=word_vector_dim) + trg_embedding = paddle.layer.GeneratedInput( + size=target_dict_dim, + embedding_name='_target_language_embedding', + embedding_size=word_vector_dim) group_inputs.append(trg_embedding) - beam_gen = beam_search(name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs, - bos_id=0, # Beginnning token. - eos_id=1, # End of sentence token. - beam_size=beam_size, - max_length=max_length) - - seqtext_printer_evaluator(input=beam_gen, - id_input=data_layer(name="sent_id", size=1), - dict_file=trg_dict_path, - result_file=gen_trans_file) - outputs(beam_gen) - -注意,这种生成技术只用于类似解码器的生成过程。如果你正在处理序列标记任务,请参阅 :ref:`semantic_role_labeling` 了解更多详细信息。 - -完整的配置文件在\ ``demo/seqToseq/seqToseq_net.py``\ 。 + beam_gen = paddle.layer.beam_search( + name=decoder_group_name, + step=gru_decoder_with_attention, + input=group_inputs, + bos_id=0, # Beginnning token. + eos_id=1, # End of sentence token. + beam_size=beam_size, + max_length=max_length) + + return beam_gen + +注意,这种生成技术只用于类似解码器的生成过程。如果你正在处理序列标记任务,请参阅 `book/06.understand_sentiment `_ 了解更多详细信息。 + +完整的配置文件在 `book/08.machine_translation/train.py `_ 。 diff --git a/doc/howto/deep_model/rnn/rnn_config_en.rst b/doc/howto/deep_model/rnn/rnn_config_en.rst index 73f5d5371fcd3ce95253cad47b0d8e738284441c..2b581290a41005c04cb1d8b6febe57f17d2416d3 100644 --- a/doc/howto/deep_model/rnn/rnn_config_en.rst +++ b/doc/howto/deep_model/rnn/rnn_config_en.rst @@ -3,34 +3,11 @@ RNN Configuration This tutorial will guide you how to configure recurrent neural network in PaddlePaddle. PaddlePaddle supports highly flexible and efficient recurrent neural network configuration. In this tutorial, you will learn how to: -- prepare sequence data for learning recurrent neural networks. - configure recurrent neural network architecture. - generate sequence with learned recurrent neural network models. -We will use vanilla recurrent neural network, and sequence to sequence model to guide you through these steps. The code of sequence to sequence model can be found at :code:`demo/seqToseq`. - -===================== -Prepare Sequence Data -===================== - -PaddlePaddle does not need any preprocessing to sequence data, such as padding. The only thing that needs to be done is to set the type of the corresponding type to input. For example, the following code snippets defines three input. All of them are sequences, and the size of them are :code:`src_dict`, :code:`trg_dict`, and :code:`trg_dict`: - -.. code-block:: python - - settings.input_types = [ - integer_value_sequence(len(settings.src_dict)), - integer_value_sequence(len(settings.trg_dict)), - integer_value_sequence(len(settings.trg_dict))] - - -Then at the :code:`process` function, each :code:`yield` function will return three integer lists. Each integer list is treated as a sequence of integers: - -.. code-block:: python - - yield src_ids, trg_ids, trg_ids_next - - -For more details description of how to write a data provider, please refer to :ref:`api_pydataprovider2` . The full data provider file is located at :code:`demo/seqToseq/dataprovider.py`. +We will use vanilla recurrent neural network, and sequence to sequence model to guide you through these steps. The code of sequence to sequence model can be found at `book/08.machine_translation `_ . +And the data preparation of this model can be found at `python/paddle/v2/dataset/wmt14.py `_ =============================================== Configure Recurrent Neural Network Architecture @@ -75,19 +52,19 @@ Its **output function** simply takes :math:`x_t` as the output. act=None, rnn_layer_attr=None): def __rnn_step__(ipt): - out_mem = memory(name=name, size=size) - rnn_out = mixed_layer(input = [full_matrix_projection(ipt), - full_matrix_projection(out_mem)], - name = name, - bias_attr = rnn_bias_attr, - act = act, - layer_attr = rnn_layer_attr, - size = size) + out_mem = paddle.layer.memory(name=name, size=size) + rnn_out = paddle.layer.mixed(input = [paddle.layer.full_matrix_projection(input=ipt), + paddle.layer.full_matrix_projection(input=out_mem)], + name = name, + bias_attr = rnn_bias_attr, + act = act, + layer_attr = rnn_layer_attr, + size = size) return rnn_out - return recurrent_group(name='%s_recurrent_group' % name, - step=__rnn_step__, - reverse=reverse, - input=input) + return paddle.layer.recurrent_group(name='%s_recurrent_group' % name, + step=__rnn_step__, + reverse=reverse, + input=input) PaddlePaddle uses memory to construct step function. **Memory** is the most important concept when constructing recurrent neural networks in PaddlePaddle. A memory is a state that is used recurrently in step functions, such as :math:`x_{t+1} = f_x(x_t)`. One memory contains an **output** and a **input**. The output of memory at the current time step is utilized as the input of the memory at the next time step. A memory can also has a **boot layer**, whose output is utilized as the initial value of the memory. In our case, the output of the gated recurrent unit is employed as the output memory. Notice that the name of the layer :code:`rnn_out` is the same as the name of :code:`out_mem`. This means the output of the layer :code:`rnn_out` (:math:`x_{t+1}`) is utilized as the **output** of :code:`out_mem` memory. @@ -113,43 +90,52 @@ We also project the encoder vector to :code:`decoder_size` dimensional space, ge .. code-block:: python # Define the data layer of the source sentence. - src_word_id = data_layer(name='source_language_word', size=source_dict_dim) + src_word_id = paddle.layer.data( + name='source_language_word', + type=paddle.data_type.integer_value_sequence(source_dict_dim)) # Calculate the word embedding of each word. - src_embedding = embedding_layer( + src_embedding = paddle.layer.embedding( input=src_word_id, size=word_vector_dim, - param_attr=ParamAttr(name='_source_language_embedding')) + param_attr=paddle.attr.ParamAttr(name='_source_language_embedding')) # Apply forward recurrent neural network. - src_forward = grumemory(input=src_embedding, size=encoder_size) + src_forward = paddle.networks.simple_gru( + input=src_embedding, size=encoder_size) # Apply backward recurrent neural network. reverse=True means backward recurrent neural network. - src_backward = grumemory(input=src_embedding, - size=encoder_size, - reverse=True) + src_backward = paddle.networks.simple_gru( + input=src_embedding, size=encoder_size, reverse=True) # Mix the forward and backward parts of the recurrent neural network together. - encoded_vector = concat_layer(input=[src_forward, src_backward]) + encoded_vector = paddle.layer.concat(input=[src_forward, src_backward]) # Project encoding vector to decoder_size. - encoder_proj = mixed_layer(input = [full_matrix_projection(encoded_vector)], - size = decoder_size) + encoded_proj = paddle.layer.mixed( + size=decoder_size, + input=paddle.layer.full_matrix_projection(encoded_vector)) # Compute the first instance of the backward RNN. - backward_first = first_seq(input=src_backward) + backward_first = paddle.layer.first_seq(input=src_backward) # Project the first instance of backward RNN to decoder size. - decoder_boot = mixed_layer(input=[full_matrix_projection(backward_first)], size=decoder_size, act=TanhActivation()) + decoder_boot = paddle.layer.mixed( + size=decoder_size, + act=paddle.activation.Tanh(), + input=paddle.layer.full_matrix_projection(backward_first)) The decoder uses :code:`recurrent_group` to define the recurrent neural network. The step and output functions are defined in :code:`gru_decoder_with_attention`: .. code-block:: python - group_inputs=[StaticInput(input=encoded_vector,is_seq=True), - StaticInput(input=encoded_proj,is_seq=True)] - trg_embedding = embedding_layer( - input=data_layer(name='target_language_word', - size=target_dict_dim), - size=word_vector_dim, - param_attr=ParamAttr(name='_target_language_embedding')) + group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True) + group_input2 = paddle.layer.StaticInput(input=encoded_proj, is_seq=True) + group_inputs = [group_input1, group_input2] + trg_embedding = paddle.layer.embedding( + input=paddle.layer.data( + name='target_language_word', + type=paddle.data_type.integer_value_sequence(target_dict_dim)), + size=word_vector_dim, + param_attr=paddle.attr.ParamAttr(name='_target_language_embedding')) + group_inputs.append(trg_embedding) group_inputs.append(trg_embedding) # For decoder equipped with attention mechanism, in training, @@ -158,9 +144,10 @@ The decoder uses :code:`recurrent_group` to define the recurrent neural network. # StaticInput means the same value is utilized at different time steps. # Otherwise, it is a sequence input. Inputs at different time steps are different. # All sequence inputs should have the same length. - decoder = recurrent_group(name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs) + decoder = paddle.layer.recurrent_group( + name=decoder_group_name, + step=gru_decoder_with_attention, + input=group_inputs) The implementation of the step function is listed as below. First, it defines the **memory** of the decoder network. Then it defines attention, gated recurrent unit step function, and the output function: @@ -171,27 +158,32 @@ The implementation of the step function is listed as below. First, it defines th # Defines the memory of the decoder. # The output of this memory is defined in gru_step. # Notice that the name of gru_step should be the same as the name of this memory. - decoder_mem = memory(name='gru_decoder', - size=decoder_size, - boot_layer=decoder_boot) + decoder_mem = paddle.layer.memory( + name='gru_decoder', size=decoder_size, boot_layer=decoder_boot) # Compute attention weighted encoder vector. - context = simple_attention(encoded_sequence=enc_vec, - encoded_proj=enc_proj, - decoder_state=decoder_mem) + context = paddle.networks.simple_attention( + encoded_sequence=enc_vec, + encoded_proj=enc_proj, + decoder_state=decoder_mem) # Mix the current word embedding and the attention weighted encoder vector. - decoder_inputs = mixed_layer(inputs = [full_matrix_projection(context), - full_matrix_projection(current_word)], - size = decoder_size * 3) + decoder_inputs = paddle.layer.mixed( + size=decoder_size * 3, + input=[ + paddle.layer.full_matrix_projection(input=context), + paddle.layer.full_matrix_projection(input=current_word) + ]) # Define Gated recurrent unit recurrent neural network step function. - gru_step = gru_step_layer(name='gru_decoder', - input=decoder_inputs, - output_mem=decoder_mem, - size=decoder_size) + gru_step = paddle.layer.gru_step( + name='gru_decoder', + input=decoder_inputs, + output_mem=decoder_mem, + size=decoder_size) # Defines the output function. - out = mixed_layer(input=[full_matrix_projection(input=gru_step)], - size=target_dict_dim, - bias_attr=True, - act=SoftmaxActivation()) + out = paddle.layer.mixed( + size=target_dict_dim, + bias_attr=True, + act=paddle.activation.Softmax(), + input=paddle.layer.full_matrix_projection(input=gru_step)) return out @@ -207,45 +199,37 @@ After training the model, we can use it to generate sequences. A common practice - :code:`eos_id`: the end token. Every sentence ends with the end token. - :code:`beam_size`: the beam size used in beam search. - :code:`max_length`: the maximum length of the generated sentences. - -* use :code:`seqtext_printer_evaluator` to print text according to index matrix and dictionary. This function needs to set: - - - :code:`id_input`: the integer ID of the data, used to identify the corresponding output in the generated files. - - :code:`dict_file`: the dictionary file for converting word id to word. - - :code:`result_file`: the path of the generation result file. The code is listed below: .. code-block:: python - group_inputs=[StaticInput(input=encoded_vector,is_seq=True), - StaticInput(input=encoded_proj,is_seq=True)] + group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True) + group_input2 = paddle.layer.StaticInput(input=encoded_proj, is_seq=True) + group_inputs = [group_input1, group_input2] # In generation, decoder predicts a next target word based on # the encoded source sequence and the last generated target word. # The encoded source sequence (encoder's output) must be specified by # StaticInput which is a read-only memory. # Here, GeneratedInputs automatically fetchs the last generated word, # which is initialized by a start mark, such as . - trg_embedding = GeneratedInput( - size=target_dict_dim, - embedding_name='_target_language_embedding', - embedding_size=word_vector_dim) + trg_embedding = paddle.layer.GeneratedInput( + size=target_dict_dim, + embedding_name='_target_language_embedding', + embedding_size=word_vector_dim) group_inputs.append(trg_embedding) - beam_gen = beam_search(name=decoder_group_name, - step=gru_decoder_with_attention, - input=group_inputs, - bos_id=0, # Beginnning token. - eos_id=1, # End of sentence token. - beam_size=beam_size, - max_length=max_length) + beam_gen = paddle.layer.beam_search( + name=decoder_group_name, + step=gru_decoder_with_attention, + input=group_inputs, + bos_id=0, # Beginnning token. + eos_id=1, # End of sentence token. + beam_size=beam_size, + max_length=max_length) - seqtext_printer_evaluator(input=beam_gen, - id_input=data_layer(name="sent_id", size=1), - dict_file=trg_dict_path, - result_file=gen_trans_file) - outputs(beam_gen) + return beam_gen -Notice that this generation technique is only useful for decoder like generation process. If you are working on sequence tagging tasks, please refer to :ref:`semantic_role_labeling` for more details. +Notice that this generation technique is only useful for decoder like generation process. If you are working on sequence tagging tasks, please refer to `book/06.understand_sentiment `_ for more details. -The full configuration file is located at :code:`demo/seqToseq/seqToseq_net.py`. +The full configuration file is located at `book/08.machine_translation/train.py `_ . diff --git a/doc/howto/dev/contribute_to_paddle_cn.md b/doc/howto/dev/contribute_to_paddle_cn.md index a48b143c760c6fc6fc08e793e4cf2f82f6713dc0..699390145226ec2b65fdf5122db187e1d30d669e 100644 --- a/doc/howto/dev/contribute_to_paddle_cn.md +++ b/doc/howto/dev/contribute_to_paddle_cn.md @@ -84,7 +84,7 @@ no changes added to commit (use "git add" and/or "git commit -a") ➜ docker build -t paddle:dev . ``` -随后可以用这个开发镜像开build PaddlePaddle的源码。比如如果要build一个不依赖GPU,但是支持AVX指令集,并且包括unit tests的PaddlePaddle,可以: +随后可以用这个开发镜像开始build PaddlePaddle的源码。比如如果要build一个不依赖GPU,但是支持AVX指令集,并且包括unit tests的PaddlePaddle,可以: ```bash ➜ docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TEST=ON" paddle:dev diff --git a/doc/howto/dev/contribute_to_paddle_en.md b/doc/howto/dev/contribute_to_paddle_en.md index 9b0d3e83c0dc264650eda73e6801c60a75439b4a..40d1eb62d722244139cc84eb170c190d988f5626 100644 --- a/doc/howto/dev/contribute_to_paddle_en.md +++ b/doc/howto/dev/contribute_to_paddle_en.md @@ -4,9 +4,9 @@ We sincerely appreciate your contributions. You can use fork and pull request workflow to merge your code. ## Code Requirements -- Your code must be fully documented by - [doxygen](http://www.stack.nl/~dimitri/doxygen/) style. -- Make sure the compiler option WITH\_STYLE\_CHECK is on and the compiler +- Your code comments must be fully documented by + [Doxygen](http://www.stack.nl/~dimitri/doxygen/) style. +- Make sure the compiler option `WITH_STYLE_CHECK` is on and the compiler passes the code style check. - All code must have unit test. - Pass all unit tests. @@ -20,32 +20,25 @@ It's just that simple. ## Clone -Paddle is currently using [git-flow branching model](http://nvie.com/posts/a-successful-git-branching-model/). -The **develop** is the main branch, and other user's branches are feature branches. +Clone remote repository. -Once you've created a fork, you can use your favorite git client to clone your -repo or just head straight to the command line: - -```shell -# Clone your fork to your local machine -git clone --branch develop https://github.com/USERNAME/Paddle.git -``` -If your repository doesn't contain **develop** branch, just create it by your own. - -```shell -git clone https://github.com/USERNAME/Paddle.git Paddle -cd Paddle -git checkout -b develop # create develop branch. -git remote add upstream https://github.com/PaddlePaddle/Paddle.git # add upstream to baidu/Paddle -git pull upstream develop # update to upstream +```bash +➜ git clone https://github.com/USERNAME/Paddle +➜ cd Paddle ``` -Then you can start to develop by making a local developement branch +## Create a local branch + +Paddle is currently using [Git-flow branching model](http://nvie.com/posts/a-successful-git-branching-model/). -```shell -git checkout -b MY_COOL_STUFF_BRANCH +All feature and bug fix development work should be done on a new branch, generally create new branch from `develop` branch . + +```bash +➜ git checkout -b my-cool-stuff ``` +Before the checkout, you need to keep the current branch directory clean, otherwise the untracked file will be brought to the new branch, which can be inspected by `git status`. + ## Using `pre-commit` hook Paddle developers use [pre-commit](http://pre-commit.com/) tool to manage git @@ -58,89 +51,169 @@ To use [pre-commit](http://pre-commit.com/), you should install it by `pip install pre-commit`, and currently, Paddle uses `clang-format` to format c/cpp sources. Please make sure clang-format 3.8+ installed. -Then just run `pre-commit install` in your Paddle clone directory. When you -commit your code, the pre-commit hook will check the local code if there is +Install and run it as follow: + +```bash +➜ pip install pre-commit +➜ pre-commit install +``` + +When you commit your code, the pre-commit hook will check the local code if there is anything not suitable to commit, and so on. +## Start to develop + +In this tutorial, I delete a line in README.md and created a new file. + +We can use `git status` to inspect the changes of current directory, `git diff` to see difference. + +```bash +➜ git status +On branch test +Changes not staged for commit: + (use "git add ..." to update what will be committed) + (use "git checkout -- ..." to discard changes in working directory) + + modified: README.md + +Untracked files: + (use "git add ..." to include in what will be committed) + + test + +no changes added to commit (use "git add" and/or "git commit -a") +``` +## Build and Test + +We package PaddlePaddle's compile environment into a Docker image, called the develop image named `paddle:dev`, it contains all compiling tools that PaddlePaddle needs. + +If you want to build the develop image, just run: + +```bash +➜ docker build -t paddle:dev . +``` + +Then we can use the develop image to build PaddlePaddle source. For example: + +```bash +➜ docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TEST=ON" paddle:dev +``` + +The above command will compile PaddlePaddle and create a Dockerfile for building production image. All the generated files are in the build directory. "WITH_GPU" controls if the generated production image supports GPU. "WITH_AVX" controls if the generated production image supports AVX. "WITH_TEST" controls if the unit test will be generated. + +Then we can generate the production image by copying the compiled PaddlePaddle program into the image by + +```bash +➜ docker build -t paddle:prod -f build/Dockerfile . +``` + +Run unit test finally: + +```bash +➜ docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest" +``` + +For more details, you can read [this doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). + ## Commit -Commit your changes by following command lines: +Next we cancel the changes to the README.md file and then commit our changes by following command lines: + +```bash +➜ git checkout -- README.md +➜ git status +On branch test +Untracked files: + (use "git add ..." to include in what will be committed) + + test + +nothing added to commit but untracked files present (use "git add" to track) +➜ git add test +``` -```shell -# show the working tree status -git status -# add modified files -git add xx -env EDITOR=vim git commit # You can write your comments by vim/nano/emacs. +We should write a description of each commit by `git commit` to allow others to know +the changes in these files. + +```bash +➜ git commit +CRLF end-lines remover...............................(no files to check)Skipped +yapf.................................................(no files to check)Skipped +Check for added large files..............................................Passed +Check for merge conflicts................................................Passed +Check for broken symlinks................................................Passed +Detect Private Key...................................(no files to check)Skipped +Fix End of Files.....................................(no files to check)Skipped +clang-formater.......................................(no files to check)Skipped +[my-cool-stuff c703c041] add test file + 1 file changed, 0 insertions(+), 0 deletions(-) + create mode 100644 233 ``` -The first line of commit infomation is the title. The second and later lines -are the details if any. ## Keeping Fork Up to Date Before pull your request, you should sync your code from the latest PaddlePaddle. To do this, you'll need to add a remote at first: -```shell -# see the current configured remote repository -git remote -v -# add upstream repository -git remote add upstream https://github.com/PaddlePaddle/Paddle.git -# verify the new upstream -git remote -v +```bash +➜ git remote add upstream https://github.com/PaddlePaddle/Paddle +➜ git remote +origin +upstream ``` Update your fork with the latest upstream changes: -```shell -git pull --rebase upstream develop +```bash +➜ git fetch upstream +➜ git pull upstream develop ``` -If there are no unique commits locally, git will simply perform a fast-forward. -However, if you have been making changes (in the vast majority of cases you -probably shouldn't be), you may have to deal with conflicts. - Now, your local master branch is up-to-date with everything modified upstream. ## Push to GitHub -```shell +```bash # push to your repository in Github -git push -u origin MY_COOL_STUFF_BRANCH # create remote branch MY_COOL_STUFF_BRANCH to origin. +➜ git push origin my-cool-stuff ``` -## Pull Request +## Create an issue and a Pull Request + +Create an Issue to describe the problem and record its number. Go to the page for your fork on GitHub, select your development branch, -and click the **pull request button**. - -## Update your pull request with the lastest version - -During the code review, your pull request may become stale because new commits in -baidu/Paddle. GitHub allows autmotic update if there is no conflict. You can do this -by clicking the "Update Branch" button in your pull request page. However, in the case -of conflict, you need to do the update manually. You need to do the following on -your local repository: -```shell -git checkout MY_COOL_STUFF_BRANCH -git pull upstream develop -# You may need to resolve the conflict according to the git prompt. -# Make and test your code. -git push origin MY_COOL_STUFF_BRANCH +and click the `New pull request`. + +screen shot 2017-04-26 at 9 09 28 pm + +Then select the target branch: + +screen shot 2017-04-26 at 9 11 52 pm + +We can add `resolve #Issue number` in PR description to close the issue automatically after the PR is merge. More details in . + +Then wait for review, if there need to modify, refer to the above steps to update the corresponding origin branch. + +## Delete origin branch + +After the PR is merge into the main repository, we can delete the remote branch on the PR page. + +screen shot 2017-04-26 at 9 18 24 pm + +Or just run: + +```bash +➜ git push origin :my-cool-stuff ``` -Now your Pull Request is updated with the latest version. -## Revise your pull request +## Delete local branch -When you revise your pull request according to reviewer's comments, please use 'git commit' instead of 'git commit --amend' to commit your changes so that the reviewers can see the difference between the new pull requrest and the old pull request. +Finally, we delete local branch: -The possible commands are +```bash +➜ git checkout develop -```shell -git checkout MY_COOL_STUFF_BRANCH -git pull upstream develop # update local to newest code base. -# May be some conflicts will occured. -# And develop your cool stuff -env EDITOR=vim git commit # add your revise log -git push origin MY_COOL_STUFF_BRANCH +# delete my-cool-stuff branch +➜ git branch -D my-cool-stuff ``` diff --git a/go/cmake/golang.cmake b/go/cmake/golang.cmake index e73b0c865bcf066302646713fa9311b3e3489235..a5a43886f887e495500fa26b3c26fa69c63eded0 100644 --- a/go/cmake/golang.cmake +++ b/go/cmake/golang.cmake @@ -17,7 +17,7 @@ function(GO_LIBRARY NAME BUILD_TYPE) endif() file(GLOB GO_SOURCE RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.go") - file(RELATIVE_PATH rel ${CMAKE_BINARY_DIR} ${CMAKE_CURRENT_SOURCE_DIR}) + file(RELATIVE_PATH rel ${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRENT_SOURCE_DIR}) # find Paddle directory. get_filename_component(PARENT_DIR ${CMAKE_CURRENT_SOURCE_DIR} DIRECTORY) @@ -26,25 +26,23 @@ function(GO_LIBRARY NAME BUILD_TYPE) # automatically get all dependencies specified in the source code # for given target. - add_custom_target(goGet env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} get -d ${rel}/...) + add_custom_target(${NAME}_goGet env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} get -d ${rel}/...) # make a symlink that references Paddle inside $GOPATH, so go get # will use the local changes in Paddle rather than checkout Paddle # in github. - add_custom_target(copyPaddle - COMMAND ln -sf ${PADDLE_DIR} ${PADDLE_IN_GOPATH}) - add_dependencies(goGet copyPaddle) + add_custom_target(${NAME}_copyPaddle + COMMAND rm -rf ${PADDLE_IN_GOPATH}/Paddle + COMMAND ln -sf ${PADDLE_DIR} ${PADDLE_IN_GOPATH}/Paddle) + add_dependencies(${NAME}_goGet ${NAME}_copyPaddle) add_custom_command(OUTPUT ${OUTPUT_DIR}/.timestamp COMMAND env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} build ${BUILD_MODE} - -o "${CMAKE_CURRENT_BINARY_DIR}/${LIB_NAME}" + -o "${CMAKE_CURRENT_BINARY_DIR}/${LIB_NAME}" ${CMAKE_GO_FLAGS} ${GO_SOURCE} - WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}) + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) add_custom_target(${NAME} ALL DEPENDS ${OUTPUT_DIR}/.timestamp ${ARGN}) - add_dependencies(${NAME} goGet) + add_dependencies(${NAME} ${NAME}_goGet) - if(NOT BUILD_TYPE STREQUAL "STATIC") - install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/${LIB_NAME} DESTINATION bin) - endif() endfunction(GO_LIBRARY) diff --git a/go/cmd/master/master.go b/go/cmd/master/master.go index d1f3d7d76c438670faf6677b01e790c5ebe1f2cb..25cd1cafcdf328094a019638f37f908591f5f374 100644 --- a/go/cmd/master/master.go +++ b/go/cmd/master/master.go @@ -1,80 +1,32 @@ package main import ( - "fmt" "net" "net/http" "net/rpc" - "os" - "path/filepath" "strconv" - "strings" "time" "github.com/namsral/flag" "github.com/PaddlePaddle/Paddle/go/master" - "github.com/PaddlePaddle/recordio" ) func main() { port := flag.Int("port", 8080, "port of the master server.") - dataset := flag.String("training_dataset", "", "dataset: comma separated path to RecordIO paths, supports golb patterns.") + faultTolerance := flag.Bool("fault_tolerance", false, "enable fault tolerance (requires etcd).") taskTimeoutDur := flag.Duration("task_timout_dur", 20*time.Minute, "task timout duration.") taskTimeoutMax := flag.Int("task_timeout_max", 3, "max timtout count for each task before it being declared failed task.") chunkPerTask := flag.Int("chunk_per_task", 10, "chunk per task.") flag.Parse() - if *dataset == "" { - panic("no dataset specified.") - } - if *faultTolerance { panic("fault tolernance not implemented.") - } - - var chunks []master.Chunk - var paths []string - ss := strings.Split(*dataset, ",") - fmt.Println(ss) - for _, s := range ss { - match, err := filepath.Glob(s) - if err != nil { - panic(err) - } - paths = append(paths, match...) - } - - if len(paths) == 0 { - panic("no valid datset specified.") - } - - idx := 0 - for _, path := range paths { - f, err := os.Open(path) - if err != nil { - panic(err) - } - - index, err := recordio.LoadIndex(f) - if err != nil { - panic(err) - } - f.Close() - count := index.NumChunks() - for i := 0; i < count; i++ { - chunk := master.Chunk{ - Idx: idx, - Path: path, - Index: *index.ChunkIndex(i), - } - chunks = append(chunks, chunk) - } } - s := master.NewService(chunks, *chunkPerTask, *taskTimeoutDur, *taskTimeoutMax) + s := master.NewService(*chunkPerTask, *taskTimeoutDur, *taskTimeoutMax) err := rpc.Register(s) if err != nil { panic(err) diff --git a/go/pserver/internal/connection/conn.go b/go/connection/conn.go similarity index 81% rename from go/pserver/internal/connection/conn.go rename to go/connection/conn.go index 1c04f117254054741b7d45fb16462b5ce84a2aea..977e8cc123707dbcf055bb77399adbc232c575a0 100644 --- a/go/pserver/internal/connection/conn.go +++ b/go/connection/conn.go @@ -4,6 +4,8 @@ import ( "errors" "net/rpc" "sync" + + log "github.com/sirupsen/logrus" ) // TODO(helin): add TCP re-connect logic @@ -21,6 +23,18 @@ func New() *Conn { return c } +// Close closes the connection. +func (c *Conn) Close() error { + c.mu.Lock() + defer c.mu.Unlock() + + if c.client == nil { + return nil + } + + return c.client.Close() +} + // Connect connects the connection to a address. func (c *Conn) Connect(addr string) error { c.mu.Lock() @@ -50,12 +64,20 @@ func (c *Conn) Connect(addr string) error { c.waitConn = nil } } else { + err := client.Close() + if err != nil { + log.Errorln(err) + } + return errors.New("client already set from a concurrent goroutine") } return nil } +// TODO(helin): refactor Call to be able to perform given retry +// policy. + // Call make a RPC call. // // Call will be blocked until the connection to remote RPC service diff --git a/go/master/c/CMakeLists.txt b/go/master/c/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..acce698051ec7217d60a40b3d9cdc98fb1499653 --- /dev/null +++ b/go/master/c/CMakeLists.txt @@ -0,0 +1,21 @@ +cmake_minimum_required(VERSION 3.0) + +get_filename_component(PARENT_DIR ${CMAKE_CURRENT_SOURCE_DIR} DIRECTORY) +get_filename_component(PARENT_DIR ${PARENT_DIR} DIRECTORY) +set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${PARENT_DIR}/cmake") + +project(cxx_go C Go) + +include(golang) +include(flags) + +set(MASTER_LIB_NAME "paddle_master") +go_library(${MASTER_LIB_NAME} SHARED) + +if(PROJ_ROOT) + add_custom_command(OUTPUT ${PROJ_ROOT}/python/paddle/v2/master/lib${MASTER_LIB_NAME}.so + COMMAND rm ${CMAKE_CURRENT_BINARY_DIR}/lib${MASTER_LIB_NAME}.h + COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/lib${MASTER_LIB_NAME}.so ${PROJ_ROOT}/python/paddle/v2/master/ + DEPENDS ${MASTER_LIB_NAME}) + add_custom_target(paddle_master_shared ALL DEPENDS ${PROJ_ROOT}/python/paddle/v2/master/lib${MASTER_LIB_NAME}.so) +endif(PROJ_ROOT) diff --git a/go/master/c/client.go b/go/master/c/client.go new file mode 100644 index 0000000000000000000000000000000000000000..b186474dc33138aeb02a2ffe34418b379b7a2db0 --- /dev/null +++ b/go/master/c/client.go @@ -0,0 +1,110 @@ +package main + +/* +#include +#include +#include + +#define PADDLE_MASTER_OK 0 +#define PADDLE_MASTER_ERROR -1 + +typedef int paddle_master_client; +*/ +import "C" + +import ( + "sync" + "unsafe" + + "github.com/PaddlePaddle/Paddle/go/master" + log "github.com/sirupsen/logrus" +) + +var nullPtr = unsafe.Pointer(uintptr(0)) +var mu sync.Mutex +var handleMap = make(map[C.paddle_master_client]*master.Client) +var curHandle C.paddle_master_client + +func add(c *master.Client) C.paddle_master_client { + mu.Lock() + defer mu.Unlock() + client := curHandle + curHandle++ + handleMap[client] = c + return client +} + +func get(client C.paddle_master_client) *master.Client { + mu.Lock() + defer mu.Unlock() + return handleMap[client] +} + +func remove(client C.paddle_master_client) *master.Client { + mu.Lock() + defer mu.Unlock() + h := handleMap[client] + delete(handleMap, client) + return h +} + +type addresser string + +func (a addresser) Address() string { + return string(a) +} + +//export paddle_new_master_client +func paddle_new_master_client(addr *C.char, bufSize int) C.paddle_master_client { + a := C.GoString(addr) + c := master.NewClient(addresser(a), bufSize) + return add(c) +} + +//export paddle_release_master_client +func paddle_release_master_client(client C.paddle_master_client) { + remove(client) +} + +//export paddle_set_dataset +func paddle_set_dataset(client C.paddle_master_client, path **C.char, size C.int) C.int { + c := get(client) + var paths []string + for i := 0; i < int(size); i++ { + ptr := (**C.char)(unsafe.Pointer(uintptr(unsafe.Pointer(path)) + uintptr(i)*unsafe.Sizeof(*path))) + str := C.GoString(*ptr) + paths = append(paths, str) + } + err := c.SetDataset(paths) + if err != nil { + log.Errorln(err) + return C.PADDLE_MASTER_ERROR + } + + return C.PADDLE_MASTER_OK +} + +//export paddle_next_record +func paddle_next_record(client C.paddle_master_client, record **C.uchar) C.int { + c := get(client) + r := c.NextRecord() + if len(r) == 0 { + *record = (*C.uchar)(nullPtr) + return 0 + } + + size := C.size_t(len(r)) + *record = (*C.uchar)(C.malloc(size)) + C.memcpy(unsafe.Pointer(*record), unsafe.Pointer(&r[0]), size) + return C.int(size) +} + +//export mem_free +func mem_free(p unsafe.Pointer) { + // "free" may be a better name for this function, but doing so + // will cause calling any function of this library from Python + // ctypes hanging. + C.free(p) +} + +func main() {} diff --git a/go/master/client.go b/go/master/client.go new file mode 100644 index 0000000000000000000000000000000000000000..8451820c1963dd5a4eff0c3ab7763eb6a8e05ba4 --- /dev/null +++ b/go/master/client.go @@ -0,0 +1,137 @@ +package master + +import ( + "os" + "time" + + "github.com/PaddlePaddle/Paddle/go/connection" + "github.com/PaddlePaddle/recordio" + log "github.com/sirupsen/logrus" +) + +// Addresser provide the address of the master server. +type Addresser interface { + Address() string +} + +// Client is the client of the master server. +type Client struct { + conn *connection.Conn + ch chan []byte +} + +// NewClient creates a new Client. +// +// bufSize is the record buffer size. NextRecord will read from this +// buffer. +func NewClient(addr Addresser, bufSize int) *Client { + c := &Client{} + c.conn = connection.New() + c.ch = make(chan []byte, bufSize) + go c.monitorMaster(addr) + go c.getRecords() + return c +} + +func (c *Client) getRecords() { + for { + t, err := c.getTask() + if err != nil { + // TODO(helin): wait before move on with next + // getTask call. + log.Errorln(err) + continue + } + + for _, chunk := range t.Chunks { + f, err := os.Open(chunk.Path) + if err != nil { + log.Errorln(err) + continue + } + + s := recordio.NewRangeScanner(f, &chunk.Index, -1, -1) + for s.Scan() { + c.ch <- s.Record() + } + + if s.Err() != nil { + log.Errorln(err, chunk.Path) + } + + err = f.Close() + if err != nil { + log.Errorln(err) + } + } + + // We treat a task as finished whenever the last data + // instance of the task is read. This is not exactly + // correct, but a reasonable approximation. + c.taskFinished(t.ID) + } +} + +func (c *Client) monitorMaster(addr Addresser) { + lastMaster := "" + monitor := func() { + // get the lastest address of the master server, + // connect to the new address once address changed. + curMaster := addr.Address() + if curMaster != lastMaster { + if curMaster == "" { + err := c.conn.Close() + if err != nil { + log.Errorln(err) + } + } else { + err := c.conn.Connect(curMaster) + if err != nil { + log.Errorln(err) + + // connect to addr failed, set + // to last known addr in order + // to retry next time. + curMaster = lastMaster + } + + } + } + + lastMaster = curMaster + } + + monitor() + ticker := time.NewTicker(10 * time.Second) + for _ = range ticker.C { + monitor() + } +} + +// SetDataset set dataset for the master server to dispatch. +// +// SetDataset can be call multiple times from different nodes. But +// only the first call will be honored. +func (c *Client) SetDataset(globPaths []string) error { + return c.conn.Call("Service.SetDataset", globPaths, nil) +} + +// getTask gets a new task from the master server. +func (c *Client) getTask() (Task, error) { + var t Task + err := c.conn.Call("Service.GetTask", 0, &t) + return t, err +} + +// TaskFinished tells the master server a task is finished. +func (c *Client) taskFinished(taskID int) error { + return c.conn.Call("Service.TaskFinished", taskID, nil) +} + +// NextRecord returns next record in the dataset. +// +// NextRecord will block until the next record is available. It is +// thread-safe. +func (c *Client) NextRecord() []byte { + return <-c.ch +} diff --git a/go/master/client_internal_test.go b/go/master/client_internal_test.go new file mode 100644 index 0000000000000000000000000000000000000000..00fcca0e2cf44d0f4855fd366a8f80895abf8865 --- /dev/null +++ b/go/master/client_internal_test.go @@ -0,0 +1,121 @@ +package master + +import ( + "fmt" + "net" + "net/http" + "net/rpc" + "os" + "strconv" + "strings" + "testing" + "time" + + log "github.com/sirupsen/logrus" + + "github.com/PaddlePaddle/Paddle/go/connection" + "github.com/PaddlePaddle/recordio" +) + +const ( + totalTask = 20 + chunkPerTask = 10 +) + +func init() { + log.SetLevel(log.ErrorLevel) +} + +type TestAddresser string + +func (a TestAddresser) Address() string { + return string(a) +} + +func TestGetFinishTask(t *testing.T) { + const path = "/tmp/master_client_test_0" + + l, err := net.Listen("tcp", ":0") + if err != nil { + panic(err) + } + + ss := strings.Split(l.Addr().String(), ":") + p, err := strconv.Atoi(ss[len(ss)-1]) + if err != nil { + panic(err) + } + + go func(l net.Listener) { + s := NewService(chunkPerTask, time.Second, 1) + server := rpc.NewServer() + err := server.Register(s) + if err != nil { + panic(err) + } + + mux := http.NewServeMux() + mux.Handle(rpc.DefaultRPCPath, server) + err = http.Serve(l, mux) + if err != nil { + panic(err) + } + }(l) + + f, err := os.Create(path) + if err != nil { + panic(err) + } + + for i := 0; i < totalTask*chunkPerTask; i++ { + w := recordio.NewWriter(f, -1, -1) + w.Write(nil) + // call Close to force RecordIO writing a chunk. + w.Close() + } + f.Close() + + // Manually intialize client to avoid calling c.getRecords() + c := &Client{} + c.conn = connection.New() + go c.monitorMaster(TestAddresser(fmt.Sprintf(":%d", p))) + c.SetDataset([]string{path}) + + checkOnePass := func(i int) { + var tasks []Task + for idx := 0; idx < totalTask; idx++ { + task, err := c.getTask() + if err != nil { + t.Fatalf("Error: %v, pass: %d\n", err, i) + } + tasks = append(tasks, task) + } + + _, err = c.getTask() + if err == nil { + t.Fatalf("Should get error, pass: %d\n", i) + } + + err = c.taskFinished(tasks[0].ID) + if err != nil { + t.Fatalf("Error: %v, pass: %d\n", err, i) + } + tasks = tasks[1:] + task, err := c.getTask() + if err != nil { + t.Fatal(err) + } + tasks = append(tasks, task) + + for _, task := range tasks { + err = c.taskFinished(task.ID) + if err != nil { + t.Fatalf("Error: %v, pass: %d\n", err, i) + } + } + } + + for i := 0; i < 10; i++ { + checkOnePass(i) + } +} diff --git a/go/master/client_test.go b/go/master/client_test.go new file mode 100644 index 0000000000000000000000000000000000000000..2b3f873ecf3a650cd91d1d9c20b414b05bbb0cd6 --- /dev/null +++ b/go/master/client_test.go @@ -0,0 +1,79 @@ +package master_test + +import ( + "fmt" + "net" + "net/http" + "net/rpc" + "os" + "strconv" + "strings" + "testing" + "time" + + "github.com/PaddlePaddle/Paddle/go/master" + "github.com/PaddlePaddle/recordio" +) + +func TestNextRecord(t *testing.T) { + const ( + path = "/tmp/master_client_TestFull" + total = 50 + ) + + l, err := net.Listen("tcp", ":0") + if err != nil { + panic(err) + } + + ss := strings.Split(l.Addr().String(), ":") + p, err := strconv.Atoi(ss[len(ss)-1]) + if err != nil { + panic(err) + } + + go func(l net.Listener) { + s := master.NewService(10, time.Second, 1) + server := rpc.NewServer() + err := server.Register(s) + if err != nil { + panic(err) + } + + mux := http.NewServeMux() + mux.Handle(rpc.DefaultRPCPath, server) + err = http.Serve(l, mux) + if err != nil { + panic(err) + } + }(l) + + f, err := os.Create(path) + if err != nil { + panic(err) + } + + w := recordio.NewWriter(f, -1, -1) + for i := 0; i < total; i++ { + w.Write([]byte{byte(i)}) + } + w.Close() + f.Close() + + c := master.NewClient(master.TestAddresser(fmt.Sprintf(":%d", p)), 10) + c.SetDataset([]string{path}) + + for pass := 0; pass < 50; pass++ { + received := make(map[byte]bool) + for i := 0; i < total; i++ { + r := c.NextRecord() + if len(r) != 1 { + t.Fatal("Length should be 1.", r) + } + if received[r[0]] { + t.Fatal("Received duplicate.", received, r) + } + received[r[0]] = true + } + } +} diff --git a/go/master/service.go b/go/master/service.go index ab17a62f3854c1e32d731037fcc9857260d03781..55e1e2d1a4a5cd6f5d5797b247e2ebe433607576 100644 --- a/go/master/service.go +++ b/go/master/service.go @@ -2,29 +2,25 @@ package master import ( "errors" - "log" + "os" + "path/filepath" "sync" "time" - "github.com/PaddlePaddle/recordio" -) + log "github.com/sirupsen/logrus" -const ( - targetTaskCount = 300 -) - -// errors -var ( - ErrNoMoreTask = errors.New("no more task for current pass") - ErrPendingTaskNotFound = errors.New("pending task not found") + "github.com/PaddlePaddle/recordio" ) // Service is the master server service. type Service struct { - timeoutDur time.Duration - timeoutMax int + chunksPerTask int + timeoutDur time.Duration + timeoutMax int + ready chan struct{} mu sync.Mutex + initDone bool taskQueues taskQueues } @@ -55,7 +51,6 @@ func partition(chunks []Chunk, chunksPerTask int) []taskEntry { if len(cur.Task.Chunks) > 0 { cur.Task.ID = id - id++ result = append(result, cur) } @@ -63,21 +58,21 @@ func partition(chunks []Chunk, chunksPerTask int) []taskEntry { } // NewService creates a new service. -func NewService(chunks []Chunk, chunksPerTask int, timeoutDur time.Duration, timeoutMax int) *Service { +func NewService(chunksPerTask int, timeoutDur time.Duration, timeoutMax int) *Service { s := &Service{} + s.chunksPerTask = chunksPerTask s.timeoutDur = timeoutDur s.timeoutMax = timeoutMax s.taskQueues = taskQueues{} s.taskQueues.Pending = make(map[int]taskEntry) - s.taskQueues.Todo = partition(chunks, chunksPerTask) + s.ready = make(chan struct{}) return s } // Chunk is a chunk of data consisted of several data instances. type Chunk struct { - Idx int // index of the chunk within the file Path string - Index recordio.Index // block index + Index recordio.Index // chunk index } // Task is the basic unit of data instances assigned to trainers. @@ -105,74 +100,215 @@ func (s *Service) snapshot() error { return nil } -// GetTask gets a new task from the service. -func (s *Service) GetTask(dummy int, task *Task) error { +func readChunks(globPaths []string) ([]Chunk, error) { + var chunks []Chunk + var paths []string + + for _, s := range globPaths { + match, err := filepath.Glob(s) + if err != nil { + return nil, err + } + paths = append(paths, match...) + } + + if len(paths) == 0 { + return nil, errors.New("no valid dataset specified") + } + + for _, path := range paths { + f, err := os.Open(path) + if err != nil { + return nil, err + } + + index, err := recordio.LoadIndex(f) + if err != nil { + return nil, err + } + err = f.Close() + if err != nil { + return nil, err + } + + count := index.NumChunks() + for i := 0; i < count; i++ { + chunk := Chunk{ + Path: path, + Index: *index.ChunkIndex(i), + } + chunks = append(chunks, chunk) + } + } + + return chunks, nil +} + +// SetDataset sets dataset to dispatch for the master server. +// +// SetDataset can be call multiple times. But only the first call will +// be honored. +func (s *Service) SetDataset(globPaths []string, dummy *int) error { + if len(globPaths) == 0 { + return errors.New("no dataset specified") + } + s.mu.Lock() defer s.mu.Unlock() + if s.initDone { + // Already initialized. All trainer will call + // SetDataset, but we only handle the first one. Treat + // other calls as successful but do nothing. + return nil + } - if len(s.taskQueues.Todo) == 0 { - return ErrNoMoreTask + chunks, err := readChunks(globPaths) + if err != nil { + return err } - t := s.taskQueues.Todo[0] - t.Epoch++ - s.taskQueues.Todo = s.taskQueues.Todo[1:] - s.taskQueues.Pending[t.Task.ID] = t - err := s.snapshot() + s.taskQueues.Todo = partition(chunks, s.chunksPerTask) + + err = s.snapshot() if err != nil { + log.Errorln(err) return err } - time.AfterFunc(s.timeoutDur, func(taskID int, epoch int) func() { - return func() { - s.mu.Lock() - defer s.mu.Unlock() + close(s.ready) + s.initDone = true + return nil +} - t, ok := s.taskQueues.Pending[taskID] - if !ok { - return - } +func (s *Service) checkTimeoutFunc(taskID int, epoch int) func() { + return func() { + s.mu.Lock() + defer s.mu.Unlock() + + t, ok := s.taskQueues.Pending[taskID] + if !ok { + return + } + + if t.Epoch != epoch { + // new epoch, task launched after the + // schedule of this timeout check. + return + } - if t.Epoch != epoch { - // new epoch, task launched after the - // schedule of this timeout check. - return + defer func() { + err := s.snapshot() + if err != nil { + log.Errorln(err) } + }() + + delete(s.taskQueues.Pending, t.Task.ID) + + t.NumTimeout++ + if t.NumTimeout > s.timeoutMax { + log.Warningf("Task %v timed out %d times, discard.\n", t.Task, t.NumTimeout) + s.taskQueues.Failed = append(s.taskQueues.Failed, t.Task) + return + } + + log.Warningf("Task %v timed out %d times, retry.\n", t.Task, t.NumTimeout) + s.taskQueues.Todo = append(s.taskQueues.Todo, t) + } +} + +// must be called with lock held. +func (s *Service) logFields() log.Fields { + return log.Fields{ + "todoLen": len(s.taskQueues.Todo), + "pendingLen": len(s.taskQueues.Pending), + "doneLen": len(s.taskQueues.Done), + "failedLen": len(s.taskQueues.Failed), + } +} - defer func() { - err := s.snapshot() - if err != nil { - log.Println(err) - } - }() +// GetTask gets a new task from the service. +func (s *Service) GetTask(dummy int, task *Task) error { + select { + case <-s.ready: + } - delete(s.taskQueues.Pending, t.Task.ID) + s.mu.Lock() + defer s.mu.Unlock() - t.NumTimeout++ - if t.NumTimeout > s.timeoutMax { - s.taskQueues.Failed = append(s.taskQueues.Failed, t.Task) - return + if len(s.taskQueues.Todo) == 0 { + if len(s.taskQueues.Done) == 0 { + if len(s.taskQueues.Pending) == 0 { + err := errors.New("all task failed") + log.WithFields(s.logFields()).Warningln("All tasks failed.") + return err } - s.taskQueues.Todo = append(s.taskQueues.Todo, t) + // TODO(helin): client need to retry in this + // error case. Gotcha: RPC client can't + // compare returned error with predefined + // errors like io.EOF, because the error + // instance deserialized from RPC is a + // different instance than the error defined + // in package. So we need to figure out a way + // for client to check this error correctly. + err := errors.New("no more available task") + log.WithFields(s.logFields()).Warningln("No more available task.") + return err } - }(t.Task.ID, t.Epoch)) + s.taskQueues.Todo = s.taskQueues.Done + s.taskQueues.Done = nil + log.WithFields(s.logFields()).Infoln("No more todo task, but trainer is requesting task to do. Move all done task to todo.") + } + + t := s.taskQueues.Todo[0] + t.Epoch++ + s.taskQueues.Todo = s.taskQueues.Todo[1:] + s.taskQueues.Pending[t.Task.ID] = t + err := s.snapshot() + if err != nil { + return err + } + + *task = t.Task + log.WithFields(s.logFields()).Infof("Task #%d dispatched.", task.ID) + + time.AfterFunc(s.timeoutDur, s.checkTimeoutFunc(t.Task.ID, t.Epoch)) return nil } // TaskFinished tell the service that a task is finished. func (s *Service) TaskFinished(taskID int, dummy *int) error { + select { + case <-s.ready: + } + s.mu.Lock() defer s.mu.Unlock() t, ok := s.taskQueues.Pending[taskID] if !ok { - return ErrPendingTaskNotFound + err := errors.New("pending task not found") + log.WithFields(s.logFields()).Warningln("Pending task #%d not found.", taskID) + return err } // task finished, reset timeout t.NumTimeout = 0 s.taskQueues.Done = append(s.taskQueues.Done, t) delete(s.taskQueues.Pending, taskID) - return s.snapshot() + + log.WithFields(s.logFields()).Infof("Task #%d finished.", taskID) + + if len(s.taskQueues.Pending) == 0 && len(s.taskQueues.Todo) == 0 { + log.WithFields(s.logFields()).Infoln("No more todo and pending task, start a new pass.") + s.taskQueues.Todo = append(s.taskQueues.Todo, s.taskQueues.Done...) + s.taskQueues.Done = nil + } + + err := s.snapshot() + if err != nil { + log.Errorln(err) + } + return err } diff --git a/go/pserver/cclient/CMakeLists.txt b/go/pserver/cclient/CMakeLists.txt index c017d7465611373309c6c60141fed864f5ccfb5d..7967af51ee9a94c9e40bf6403fe819ff462d9219 100644 --- a/go/pserver/cclient/CMakeLists.txt +++ b/go/pserver/cclient/CMakeLists.txt @@ -9,5 +9,15 @@ project(cxx_go C Go) include(golang) include(flags) -go_library(client STATIC) +go_library(paddle_pserver_cclient STATIC) + +if(PROJ_ROOT) + add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/trainer/libpaddle_pserver_cclient.a + COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/libpaddle_pserver_cclient.h ${PROJ_ROOT}/paddle/trainer/ + COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/libpaddle_pserver_cclient.a ${PROJ_ROOT}/paddle/trainer/ + WORKING_DIRECTORY ${PROJ_ROOT}/paddle + DEPENDS paddle_pserver_cclient) + add_custom_target(paddle_pserver_cclient_lib ALL DEPENDS ${PROJ_ROOT}/paddle/trainer/libpaddle_pserver_cclient.a) +endif(PROJ_ROOT) + add_subdirectory(test) diff --git a/go/pserver/cclient/cclient.go b/go/pserver/cclient/cclient.go index 0b4aa79806b72f4608230d2216d1741389913d95..92a41b7f5434842c6318704dd85adf9e51c19944 100644 --- a/go/pserver/cclient/cclient.go +++ b/go/pserver/cclient/cclient.go @@ -1,7 +1,6 @@ package main /* -#include #include typedef enum { PADDLE_ELEMENT_TYPE_INT32 = 0, @@ -19,39 +18,27 @@ typedef struct { int content_len; } paddle_parameter, paddle_gradient; -static inline void paddle_release_param(paddle_parameter* param) { - if (param != NULL) { - if (param->name != NULL) { - free(param->name); - } - - if (param->content != NULL) { - free(param->content); - } - - free(param); - } -} - -typedef int client; +typedef int paddle_pserver_client; +#define PSERVER_ERROR -1 +#define PSERVER_OK 0 */ import "C" import ( - "log" "strings" "sync" "unsafe" "github.com/PaddlePaddle/Paddle/go/pserver" + log "github.com/sirupsen/logrus" ) var nullPtr = unsafe.Pointer(uintptr(0)) var mu sync.Mutex -var handleMap = make(map[C.client]*pserver.Client) -var curHandle C.client +var handleMap = make(map[C.paddle_pserver_client]*pserver.Client) +var curHandle C.paddle_pserver_client -func add(c *pserver.Client) C.client { +func add(c *pserver.Client) C.paddle_pserver_client { mu.Lock() defer mu.Unlock() client := curHandle @@ -60,13 +47,13 @@ func add(c *pserver.Client) C.client { return client } -func get(client C.client) *pserver.Client { +func get(client C.paddle_pserver_client) *pserver.Client { mu.Lock() defer mu.Unlock() return handleMap[client] } -func remove(client C.client) *pserver.Client { +func remove(client C.paddle_pserver_client) *pserver.Client { mu.Lock() defer mu.Unlock() h := handleMap[client] @@ -100,7 +87,7 @@ func (l lister) List() []pserver.Server { } //export paddle_new_pserver_client -func paddle_new_pserver_client(addrs *C.char, selected int) C.client { +func paddle_new_pserver_client(addrs *C.char, selected int) C.paddle_pserver_client { a := C.GoString(addrs) as := strings.Split(a, ",") servers := make([]pserver.Server, len(as)) @@ -113,27 +100,27 @@ func paddle_new_pserver_client(addrs *C.char, selected int) C.client { } //export paddle_new_etcd_pserver_client -func paddle_new_etcd_pserver_client(etcd_addr *C.char) C.client { +func paddle_new_etcd_pserver_client(etcd_addr *C.char) C.paddle_pserver_client { // TODO(helin): fault tolerant pserver client using etcd. panic("not implemented.") } //export paddle_pserver_client_release -func paddle_pserver_client_release(client C.client) { +func paddle_pserver_client_release(client C.paddle_pserver_client) { remove(client) } //export paddle_begin_init_params -func paddle_begin_init_params(client C.client) C.int { +func paddle_begin_init_params(client C.paddle_pserver_client) C.int { c := get(client) if selected := c.BeginInitParams(); selected { return 1 } - return 0 + return C.PSERVER_OK } //export paddle_init_param -func paddle_init_param(client C.client, param C.paddle_parameter, param_config unsafe.Pointer, config_len C.int) C.int { +func paddle_init_param(client C.paddle_pserver_client, param C.paddle_parameter, param_config unsafe.Pointer, config_len C.int) C.int { et := pserver.ElementType(param.element_type) name := C.GoString(param.name) content := cArrayToSlice(unsafe.Pointer(param.content), int(param.content_len)) @@ -143,31 +130,41 @@ func paddle_init_param(client C.client, param C.paddle_parameter, param_config u } c := get(client) err := c.InitParam(pc) + if err != nil { - log.Println(err) - return -1 + if err.Error() == pserver.AlreadyInitialized { + log.Warningf("parameter %s already initialized, treat paddle_init_param as sucessful.\n", name) + return C.PSERVER_OK + } + log.Errorln(err) + return C.PSERVER_ERROR } - return 0 + return C.PSERVER_OK } //export paddle_finish_init_params -func paddle_finish_init_params(client C.client) C.int { +func paddle_finish_init_params(client C.paddle_pserver_client) C.int { c := get(client) err := c.FinishInitParams() if err != nil { - log.Println(err) - return -1 + if err.Error() == pserver.AlreadyInitialized { + log.Warningln("parameters already initialized, treat paddle_finish_init_params as sucessful.") + return C.PSERVER_OK + } + + log.Errorln(err) + return C.PSERVER_ERROR } - return 0 + return C.PSERVER_OK } //export paddle_send_grads -func paddle_send_grads(client C.client, grads *C.paddle_gradient, total C.int) C.int { +func paddle_send_grads(client C.paddle_pserver_client, grads **C.paddle_gradient, total C.int) C.int { var gs []pserver.Gradient for i := 0; i < int(total); i++ { - grad := (*C.paddle_gradient)(unsafe.Pointer((uintptr(unsafe.Pointer(grads)) + uintptr(i)*unsafe.Sizeof(*grads)))) + grad := *(**C.paddle_gradient)(unsafe.Pointer((uintptr(unsafe.Pointer(grads)) + uintptr(i)*unsafe.Sizeof(*grads)))) et := pserver.ElementType(grad.element_type) name := C.GoString(grad.name) content := cArrayToSlice(unsafe.Pointer(grad.content), int(grad.content_len)) @@ -177,84 +174,82 @@ func paddle_send_grads(client C.client, grads *C.paddle_gradient, total C.int) C c := get(client) err := c.SendGrads(gs) if err != nil { - log.Println(err) - return -1 + log.Errorln(err) + return C.PSERVER_ERROR } - return 0 + return C.PSERVER_OK } //export paddle_get_params -func paddle_get_params(client C.client, names **C.char, dst **C.paddle_parameter, total C.int) C.int { +func paddle_get_params(client C.paddle_pserver_client, dst **C.paddle_parameter, total C.int) C.int { var ns []string for i := 0; i < int(total); i++ { - name := *(**C.char)(unsafe.Pointer((uintptr(unsafe.Pointer(names)) + uintptr(i)*unsafe.Sizeof(*names)))) - ns = append(ns, C.GoString(name)) + param := *(**C.paddle_parameter)(unsafe.Pointer((uintptr(unsafe.Pointer(dst)) + uintptr(i)*unsafe.Sizeof(*dst)))) + ns = append(ns, C.GoString(param.name)) } c := get(client) ps, err := c.GetParams(ns) if err != nil { - log.Println(err) - return -1 + log.Errorln(err) + return C.PSERVER_ERROR } - for i := 0; i < int(total); i++ { - if i >= len(ps) { - break + if len(ps) != len(ns) { + pn := make([]string, len(ps)) + for i, p := range ps { + pn[i] = p.Name } + log.Errorf("pserver returned wrong number of parameters. Requested: %s, returned: %s.\n", strings.Join(pn, ", "), strings.Join(ns, ", ")) + return C.PSERVER_ERROR + } + + for i := range ps { + if ns[i] != ps[i].Name { + pn := make([]string, len(ps)) + for i, p := range ps { + pn[i] = p.Name + } + log.Errorf("pserver returned wrong parameters, or not in requested order. Requested: %s, returned: %s.\n", strings.Join(pn, ", "), strings.Join(ns, ", ")) + return C.PSERVER_ERROR + } + } + for i := 0; i < int(total); i++ { p := ps[i] param := *(**C.paddle_parameter)(unsafe.Pointer((uintptr(unsafe.Pointer(dst)) + uintptr(i)*unsafe.Sizeof(*dst)))) - nameReady := false - contentAllocated := false if unsafe.Pointer(param) == nullPtr { - param = (*C.paddle_parameter)(C.calloc(1, C.size_t(unsafe.Sizeof(*param)))) - } else { - if unsafe.Pointer(param.name) != nullPtr { - if n := C.GoString(param.name); n != p.Name { - log.Println("Warning: the pre-allocated parameter name does not match the parameter name, it will be freed.", n, p.Name) - C.free(unsafe.Pointer(param.name)) - } else { - nameReady = true - } - } + log.Errorln("must pre-allocate parameter.") + return C.PSERVER_ERROR + } - if unsafe.Pointer(param.content) != nullPtr { - if int(param.content_len) == len(p.Content) { - contentAllocated = true - } else { - log.Println("Warning: the pre-allocated content len does not match parameter content len, the pre-allocated content will be freed.", param.content_len, len(p.Content)) - C.free(unsafe.Pointer(param.content)) - } + if unsafe.Pointer(param.content) != nullPtr { + if int(param.content_len) != len(p.Content) { + log.Errorf("the pre-allocated content len does not match parameter content len. Pre-allocated len: %d, returned len: %d", param.content_len, len(p.Content)) + return C.PSERVER_ERROR } } - if !nameReady { - param.name = C.CString(p.Name) - } - if !contentAllocated { - param.content = (*C.uchar)(C.malloc(C.size_t(len(p.Content)))) - } C.memcpy(unsafe.Pointer(param.content), unsafe.Pointer(&p.Content[0]), C.size_t(len(p.Content))) param.content_len = C.int(len(p.Content)) param.element_type = C.paddle_element_type(p.ElementType) } - return 0 + return C.PSERVER_OK } //export paddle_save_model -func paddle_save_model(client C.client, path *C.char) C.int { +func paddle_save_model(client C.paddle_pserver_client, path *C.char) C.int { p := C.GoString(path) c := get(client) err := c.Save(p) if err != nil { - log.Println(err) - return -1 + log.Errorln(err) + return C.PSERVER_ERROR } - return 0 + return C.PSERVER_OK } func main() {} // Required but ignored diff --git a/go/pserver/cclient/test/CMakeLists.txt b/go/pserver/cclient/test/CMakeLists.txt index 16f84648c1de3a8fdb4595c00bdb7608a152ded2..1a3dd7e5e9e0ff3273fc2be67c48461797b4a6b3 100644 --- a/go/pserver/cclient/test/CMakeLists.txt +++ b/go/pserver/cclient/test/CMakeLists.txt @@ -1,11 +1,22 @@ cmake_minimum_required(VERSION 3.0) -include_directories(${CMAKE_BINARY_DIR}) - add_executable(main main.c) -add_dependencies(main client) +add_dependencies(main paddle_pserver_cclient) +add_executable(test_cclient test_cclient.c) +add_dependencies(test_cclient paddle_pserver_cclient) if(APPLE) set(CMAKE_EXE_LINKER_FLAGS "-framework CoreFoundation -framework Security") +else() + set(CMAKE_EXE_LINKER_FLAGS "-pthread") endif() -target_link_libraries(main ${CMAKE_BINARY_DIR}/libclient.a) + +if(PROJ_ROOT) + include_directories(${CMAKE_CURRENT_BINARY_DIR}/..) + target_link_libraries(main ${CMAKE_CURRENT_BINARY_DIR}/../libpaddle_pserver_cclient.a pthread) + target_link_libraries(test_cclient ${CMAKE_CURRENT_BINARY_DIR}/../libpaddle_pserver_cclient.a pthread) +else(PROJ_ROOT) + include_directories(${CMAKE_BINARY_DIR}) + target_link_libraries(main ${CMAKE_BINARY_DIR}/libpaddle_pserver_cclient.a pthread) + target_link_libraries(test_cclient ${CMAKE_BINARY_DIR}/libpaddle_pserver_cclient.a pthread) +endif(PROJ_ROOT) diff --git a/go/pserver/cclient/test/main.c b/go/pserver/cclient/test/main.c index f75a2110b947520dfec1265e56eaf2ba7ac3b51b..03f749d4e46c4890c6dcfa25af572dab4a053c86 100644 --- a/go/pserver/cclient/test/main.c +++ b/go/pserver/cclient/test/main.c @@ -1,68 +1,91 @@ #include +#include -#include "libclient.h" +#include "libpaddle_pserver_cclient.h" -void fail() { - // TODO(helin): fix: gtest using cmake is not working, using this - // hacky way for now. - printf("test failed.\n"); +// TODO(helin): Fix: gtest using cmake is not working, using this +// hacky way for now. +#define fail() \ + fprintf(stderr, "info: %s:%d: ", __FILE__, __LINE__); \ exit(-1); + +void sendGrads(paddle_pserver_client c) { + unsigned char grad_a[2000] = {2}; + unsigned char grad_b[3000] = {3}; + paddle_gradient grad1 = { + "param_a", PADDLE_ELEMENT_TYPE_FLOAT32, grad_a, 2000}; + paddle_gradient grad2 = { + "param_b", PADDLE_ELEMENT_TYPE_FLOAT32, grad_b, 3000}; + paddle_gradient* grads[2] = {&grad1, &grad2}; + if (paddle_send_grads(c, grads, 2)) { + fail(); + } +} + +void getParams(paddle_pserver_client c) { + paddle_parameter param_a; + paddle_parameter param_b; + char name_a[] = "param_a"; + char name_b[] = "param_b"; + // Must pre-allocate the prameter content before calling paddle_get_params. + unsigned char content_a[2000] = {}; + unsigned char content_b[3000] = {}; + param_a.element_type = PADDLE_ELEMENT_TYPE_FLOAT32; + param_a.name = name_a; + param_a.content = content_a; + param_a.content_len = 2000; + param_b.element_type = PADDLE_ELEMENT_TYPE_FLOAT32; + param_b.name = name_b; + param_b.content = content_b; + param_b.content_len = 3000; + + paddle_parameter* params[2] = {¶m_a, ¶m_b}; + if (paddle_get_params(c, params, 2)) { + fail(); + } } int main() { char addr[] = "localhost:3000"; - client c = paddle_new_pserver_client(addr, 1); + paddle_pserver_client c = paddle_new_pserver_client(addr, 1); retry: if (paddle_begin_init_params(c)) { paddle_parameter param; char name_a[] = "param_a"; char name_b[] = "param_b"; - unsigned char content[] = {0x00, 0x11, 0x22}; + unsigned char content_a[2000] = {1}; + unsigned char content_b[3000] = {0}; param.element_type = PADDLE_ELEMENT_TYPE_FLOAT32; param.name = name_a; - param.content = content; - param.content_len = 3; - if (paddle_init_param(c, param, NULL, 0) != 0) { + param.content = content_a; + param.content_len = 2000; + int error = paddle_init_param(c, param, NULL, 0); + if (error != 0) { goto retry; } - param.element_type = PADDLE_ELEMENT_TYPE_INT32; + + param.element_type = PADDLE_ELEMENT_TYPE_FLOAT32; param.name = name_b; - param.content = content; - param.content_len = 3; - if (paddle_init_param(c, param, NULL, 0) != 0) { + param.content = content_b; + param.content_len = 3000; + error = paddle_init_param(c, param, NULL, 0); + if (error != 0) { goto retry; } - if (paddle_finish_init_params(c) != 0) { + + error = paddle_finish_init_params(c); + if (error != 0) { goto retry; } - } else { - fail(); - } - - unsigned char content[] = {0x00, 0x11, 0x22}; - paddle_gradient grads[2] = { - {"param_a", PADDLE_ELEMENT_TYPE_INT32, content, 3}, - {"param_b", PADDLE_ELEMENT_TYPE_FLOAT32, content, 3}}; - - if (!paddle_send_grads(c, grads, 2)) { - fail(); } - paddle_parameter* params[2] = {NULL, NULL}; - char* names[] = {"param_a", "param_b"}; - if (!paddle_get_params(c, names, params, 2)) { - fail(); + int i; + for (i = 0; i < 100; i++) { + sendGrads(c); + getParams(c); } - // get parameters again by reusing the allocated parameter buffers. - if (!paddle_get_params(c, names, params, 2)) { - fail(); - } - - paddle_release_param(params[0]); - paddle_release_param(params[1]); - - if (!paddle_save_model(c, "/tmp/")) { + if (paddle_save_model(c, "/tmp/")) { fail(); } diff --git a/go/pserver/cclient/test/test_cclient.c b/go/pserver/cclient/test/test_cclient.c new file mode 100644 index 0000000000000000000000000000000000000000..0f9c2ef80114d4c5cd887117952f5b7b5d9355f6 --- /dev/null +++ b/go/pserver/cclient/test/test_cclient.c @@ -0,0 +1,117 @@ +#include +#include + +#include "libpaddle_pserver_cclient.h" + +typedef float real; + +void fail() { + // TODO(helin): fix: gtest using cmake is not working, using this + // hacky way for now. + printf("test failed.\n"); + exit(-1); +} + +void print_parameter(paddle_gradient* param) { + if (param == NULL) { + printf("param is NULL!!\n"); + } else { + printf("==== parameter ====\n"); + printf("name: %s\n", param->name); + printf("content_len: %d\n", param->content_len); + printf("content_type: %d\n", param->element_type); + int i; + for (i = 0; i < param->content_len / (int)sizeof(real); ++i) { + printf("%f ", ((float*)param->content)[i]); + } + printf("\n\n"); + } +} + +int main() { + char addr[] = "localhost:3000"; + paddle_pserver_client c = paddle_new_pserver_client(addr, 1); + + char* names[] = {"param_a", "param_b"}; + +retry: + printf("init parameter to pserver:\n"); + + real param_content1[] = {0.1, 0.2, 0.3}; + real param_content2[] = {0.4, 0.5, 0.6}; + paddle_parameter** params = + (paddle_parameter**)malloc(sizeof(paddle_parameter*) * 2); + params[0] = (paddle_parameter*)malloc(sizeof(paddle_parameter)); + params[0]->name = names[0]; + params[0]->content = (unsigned char*)param_content1; + params[0]->content_len = 3 * sizeof(real); + params[0]->element_type = PADDLE_ELEMENT_TYPE_FLOAT32; + + params[1] = (paddle_parameter*)malloc(sizeof(paddle_parameter)); + params[1]->name = names[1]; + params[1]->content = (unsigned char*)param_content2; + params[1]->content_len = 3 * sizeof(real); + params[1]->element_type = PADDLE_ELEMENT_TYPE_INT32; + + if (paddle_begin_init_params(c)) { + if (paddle_init_param(c, *params[0], NULL, 0) != 0) { + goto retry; + } + if (paddle_init_param(c, *params[1], NULL, 0) != 0) { + goto retry; + } + if (paddle_finish_init_params(c) != 0) { + goto retry; + } + } else { + fail(); + } + + printf("get inited parameters from pserver:\n"); + // get parameters again by reusing the allocated parameter buffers. + if (paddle_get_params(c, params, 2) != 0) { + fail(); + } + print_parameter(params[0]); + print_parameter(params[1]); + + printf("send gradient to pserver:\n"); + real gradient_content1[] = {0.01, 0.02, 0.03}; + real gradinet_content2[] = {0.04, 0.05, 0.06}; + + paddle_gradient** grads = + (paddle_gradient**)malloc(sizeof(paddle_gradient*) * 2); + grads[0] = (paddle_gradient*)malloc(sizeof(paddle_gradient)); + grads[0]->name = names[0]; + grads[0]->content = (unsigned char*)gradient_content1; + grads[0]->content_len = 3 * sizeof(real); + grads[0]->element_type = PADDLE_ELEMENT_TYPE_FLOAT32; + + grads[1] = (paddle_gradient*)malloc(sizeof(paddle_gradient)); + grads[1]->name = names[1]; + grads[1]->content = (unsigned char*)gradinet_content2; + grads[1]->content_len = 3 * sizeof(real); + grads[1]->element_type = PADDLE_ELEMENT_TYPE_INT32; + + printf("print gradient sent to pserver:\n"); + print_parameter(grads[0]); + print_parameter(grads[1]); + + if (paddle_send_grads(c, grads, 2) != 0) { + fail(); + } + + printf("get updated parameters from pserver:\n"); + // get parameters again by reusing the allocated parameter buffers. + if (paddle_get_params(c, params, 2) != 0) { + fail(); + } + print_parameter(params[0]); + print_parameter(params[1]); + + if (paddle_save_model(c, "/tmp/") != 0) { + fail(); + } + + return 0; +} diff --git a/demo/mnist/api_train_v2.py b/go/pserver/cclient/test/test_mnist.py similarity index 92% rename from demo/mnist/api_train_v2.py rename to go/pserver/cclient/test/test_mnist.py index 6b95a88042a13a280bcb80f753b3887fcef37296..c3a3af55e2812fa0c965d22ddaba198f43f3c4ad 100644 --- a/demo/mnist/api_train_v2.py +++ b/go/pserver/cclient/test/test_mnist.py @@ -71,12 +71,7 @@ def main(): #predict = convolutional_neural_network(images) cost = paddle.layer.classification_cost(input=predict, label=label) - - try: - with gzip.open('params.tar.gz', 'r') as f: - parameters = paddle.parameters.Parameters.from_tar(f) - except IOError: - parameters = paddle.parameters.create(cost) + parameters = paddle.parameters.create(cost) optimizer = paddle.optimizer.Momentum( learning_rate=0.1 / 128.0, @@ -85,7 +80,9 @@ def main(): trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, - update_equation=optimizer) + update_equation=optimizer, + is_local=False, + pserver_spec="localhost:3000") lists = [] @@ -95,9 +92,6 @@ def main(): print "Pass %d, Batch %d, Cost %f, %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics) - with gzip.open('params.tar.gz', 'w') as f: - parameters.to_tar(f) - elif isinstance(event, paddle.event.EndPass): result = trainer.test(reader=paddle.batch( paddle.dataset.mnist.test(), batch_size=128)) diff --git a/demo/introduction/api_train_v2.py b/go/pserver/cclient/test/test_train.py similarity index 91% rename from demo/introduction/api_train_v2.py rename to go/pserver/cclient/test/test_train.py index 1ba971b3688ce3dec078998df2c0b183a4e449f8..3f8d5d793bdeb687c9d234005d9e2eae760cc3a7 100644 --- a/demo/introduction/api_train_v2.py +++ b/go/pserver/cclient/test/test_train.py @@ -24,7 +24,9 @@ def main(): trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, - update_equation=optimizer) + update_equation=optimizer, + is_local=False, + pserver_spec="localhost:3000") # event_handler to print training and testing info def event_handler(event): diff --git a/go/pserver/client.go b/go/pserver/client.go index f8bd0aa59f30ec7e2b2d318929af96135d3128ed..dda915977282d4880ddcc8c18ef6fd80ede9e01b 100644 --- a/go/pserver/client.go +++ b/go/pserver/client.go @@ -2,11 +2,11 @@ package pserver import ( "hash/fnv" - "log" "sort" "time" - "github.com/PaddlePaddle/Paddle/go/pserver/internal/connection" + "github.com/PaddlePaddle/Paddle/go/connection" + log "github.com/sirupsen/logrus" ) // TODO(helin): add RPC call retry logic @@ -47,7 +47,7 @@ func NewClient(l Lister, pserverNum int, sel Selector) *Client { // monitorPservers monitors pserver addresses, and updates connection // when the address changes. func (c *Client) monitorPservers(l Lister, pserverNum int) { - knownServers := make([]Server, pserverNum) + lastServers := make([]Server, pserverNum) ticker := time.NewTicker(10 * time.Second) monitor := func() { curServers := make([]Server, pserverNum) @@ -56,25 +56,37 @@ func (c *Client) monitorPservers(l Lister, pserverNum int) { curServers[l.Index] = l } - for i := range knownServers { - if knownServers[i].Addr != curServers[i].Addr { - err := c.pservers[i].Connect(curServers[i].Addr) - if err != nil { - log.Println(err) + for i := range lastServers { + if lastServers[i].Addr == curServers[i].Addr { + continue + } - // connect to addr failed, set - // to last known addr in order - // to retry next time. - curServers[i].Addr = knownServers[i].Addr + if curServers[i].Addr == "" { + err := c.pservers[i].Close() + if err != nil { + log.Errorln(err) } + + continue } + + err := c.pservers[i].Connect(curServers[i].Addr) + if err != nil { + log.Errorln(err) + + // connect to addr failed, set + // to last known addr in order + // to retry next time. + curServers[i].Addr = lastServers[i].Addr + } + } - knownServers = curServers + lastServers = curServers } monitor() - for _ = range ticker.C { + for range ticker.C { monitor() } } @@ -93,16 +105,14 @@ func (c *Client) BeginInitParams() bool { // InitParam initializes the parameter on parameter servers. func (c *Client) InitParam(paramWithConfigs ParameterWithConfig) error { - var dummy int - return c.pservers[c.partition(paramWithConfigs.Param.Name)].Call("Service.InitParam", paramWithConfigs, &dummy) + return c.pservers[c.partition(paramWithConfigs.Param.Name)].Call("Service.InitParam", paramWithConfigs, nil) } // FinishInitParams tells parameter servers client has sent all // parameters to parameter servers as initialization. func (c *Client) FinishInitParams() error { for _, p := range c.pservers { - var dummy int - err := p.Call("Service.FinishInitParams", dummy, &dummy) + err := p.Call("Service.FinishInitParams", 0, nil) if err != nil { return err } @@ -116,8 +126,7 @@ func (c *Client) SendGrads(grads []Gradient) error { errCh := make(chan error, len(grads)) for _, g := range grads { go func(g Gradient) { - var dummy int - err := c.pservers[c.partition(g.Name)].Call("Service.SendGrad", g, &dummy) + err := c.pservers[c.partition(g.Name)].Call("Service.SendGrad", g, nil) errCh <- err }(g) } @@ -196,8 +205,7 @@ func (c *Client) Save(path string) error { errCh := make(chan error, len(c.pservers)) for _, p := range c.pservers { - var dummy int - err := p.Call("Service.Save", path, &dummy) + err := p.Call("Service.Save", path, nil) errCh <- err } diff --git a/go/pserver/client_test.go b/go/pserver/client_test.go index a9a0948a51a31a1c7393f716e3dfc436dbf919af..d0371a26a13fac9daecacd0b6a271caa6d830651 100644 --- a/go/pserver/client_test.go +++ b/go/pserver/client_test.go @@ -117,7 +117,7 @@ func TestClientFull(t *testing.T) { for i := range params { if names[i] != params[i].Name { - t.Fatalf("order of returned parameter does not required: parameter name: %s, required name: %s", names[i], params[i]) + t.Fatalf("order of returned parameter does not required: parameter name: %s, required name: %s", names[i], params[i].Name) } } } diff --git a/go/pserver/optimizer.c b/go/pserver/optimizer.c index b8da3ec9592053e3efe00e69d73a8ae259a30a2f..f16ba2cbf8e168a434fdcdb4f1e0ba1e98d91c6b 100644 --- a/go/pserver/optimizer.c +++ b/go/pserver/optimizer.c @@ -32,7 +32,13 @@ int update_SGD(void* optimizer, const void* gradient, int num_bytes) { SGD_optimizer* o = (SGD_optimizer*)optimizer; - // TODO + float* parameter = (float*)buffer; + float* grad = (float*)gradient; + + int i; + for (i = 0; i < num_bytes / sizeof(float); ++i) { + parameter[i] -= o->learning_rate * grad[i]; + } return 0; } diff --git a/go/pserver/service.go b/go/pserver/service.go index d5787b9708bb15629a6e6290ffc97ee9885bc8b8..78a2bfaf6347019333bf1c7ee6cdc04d93ab1370 100644 --- a/go/pserver/service.go +++ b/go/pserver/service.go @@ -9,8 +9,10 @@ import ( // ElementType is the type of elements of a Parameter. type ElementType int -var ErrAlreadyInitialized = errors.New("pserver already initialized") -var ErrUninitialized = errors.New("pserver not fully initialized") +const ( + AlreadyInitialized = "pserver already initialized" + Uninitialized = "pserver not fully initialized" +) // Supported element types const ( @@ -49,7 +51,7 @@ type Service struct { // NewService creates a new service. func NewService() *Service { - s := &Service{opt: newOptimizer(sgd, 0.01)} + s := &Service{opt: newOptimizer(sgd, 0.005)} s.paramMap = make(map[string]Parameter) s.initialized = make(chan struct{}) return s @@ -59,7 +61,7 @@ func NewService() *Service { func (s *Service) InitParam(paramWithConfigs ParameterWithConfig, dummy *int) error { select { case <-s.initialized: - return ErrAlreadyInitialized + return errors.New(AlreadyInitialized) default: } @@ -80,7 +82,7 @@ func (s *Service) InitParam(paramWithConfigs ParameterWithConfig, dummy *int) er func (s *Service) FinishInitParams(dummy0 int, dummy1 *int) error { select { case <-s.initialized: - return ErrAlreadyInitialized + return errors.New(AlreadyInitialized) default: } @@ -94,7 +96,7 @@ func (s *Service) SendGrad(g Gradient, dummy *int) error { select { case <-s.initialized: default: - return ErrUninitialized + return errors.New(Uninitialized) } s.mu.Lock() diff --git a/go/pserver/service_test.go b/go/pserver/service_test.go index 4c9fac4536e09013916aadb26af3a86a5a775b4f..b746d13e1ca71e697c464f84d915af029d37120c 100644 --- a/go/pserver/service_test.go +++ b/go/pserver/service_test.go @@ -15,8 +15,7 @@ func TestFull(t *testing.T) { p.Name = "param_a" p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0} p.ElementType = pserver.Int32 - var dummy int - err := s.InitParam(pserver.ParameterWithConfig{p, nil}, &dummy) + err := s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil) if err != nil { t.FailNow() } @@ -25,12 +24,12 @@ func TestFull(t *testing.T) { p1.Name = "param_b" p1.Content = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} p1.ElementType = pserver.Float32 - err = s.InitParam(pserver.ParameterWithConfig{p1, nil}, &dummy) + err = s.InitParam(pserver.ParameterWithConfig{Param: p1, Config: nil}, nil) if err != nil { t.FailNow() } - err = s.FinishInitParams(0, &dummy) + err = s.FinishInitParams(0, nil) if err != nil { t.FailNow() } @@ -46,11 +45,11 @@ func TestFull(t *testing.T) { } g1, g2 := pserver.Gradient(p1), pserver.Gradient(p) - err = s.SendGrad(g1, &dummy) + err = s.SendGrad(g1, nil) if err != nil { t.FailNow() } - err = s.SendGrad(g2, &dummy) + err = s.SendGrad(g2, nil) if err != nil { t.FailNow() @@ -74,23 +73,21 @@ func TestFull(t *testing.T) { func TestMultipleInit(t *testing.T) { s := pserver.NewService() - var dummy int - err := s.FinishInitParams(0, &dummy) + err := s.FinishInitParams(0, nil) if err != nil { t.FailNow() } - err = s.FinishInitParams(0, &dummy) - if err != pserver.ErrAlreadyInitialized { + err = s.FinishInitParams(0, nil) + if err.Error() != pserver.AlreadyInitialized { t.FailNow() } } func TestUninitialized(t *testing.T) { s := pserver.NewService() - var dummy int - err := s.SendGrad(pserver.Gradient{}, &dummy) - if err != pserver.ErrUninitialized { + err := s.SendGrad(pserver.Gradient{}, nil) + if err.Error() != pserver.Uninitialized { t.FailNow() } } @@ -98,13 +95,14 @@ func TestUninitialized(t *testing.T) { func TestBlockUntilInitialized(t *testing.T) { s := pserver.NewService() ch := make(chan struct{}, 2) + errCh := make(chan error, 2) var wg sync.WaitGroup wg.Add(1) go func() { var param pserver.Parameter err := s.GetParam("param_a", ¶m) if err != nil { - t.FailNow() + errCh <- err } wg.Done() ch <- struct{}{} @@ -112,10 +110,9 @@ func TestBlockUntilInitialized(t *testing.T) { wg.Add(1) go func() { - var dummy int - err := s.Save("", &dummy) + err := s.Save("", nil) if err != nil { - t.FailNow() + errCh <- err } wg.Done() ch <- struct{}{} @@ -127,6 +124,8 @@ func TestBlockUntilInitialized(t *testing.T) { case <-ch: // some function returned before initialization is completed. t.FailNow() + case <-errCh: + t.FailNow() default: } @@ -134,13 +133,12 @@ func TestBlockUntilInitialized(t *testing.T) { p.Name = "param_a" p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0} p.ElementType = pserver.Int32 - var dummy int - err := s.InitParam(pserver.ParameterWithConfig{p, nil}, &dummy) + err := s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil) if err != nil { t.FailNow() } - err = s.FinishInitParams(0, &dummy) + err = s.FinishInitParams(0, nil) if err != nil { t.FailNow() } diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index 1dc1383dd2e0b3111732fe9bfb14d46a547dcc02..bf1b01309ec5d023af33f6d9d6da8a8d7295d8d1 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -9,6 +9,7 @@ add_subdirectory(pserver) add_subdirectory(trainer) add_subdirectory(scripts) add_subdirectory(optimizer) +add_subdirectory(strings) # Do not build go directory until go cmake is working smoothly. # if(CMAKE_Go_COMPILER) diff --git a/paddle/api/CMakeLists.txt b/paddle/api/CMakeLists.txt index e147659566dba6cfbfd677e3b616bdaa4a73485c..c9433a38de4d005ebe229c55916401a5f82e9ef3 100644 --- a/paddle/api/CMakeLists.txt +++ b/paddle/api/CMakeLists.txt @@ -16,7 +16,7 @@ set(API_HEADER Internal.h) add_library(paddle_api STATIC ${API_SOURCES}) -add_dependencies(paddle_api gen_proto_cpp) +add_dependencies(paddle_api gen_proto_cpp paddle_pserver_cclient_lib) INCLUDE(${SWIG_USE_FILE}) INCLUDE_DIRECTORIES(${PROJ_ROOT}/paddle) @@ -41,10 +41,11 @@ SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS paddle_network paddle_proto ${external_project_dependencies} + ${RDMA_LIBS} ) IF(APPLE) - SET(MACOS_LD_FLAGS "-undefined dynamic_lookup -Wl,-all_load") + SET(MACOS_LD_FLAGS "-undefined dynamic_lookup -Wl,-all_load -framework CoreFoundation -framework Security") ELSE(APPLE) SET(START_GROUP "-Xlinker -start-group") SET(END_GROUP "-Xlinker -end-group") @@ -73,6 +74,7 @@ SWIG_LINK_LIBRARIES(swig_paddle ${CMAKE_DL_LIBS} ${EXTERNAL_LIBS} ${CMAKE_THREAD_LIBS_INIT} + ${RDMA_LD_FLAGS} ${START_END} ) diff --git a/paddle/api/Paddle.i b/paddle/api/Paddle.i index 068ba286c07d8854a1a7c7042224a679b50b4957..3237e73745dca58bed923b20851f0f0039a3487c 100644 --- a/paddle/api/Paddle.i +++ b/paddle/api/Paddle.i @@ -179,6 +179,7 @@ namespace std { %newobject ParameterOptimizer::needSpecialTraversal; %newobject ParameterUpdater::createLocalUpdater; %newobject ParameterUpdater::createRemoteUpdater; +%newobject ParameterUpdater::createNewRemoteUpdater; %feature("director") UpdateCallback; %feature("autodoc", 1); // To generate method stub, for code hint in ide diff --git a/paddle/api/PaddleAPI.h b/paddle/api/PaddleAPI.h index da0f157abd68c73c45f498cf9ef2726aac67c95b..7565ea51fe3e71bf81a28e6e4b5a2bbdd085798c 100644 --- a/paddle/api/PaddleAPI.h +++ b/paddle/api/PaddleAPI.h @@ -841,6 +841,8 @@ public: static ParameterUpdater* createRemoteUpdater(OptimizationConfig* config, int passCount, bool useSparseUpdater); + static ParameterUpdater* createNewRemoteUpdater( + OptimizationConfig* config, const std::string pserverSpec); ~ParameterUpdater(); /** diff --git a/paddle/api/ParameterUpdater.cpp b/paddle/api/ParameterUpdater.cpp index 79921ea6e787f3c0ebecaad6a9a54bac92211320..eaf8518ae2beaa93bc40ee944c984d142d2bb951 100644 --- a/paddle/api/ParameterUpdater.cpp +++ b/paddle/api/ParameterUpdater.cpp @@ -15,6 +15,7 @@ limitations under the License. */ #include "PaddleAPI.h" #include "PaddleAPIPrivate.h" +#include "paddle/trainer/NewRemoteParameterUpdater.h" #include "paddle/trainer/RemoteParameterUpdater.h" #include "paddle/trainer/ThreadParameterUpdater.h" @@ -28,6 +29,14 @@ ParameterUpdater *ParameterUpdater::createLocalUpdater( return updater; } +ParameterUpdater *ParameterUpdater::createNewRemoteUpdater( + OptimizationConfig *config, const std::string pserverSpec) { + auto updater = new ParameterUpdater(); + updater->m->updater.reset(new paddle::NewRemoteParameterUpdater( + config->m->getConfig(), pserverSpec)); + return updater; +} + ParameterUpdater *ParameterUpdater::createRemoteUpdater( OptimizationConfig *config, int passCount, bool useSparseUpdater) { auto updater = new ParameterUpdater(); diff --git a/paddle/cuda/include/hl_cpu_matrix_kernel.cuh b/paddle/cuda/include/hl_cpu_matrix_kernel.cuh index 9c49a4bd2083794e98b099b25944bedec3d5a2ff..aaa24325514812eda33309660ba85c3ceece770e 100644 --- a/paddle/cuda/include/hl_cpu_matrix_kernel.cuh +++ b/paddle/cuda/include/hl_cpu_matrix_kernel.cuh @@ -17,10 +17,9 @@ limitations under the License. */ #include #include "hl_base.h" -#if defined(__ARM_NEON__) || defined(__ARM_NEON) -#include "hl_neon_matrix_kernel.cuh" -#else -#include "hl_sse_matrix_kernel.cuh" + +#ifndef __CUDA_ARCH__ +#include "hl_cpu_matrix_kernel_detail.cuh" #endif /** @@ -114,35 +113,6 @@ void hl_cpu_apply_quaternary_op(Op op, } } -template -void hl_matrix_row_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, int ld, - real *A, int lda) { - for (int i = 0; i < dimM; i++) { - real tmp = agg.init(); - for (int j = 0; j < dimN; j++) { - tmp = agg(tmp, op(A[i * lda + j])); - } - dst[i*ld] = sv(dst[i*ld], tmp); - } -} - -template -void hl_matrix_row_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, int ld, - real *A, int lda, - real *B, int ldb) { - for (int i = 0; i < dimM; i++) { - real tmp = agg.init(); - for (int j = 0; j < dimN; j++) { - tmp = agg(tmp, op(A[i * lda + j], B[i * ldb + j])); - } - dst[i*ld] = sv(dst[i*ld], tmp); - } -} - template void hl_cpu_matrix_row_op(Agg agg, Op op, Saver sv, int dimM, int dimN, diff --git a/paddle/cuda/include/hl_sse_matrix_kernel.cuh b/paddle/cuda/include/hl_cpu_matrix_kernel_detail.cuh similarity index 89% rename from paddle/cuda/include/hl_sse_matrix_kernel.cuh rename to paddle/cuda/include/hl_cpu_matrix_kernel_detail.cuh index 9e50580669d2d4523dda239e90b4ed18a9214e2f..85ca836fdc46682195ac29a1ebf2237c28fc3311 100644 --- a/paddle/cuda/include/hl_sse_matrix_kernel.cuh +++ b/paddle/cuda/include/hl_cpu_matrix_kernel_detail.cuh @@ -13,26 +13,11 @@ See the License for the specific language governing permissions and limitations under the License. */ -#ifndef HL_SSE_MATRIX_KERNEL_CUH_ -#define HL_SSE_MATRIX_KERNEL_CUH_ +#ifndef HL_MATRIX_KERNEL_DETAIL_CUH_ +#define HL_MATRIX_KERNEL_DETAIL_CUH_ #include "hl_matrix_type.cuh" -#define VECTOR_SIZE 16 - -#ifndef PADDLE_TYPE_DOUBLE -/* number of float in vector */ -#define VECTOR_LEN 4 -#define VECTOR_SET _mm_set_ps1 -#else -#if defined(__APPLE__) || defined(__OSX__) -#define _mm_set_pd1 _mm_set1_pd -#endif -/* number of double in vector */ -#define VECTOR_LEN 2 -#define VECTOR_SET _mm_set_pd1 -#endif - inline bool hl_check_align(size_t size) { return !(size & (VECTOR_SIZE - 1)); } @@ -41,27 +26,63 @@ inline bool hl_check_align(void *ptr) { return hl_check_align(reinterpret_cast(ptr)); } -#ifndef PADDLE_TYPE_DOUBLE -template -inline real hl_agg_op(Agg agg, vecType mm) { - __m128 lo = _mm_unpacklo_ps(mm, mm); - __m128 hi = _mm_unpackhi_ps(mm, mm); - __m128 tmp1 = agg.vecOp(lo, hi); - __m128 tmp2 = _mm_movehl_ps(tmp1, tmp1); - __m128 ret = agg.vecOp(tmp1, tmp2); +template +void hl_matrix_row_op(Agg agg, Op op, Saver sv, + int dimM, int dimN, + real *dst, int ld, + real *A, int lda) { + for (int i = 0; i < dimM; i++) { + real tmp = agg.init(); + for (int j = 0; j < dimN; j++) { + tmp = agg(tmp, op(A[i * lda + j])); + } + dst[i*ld] = sv(dst[i*ld], tmp); + } +} - return _mm_cvtss_f32(ret); +template +void hl_matrix_row_op(Agg agg, Op op, Saver sv, + int dimM, int dimN, + real *dst, int ld, + real *A, int lda, + real *B, int ldb) { + for (int i = 0; i < dimM; i++) { + real tmp = agg.init(); + for (int j = 0; j < dimN; j++) { + tmp = agg(tmp, op(A[i * lda + j], B[i * ldb + j])); + } + dst[i*ld] = sv(dst[i*ld], tmp); + } } -#else -template -inline real hl_agg_op(Agg agg, vecType mm) { - __m128d lo = _mm_unpacklo_pd(mm, mm); - __m128d hi = _mm_unpackhi_pd(mm, mm); - __m128d ret = agg.vecOp(lo, hi); - - return _mm_cvtsd_f64(ret); + +template +void hl_matrix_column_op(Agg agg, Op op, Saver sv, + int dimM, int dimN, + real *dst, + real *A, int lda) { + for (int j = 0; j < dimN; j++) { + real tmp = agg.init(); + for (int i = 0; i < dimM; i++) { + tmp = agg(tmp, op(A[i * lda + j])); + } + dst[j] = sv(dst[j], tmp); + } +} + +template +void hl_matrix_column_op(Agg agg, Op op, Saver sv, + int dimM, int dimN, + real *dst, + real *A, int lda, + real *B, int ldb) { + for (int j = 0; j < dimN; j++) { + real tmp = agg.init(); + for (int i = 0; i < dimM; i++) { + tmp = agg(tmp, op(A[i * lda + j], B[i * ldb + j])); + } + dst[j] = sv(dst[j], tmp); + } } -#endif template void hl_sse_matrix_row_op(Agg agg, Op op, Saver sv, @@ -118,35 +139,6 @@ void hl_sse_matrix_row_op(Agg agg, Op op, Saver sv, } } -template -void hl_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda) { - for (int j = 0; j < dimN; j++) { - real tmp = agg.init(); - for (int i = 0; i < dimM; i++) { - tmp = agg(tmp, op(A[i * lda + j])); - } - dst[j] = sv(dst[j], tmp); - } -} - -template -void hl_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda, - real *B, int ldb) { - for (int j = 0; j < dimN; j++) { - real tmp = agg.init(); - for (int i = 0; i < dimM; i++) { - tmp = agg(tmp, op(A[i * lda + j], B[i * ldb + j])); - } - dst[j] = sv(dst[j], tmp); - } -} - /* * MaxRow greater than or equal dimN * dimN is multiples of VECTOR_LEN @@ -315,4 +307,4 @@ void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, } } -#endif /* HL_SSE_MATRIX_KERNEL_CUH_ */ +#endif /* HL_MATRIX_KERNEL_DETAIL_CUH_ */ diff --git a/paddle/cuda/include/hl_cpu_scalar.cuh b/paddle/cuda/include/hl_cpu_scalar.cuh new file mode 100644 index 0000000000000000000000000000000000000000..93043cd4bc030ef525d5bcf8d83196f2ce92eec6 --- /dev/null +++ b/paddle/cuda/include/hl_cpu_scalar.cuh @@ -0,0 +1,50 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_CPU_SCALAR_CUH_ +#define HL_CPU_SCALAR_CUH_ + +#define VECTOR_SIMD false +#define VECTOR_SET hl_vec_set + +#ifndef PADDLE_TYPE_DOUBLE +/* size of float */ +#define VECTOR_SIZE 4 +#else +/* size of double */ +#define VECTOR_SIZE 8 +#endif + +typedef real vecType; + +/* Consider a real as a vector */ +#define VECTOR_LEN 1 + +template +inline real hl_agg_op(Agg agg, vecType mm) { + return mm; +} + +INLINE real hl_vec_set(const real r) { + return r; +} + +INLINE real hl_vec_classification_error(const real a, + const real b, + const real p, + const real r) { + return ((a > p) == (b > p)) ? 0.0f : 1.0f; +} + +#endif // HL_CPU_SCALAR_CUH_ diff --git a/paddle/cuda/include/hl_cpu_simd_neon.cuh b/paddle/cuda/include/hl_cpu_simd_neon.cuh new file mode 100644 index 0000000000000000000000000000000000000000..0b1cf4abdc4d5ef2a640c75587308f7f082b854b --- /dev/null +++ b/paddle/cuda/include/hl_cpu_simd_neon.cuh @@ -0,0 +1,73 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_CPU_SIMD_NEON_CUH_ +#define HL_CPU_SIMD_NEON_CUH_ + +#include + +#define VECTOR_SIMD true +#define VECTOR_SIZE 16 +#define VECTOR_SET hl_vec_set + +#ifndef PADDLE_TYPE_DOUBLE + +typedef float32x4_t vecType; + +/* number of float in vector */ +#define VECTOR_LEN 4 + +template +inline real hl_agg_op(Agg agg, vecType mm) { + float32x4_t rev = vrev64q_f32(mm); + float32x4_t tmp1 = agg.vecOp(rev, rev); + float32x2_t lo = vget_high_f32(rev); + float32x2_t hi = vget_low_f32(rev); + float32x4_t tmp2 = vcombine_f32(hi, lo); + float32x4_t ret = agg.vecOp(tmp1, tmp2); + + return vgetq_lane_f32(ret, 0); +} + +inline float32x4_t hl_vec_set(const real f) { + return vdupq_n_f32(f); +} + +inline float32x4_t hl_vec_classification_error(const float32x4_t a, + const float32x4_t b, + const float32x4_t p, + const float32x4_t r) { + uint32x4_t tmp1 = vcgtq_f32(a, p); + uint32x4_t tmp2 = vcgtq_f32(b, p); + uint32x4_t tmp3 = veorq_u32(tmp1, tmp2); + return vcvtq_f32_u32(vandq_u32(tmp3, vcvtq_u32_f32(r))); +} + +#else + +#ifdef __aarch64__ +typedef float64x2_t vecType; + +/* number of float in vector */ +#define VECTOR_LEN 2 +#define VECTOR_SET vdupq_n_f64 + +#error To be implemented +#else +#error NEON instructions does not support double precision +#endif // __aarch64__ + +#endif + +#endif // HL_CPU_SIMD_NEON_CUH_ diff --git a/paddle/cuda/include/hl_cpu_simd_sse.cuh b/paddle/cuda/include/hl_cpu_simd_sse.cuh new file mode 100644 index 0000000000000000000000000000000000000000..a104b626220f473324fc3c99e7cd305c3e86f3db --- /dev/null +++ b/paddle/cuda/include/hl_cpu_simd_sse.cuh @@ -0,0 +1,94 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_CPU_SIMD_SSE_CUH_ +#define HL_CPU_SIMD_SSE_CUH_ + +#include +#include +#include + +#define VECTOR_SIMD true +#define VECTOR_SIZE 16 +#define VECTOR_SET hl_vec_set + +#ifndef PADDLE_TYPE_DOUBLE + +typedef __m128 vecType; + +/* number of float in vector */ +#define VECTOR_LEN 4 + +template +inline real hl_agg_op(Agg agg, vecType mm) { + __m128 lo = _mm_unpacklo_ps(mm, mm); + __m128 hi = _mm_unpackhi_ps(mm, mm); + __m128 tmp1 = agg.vecOp(lo, hi); + __m128 tmp2 = _mm_movehl_ps(tmp1, tmp1); + __m128 ret = agg.vecOp(tmp1, tmp2); + + return _mm_cvtss_f32(ret); +} + +inline __m128 hl_vec_set(const real f) { + return _mm_set_ps1(f); +} + +inline __m128 hl_vec_classification_error(const __m128 a, + const __m128 b, + const __m128 p, + const __m128 r) { + __m128 tmp1 = _mm_cmpgt_ps(a, p); + __m128 tmp2 = _mm_cmpgt_ps(b, p); + __m128 tmp3 = _mm_xor_ps(tmp1, tmp2); + return _mm_and_ps(tmp3, r); +} + +#else + +typedef __m128d vecType; + +/* number of double in vector */ +#define VECTOR_LEN 2 + +template +inline real hl_agg_op(Agg agg, vecType mm) { + __m128d lo = _mm_unpacklo_pd(mm, mm); + __m128d hi = _mm_unpackhi_pd(mm, mm); + __m128d ret = agg.vecOp(lo, hi); + + return _mm_cvtsd_f64(ret); +} + +inline __m128d hl_vec_set(const real d) { +#if defined(__APPLE__) || defined(__OSX__) + return _mm_set1_pd(d); +#else + return _mm_set_pd1(d); +#endif +} + +inline __m128d hl_vec_classification_error(const __m128d a, + const __m128d b, + const __m128d p, + const __m128d r) { + __m128d tmp1 = _mm_cmpgt_pd(a, p); + __m128d tmp2 = _mm_cmpgt_pd(b, p); + __m128d tmp3 = _mm_xor_pd(tmp1, tmp2); + return _mm_and_pd(tmp3, r); +} + +#endif + +#endif // HL_CPU_SIMD_SSE_CUH_ diff --git a/paddle/cuda/include/hl_matrix_base.cuh b/paddle/cuda/include/hl_matrix_base.cuh index 8b755c1095c2c4fdb7e74d8cddc948e6a6af380b..53fdb47ec9c05f5cf85d0956176ad9abf6d656f9 100644 --- a/paddle/cuda/include/hl_matrix_base.cuh +++ b/paddle/cuda/include/hl_matrix_base.cuh @@ -18,26 +18,6 @@ limitations under the License. */ #include "hl_matrix_type.cuh" -#ifdef __CUDA_ARCH__ -/** - * CUDA kernel inline function - */ -#define INLINE __device__ inline -#else -/** - * CPP inline function - */ -#define INLINE inline -#endif - -#ifndef PADDLE_TYPE_DOUBLE -#define DEVICE_FMAX fmaxf -#define DEVICE_FMIN fminf -#else -#define DEVICE_FMAX fmax -#define DEVICE_FMIN fmin -#endif - class BaseOp { public: static const bool sse = false; @@ -66,10 +46,8 @@ typedef BaseOp SSESquaredDiff; typedef BaseOp SSEFirst; typedef BaseOp SSESecond; typedef BaseOp SSEClassificationError; -#elif defined(__ARM__NEON__) || defined(__ARM_NEON) -#include "hl_matrix_base_neon.cuh" #else -#include "hl_matrix_base_sse.cuh" +#include "hl_matrix_base_detail.cuh" #endif namespace aggregate { @@ -124,7 +102,7 @@ public: add2(const real s1, const real s2) : SSEAdd2(s1, s2), p1(s1), p2(s2) {} INLINE real operator()(const real a, const real b) const { - return p1 * a + p2 * b; + return p1 * a + p2 * b; } }; diff --git a/paddle/cuda/include/hl_matrix_base_detail.cuh b/paddle/cuda/include/hl_matrix_base_detail.cuh new file mode 100644 index 0000000000000000000000000000000000000000..de1fd17d524a486cc15af721731d2e815f17263e --- /dev/null +++ b/paddle/cuda/include/hl_matrix_base_detail.cuh @@ -0,0 +1,153 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_MATRIX_BASE_DETAIL_CUH_ +#define HL_MATRIX_BASE_DETAIL_CUH_ + +#include "hl_matrix_type.cuh" +#include "hl_tensor_ops.h" + +namespace aggregate { +class SSESum { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::add()(a, b); + } +}; + +class SSEMax { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::max()(a, b); + } +}; + +class SSEMin { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::min()(a, b); + } +}; +} // namespace aggregate + +namespace base { +namespace unary { +class SSEIdentity { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a) const { + return a; + } +}; +} // namespace unary + +namespace binary { +class SSEAdd { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::add()(a, b); + } +}; + +class SSEAdd2 { +public: + static const bool sse = VECTOR_SIMD; + const real p1; + const real p2; + vecType mp1; + vecType mp2; + +public: + SSEAdd2(const real s1, const real s2) : p1(s1), p2(s2) { + mp1 = hl_vec_set(p1); + mp2 = hl_vec_set(p2); + } + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::add_scale(mp1, mp2)(a, b); + } +}; + +class SSESub { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::sub()(a, b); + } +}; + +class SSEMul { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::mul()(a, b); + } +}; + +class SSEDiv { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hppl::binary::div()(a, b); + } +}; + +class SSESquaredDiff { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + vecType tmp = hppl::binary::sub()(a, b); + return hppl::binary::mul()(tmp, tmp); + } +}; + +class SSEFirst { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return a; + } +}; + +class SSESecond { +public: + static const bool sse = VECTOR_SIMD; + INLINE vecType vecOp(const vecType a, const vecType b) const { + return b; + } +}; + +class SSEClassificationError { +public: + static const bool sse = VECTOR_SIMD; + const real p; + vecType mp; + vecType result; + +public: + explicit SSEClassificationError(const real s) : p(s) { + mp = hl_vec_set(p); + result = hl_vec_set(1.0f); + } + INLINE vecType vecOp(const vecType a, const vecType b) const { + return hl_vec_classification_error(a, b, mp, result); + } +}; +} // namespace binary +} // namespace base + +#endif /* HL_MATRIX_BASE_DETAIL_CUH_ */ diff --git a/paddle/cuda/include/hl_matrix_base_neon.cuh b/paddle/cuda/include/hl_matrix_base_neon.cuh deleted file mode 100644 index e13019f5ee24ad600005c99678426ee3808b0e54..0000000000000000000000000000000000000000 --- a/paddle/cuda/include/hl_matrix_base_neon.cuh +++ /dev/null @@ -1,161 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - - -#ifndef HL_MATRIX_BASE_NEON_CUH_ -#define HL_MATRIX_BASE_NEON_CUH_ - -namespace aggregate { -class SSESum { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return vaddq_f32(a, b); - } -}; - -class SSEMax { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return vmaxq_f32(a, b); - } -}; - -class SSEMin { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return vminq_f32(a, b); - } -}; -} // namespace aggregate - -namespace base { -namespace unary { -class SSEIdentity { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a) const { - return a; - } -}; -} // namespace unary - -namespace binary { -class SSEAdd { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return vaddq_f32(a, b); - } -}; - -class SSEAdd2 { -public: - static const bool sse = true; - const real p1; - const real p2; - float32x4_t mp1; - float32x4_t mp2; - -public: - SSEAdd2(const real s1, const real s2) : p1(s1), p2(s2) { - mp1 = vdupq_n_f32(p1); - mp2 = vdupq_n_f32(p2); - } - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - float32x4_t tmp1, tmp2; - tmp1 = vmulq_f32(mp1, a); - tmp2 = vmulq_f32(mp2, b); - return vaddq_f32(tmp1, tmp2); - } -}; - -class SSESub { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return vsubq_f32(a, b); - } -}; - -class SSEMul { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return vmulq_f32(a, b); - } -}; - -class SSEDiv { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - float32x4_t tmp; - tmp = vrecpeq_f32(b); - return vmulq_f32(a, tmp); - } -}; - -class SSESquaredDiff { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - float32x4_t tmp; - tmp = vsubq_f32(a, b); - return vmulq_f32(tmp, tmp); - } -}; - -class SSEFirst { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return a; - } -}; - -class SSESecond { -public: - static const bool sse = true; - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - return b; - } -}; - -class SSEClassificationError { -public: - static const bool sse = true; - const real p; - float32x4_t mp; - uint32x4_t result; - -public: - explicit SSEClassificationError(const real s) : p(s) { - mp = vdupq_n_f32(p); - result = vdupq_n_u32(1); - } - // TODO: to be check - INLINE float32x4_t vecOp(const float32x4_t a, const float32x4_t b) const { - uint32x4_t tmp1 = vcgtq_f32(a, mp); - uint32x4_t tmp2 = vcgtq_f32(b, mp); - uint32x4_t tmp3 = veorq_u32(tmp1, tmp2); - return vcvtq_f32_u32(vandq_u32(tmp3, result)); - } -}; -} // namespace binary -} // namespace base - -#endif /* HL_MATRIX_BASE_NEON_CUH_ */ diff --git a/paddle/cuda/include/hl_matrix_base_sse.cuh b/paddle/cuda/include/hl_matrix_base_sse.cuh deleted file mode 100644 index db6c9cca03a8974a15cd2e7fbaf73033e3a57f4b..0000000000000000000000000000000000000000 --- a/paddle/cuda/include/hl_matrix_base_sse.cuh +++ /dev/null @@ -1,211 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - - -#ifndef HL_MATRIX_BASE_SSE_CUH_ -#define HL_MATRIX_BASE_SSE_CUH_ - -namespace aggregate { -class SSESum { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_add_ps(a, b); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_add_pd(a, b); - } -}; - -class SSEMax { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_max_ps(a, b); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_max_pd(a, b); - } -}; - -class SSEMin { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_min_ps(a, b); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_min_pd(a, b); - } -}; -} // namespace aggregate - -namespace base { -namespace unary { -class SSEIdentity { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a) const { - return a; - } - INLINE __m128d vecOp(const __m128d a) const { - return a; - } -}; -} // namespace unary - -namespace binary { -class SSEAdd { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_add_ps(a, b); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_add_pd(a, b); - } -}; - -class SSEAdd2 { -public: - static const bool sse = true; - const real p1; - const real p2; - union {__m128 f; __m128d d;} mp1; - union {__m128 f; __m128d d;} mp2; - -public: - SSEAdd2(const real s1, const real s2) : p1(s1), p2(s2) { - if (sizeof(real) == sizeof(float)) { - mp1.f = _mm_set1_ps(p1); - mp2.f = _mm_set1_ps(p2); - } else { - mp1.d = _mm_set1_pd(p1); - mp2.d = _mm_set1_pd(p2); - } - } - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - __m128 tmp1, tmp2; - tmp1 = _mm_mul_ps(mp1.f, a); - tmp2 = _mm_mul_ps(mp2.f, b); - return _mm_add_ps(tmp1, tmp2); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - __m128d tmp1, tmp2; - tmp1 = _mm_mul_pd(mp1.d, a); - tmp2 = _mm_mul_pd(mp2.d, b); - return _mm_add_pd(tmp1, tmp2); - } -}; - -class SSESub { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_sub_ps(a, b); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_sub_pd(a, b); - } -}; - -class SSEMul { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_mul_ps(a, b); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_mul_pd(a, b); - } -}; - -class SSEDiv { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_div_ps(a, b); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_div_pd(a, b); - } -}; - -class SSESquaredDiff { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return _mm_mul_ps(_mm_sub_ps(a, b), _mm_sub_ps(a, b)); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return _mm_mul_pd(_mm_sub_pd(a, b), _mm_sub_pd(a, b)); - } -}; - -class SSEFirst { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return a; - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return a; - } -}; - -class SSESecond { -public: - static const bool sse = true; - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - return b; - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - return b; - } -}; - -class SSEClassificationError { -public: - static const bool sse = true; - const real p; - union {__m128 f; __m128d d;} mp; - union {__m128 f; __m128d d;} result; - -public: - explicit SSEClassificationError(const real s) : p(s) { - if (sizeof(real) == sizeof(float)) { - mp.f = _mm_set1_ps(p); - result.f = _mm_set1_ps(1.0f); - } else { - mp.d = _mm_set1_pd(p); - result.d = _mm_set1_pd(1.0); - } - } - INLINE __m128 vecOp(const __m128 a, const __m128 b) const { - __m128 tmp1 = _mm_cmpgt_ps(a, mp.f); - __m128 tmp2 = _mm_cmpgt_ps(b, mp.f); - __m128 tmp3 = _mm_xor_ps(tmp1, tmp2); - return _mm_and_ps(tmp3, result.f); - } - INLINE __m128d vecOp(const __m128d a, const __m128d b) const { - __m128d tmp1 = _mm_cmpgt_pd(a, mp.d); - __m128d tmp2 = _mm_cmpgt_pd(b, mp.d); - __m128d tmp3 = _mm_xor_pd(tmp1, tmp2); - return _mm_and_pd(tmp3, result.d); - } -}; -} // namespace binary -} // namespace base - -#endif /* HL_MATRIX_BASE_SSE_CUH_ */ diff --git a/paddle/cuda/include/hl_matrix_type.cuh b/paddle/cuda/include/hl_matrix_type.cuh index f965ba966793f6f6eea0ad3606f60553fe904dda..e18235219bd9f78dd87a92d448cb290d9a4904a1 100644 --- a/paddle/cuda/include/hl_matrix_type.cuh +++ b/paddle/cuda/include/hl_matrix_type.cuh @@ -17,35 +17,35 @@ limitations under the License. */ #include "hl_base.h" -#if defined(__CUDA_ARCH__) +#ifdef __CUDA_ARCH__ +/** + * CUDA kernel inline function + */ +#define INLINE __device__ inline +#else +/** + * CPP inline function + */ +#define INLINE inline +#endif + +#ifdef __CUDA_ARCH__ #include #ifndef PADDLE_TYPE_DOUBLE typedef float4 vecType; #else typedef double2 vecType; #endif -#elif (defined __ARM_NEON) || (defined __ARM_NEON__) -#include -#ifndef PADDLE_TYPE_DOUBLE -typedef float32x4_t vecType; -#else -#error NEON instructions does not support double precision -#endif +#elif defined(__SSE3__) +#include "hl_cpu_simd_sse.cuh" +#define PADDLE_USE_SSE3 +#elif (defined(__ARM_NEON) || defined(__ARM_NEON__)) && !defined(__NVCC__) +// Currently nvcc does not support neon intrinsic. +// TODO: Extract simd intrinsic implementation from .cu files. +#include "hl_cpu_simd_neon.cuh" +#define PADDLE_USE_NEON #else -#include -#include -#include -#ifndef PADDLE_TYPE_DOUBLE -typedef __m128 vecType; -#else -typedef __m128d vecType; -#endif -#endif - -#ifdef __CUDA_ARCH__ -#define INLINE __device__ inline -#else -#define INLINE inline +#include "hl_cpu_scalar.cuh" #endif #endif // HL_MATRIX_TYPE_CUH_ diff --git a/paddle/cuda/include/hl_neon_matrix_kernel.cuh b/paddle/cuda/include/hl_neon_matrix_kernel.cuh deleted file mode 100644 index 7b4e5b00079b66d0a46a1344a43f41962cf50f10..0000000000000000000000000000000000000000 --- a/paddle/cuda/include/hl_neon_matrix_kernel.cuh +++ /dev/null @@ -1,299 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - - -#ifndef HL_NEON_MATRIX_KERNEL_CUH_ -#define HL_NEON_MATRIX_KERNEL_CUH_ - -#include "hl_matrix_type.cuh" - -#define VECTOR_SIZE 16 - -/* number of float in vector */ -#define VECTOR_LEN 4 -#define VECTOR_SET vdupq_n_f32 - -inline bool hl_check_align(size_t size) { - return !(size & (VECTOR_SIZE - 1)); -} - -inline bool hl_check_align(void *ptr) { - return hl_check_align(reinterpret_cast(ptr)); -} - -template -inline real hl_agg_op(Agg agg, vecType mm) { - float32x4_t rev = vrev64q_f32(mm); - float32x4_t tmp1 = agg.vecOp(rev, rev); - float32x2_t lo = vget_high_f32(rev); - float32x2_t hi = vget_low_f32(rev); - float32x4_t tmp2 = vcombine_f32(hi, lo); - float32x4_t ret = agg.vecOp(tmp1, tmp2); - - return vgetq_lane_f32(ret, 0); -} - -template -void hl_sse_matrix_row_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, int ld, - real *A, int lda) { - for (int i = 0; i < dimM; i++, A += lda) { - vecType mm = VECTOR_SET(agg.init()); - vecType *a = (vecType*)(A); - for (int j = 0; j < dimN / VECTOR_LEN; j++, a++) { - mm = agg.vecOp(mm, op.vecOp(*a)); - } - - int rem = dimN % VECTOR_LEN; - if (rem) { - real tmp = hl_agg_op(agg, mm); - real *a = A + (dimN / VECTOR_LEN) * VECTOR_LEN; - for (int j = 0; j < rem; j++) { - tmp = agg(tmp, op(a[j])); - } - dst[i*ld] = sv(dst[i*ld], tmp); - } else { - dst[i*ld] = sv(dst[i*ld], hl_agg_op(agg, mm)); - } - } -} - -template -void hl_sse_matrix_row_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, int ld, - real *A, int lda, - real *B, int ldb) { - for (int i = 0; i < dimM; i++, A += lda, B += ldb) { - vecType mm = VECTOR_SET(agg.init()); - vecType *a = (vecType*)(A); - vecType *b = (vecType*)(B); - for (int j = 0; j < dimN / VECTOR_LEN; j++, a++, b++) { - mm = agg.vecOp(mm, op.vecOp(*a, *b)); - } - - int rem = dimN % VECTOR_LEN; - if (rem) { - real tmp = hl_agg_op(agg, mm); - real *a = A + (dimN / VECTOR_LEN) * VECTOR_LEN; - real *b = B + (dimN / VECTOR_LEN) * VECTOR_LEN; - for (int j = 0; j < rem; j++) { - tmp = agg(tmp, op(a[j], b[j])); - } - dst[i*ld] = sv(dst[i*ld], tmp); - } else { - dst[i*ld] = sv(dst[i*ld], hl_agg_op(agg, mm)); - } - } -} - -template -void hl_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda) { - for (int j = 0; j < dimN; j++) { - real tmp = agg.init(); - for (int i = 0; i < dimM; i++) { - tmp = agg(tmp, op(A[i * lda + j])); - } - dst[j] = sv(dst[j], tmp); - } -} - -template -void hl_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda, - real *B, int ldb) { - for (int j = 0; j < dimN; j++) { - real tmp = agg.init(); - for (int i = 0; i < dimM; i++) { - tmp = agg(tmp, op(A[i * lda + j], B[i * ldb + j])); - } - dst[j] = sv(dst[j], tmp); - } -} - -/* - * MaxRow greater than or equal dimN - * dimN is multiples of VECTOR_LEN - * so rem <= MaxRow / VECTOR_LEN - */ -template -void hl_sse_column_op_with_rem(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda) { - vecType mm[MaxRow / VECTOR_LEN]; - for (int n = 0; n < MaxRow / VECTOR_LEN; n++) { - mm[n] = VECTOR_SET(agg.init()); - } - - for (int i = 0; i < dimM; i++) { - vecType *a = (vecType*)(A + i * lda); - for (int n = 0; n < dimN / VECTOR_LEN; n++) { - mm[n] = agg.vecOp(mm[n], op.vecOp(a[n])); - } - } - - vecType *result = (vecType*)(dst); - for (int n = 0; n < dimN / VECTOR_LEN; n++) { - result[n] = sv.vecOp(result[n], mm[n]); - } - - int rem = dimN % VECTOR_LEN; - if (rem) { - A += (dimN / VECTOR_LEN) * VECTOR_LEN; - dst += (dimN / VECTOR_LEN) * VECTOR_LEN; - hl_matrix_column_op(agg, op, sv, dimM, rem, dst, A, lda); - } -} - -/* - * dimN is multiples of VECTOR_LEN - * dimN greater than Step - */ -template -void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda) { - for (int j = 0; j < dimN / Step; j++, dst += Step, A += Step) { - vecType mm[Step / VECTOR_LEN]; - for (int n = 0; n < Step / VECTOR_LEN; n++) { - mm[n] = VECTOR_SET(agg.init()); - } - - for (int i = 0; i < dimM; i++) { - vecType *a = (vecType*)(A + i * lda); - for (int n = 0; n < Step / VECTOR_LEN; n++) { - mm[n] = agg.vecOp(mm[n], op.vecOp(a[n])); - } - } - - vecType *result = (vecType*)(dst); - for (int n = 0; n < Step / VECTOR_LEN; n++) { - result[n] = sv.vecOp(result[n], mm[n]); - } - } - - int remRow = dimN % Step; - if (remRow) { - hl_sse_column_op_with_rem(agg, op, sv, dimM, remRow, dst, A, lda); - } -} - -template -void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda) { - if (dimN <= 16) { - hl_sse_matrix_column_op<16>(agg, op, sv, dimM, dimN, dst, A, lda); - } else if (dimN <= 32) { - hl_sse_matrix_column_op<32>(agg, op, sv, dimM, dimN, dst, A, lda); - } else if (dimN <= 1024 || dimM <= 512) { - hl_sse_matrix_column_op<64>(agg, op, sv, dimM, dimN, dst, A, lda); - } else { - hl_sse_matrix_column_op<1024>(agg, op, sv, dimM, dimN, dst, A, lda); - } -} - -template -void hl_sse_column_op_with_rem(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda, - real *B, int ldb) { - vecType mm[MaxRow / VECTOR_LEN]; - for (int n = 0; n < MaxRow / VECTOR_LEN; n++) { - mm[n] = VECTOR_SET(agg.init()); - } - - for (int i = 0; i < dimM; i++) { - vecType *a = (vecType*)(A + i * lda); - vecType *b = (vecType*)(B + i * ldb); - for (int n = 0; n < dimN / VECTOR_LEN; n++) { - mm[n] = agg.vecOp(mm[n], op.vecOp(a[n], b[n])); - } - } - - vecType *result = (vecType*)(dst); - for (int n = 0; n < dimN / VECTOR_LEN; n++) { - result[n] = sv.vecOp(result[n], mm[n]); - } - - int rem = dimN % VECTOR_LEN; - if (rem) { - A += (dimN / VECTOR_LEN) * VECTOR_LEN; - B += (dimN / VECTOR_LEN) * VECTOR_LEN; - dst += (dimN / VECTOR_LEN) * VECTOR_LEN; - hl_matrix_column_op(agg, op, sv, dimM, rem, dst, A, lda, B, ldb); - } -} - -template -void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda, - real *B, int ldb) { - for (int j = 0; j < dimN / Step; j++, dst += Step, A += Step, B += Step) { - vecType mm[Step / VECTOR_LEN]; - for (int n = 0; n < Step / VECTOR_LEN; n++) { - mm[n] = VECTOR_SET(agg.init()); - } - - for (int i = 0; i < dimM; i++) { - vecType *a = (vecType*)(A + i * lda); - vecType *b = (vecType*)(B + i * ldb); - for (int n = 0; n < Step / VECTOR_LEN; n++) { - mm[n] = agg.vecOp(mm[n], op.vecOp(a[n], b[n])); - } - } - - vecType *result = (vecType*)(dst); - for (int n = 0; n < Step / VECTOR_LEN; n++) { - result[n] = sv.vecOp(result[n], mm[n]); - } - } - - int remRow = dimN % Step; - if (remRow) { - hl_sse_column_op_with_rem( - agg, op, sv, dimM, remRow, dst, A, lda, B, ldb); - } -} - -template -void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, - int dimM, int dimN, - real *dst, - real *A, int lda, - real *B, int ldb) { - if (dimN <= 16) { - hl_sse_matrix_column_op<16>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); - } else if (dimN <= 32) { - hl_sse_matrix_column_op<32>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); - } else if (dimN <= 1024 || dimM <= 512) { - hl_sse_matrix_column_op<64>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); - } else { - hl_sse_matrix_column_op<1024>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); - } -} - -#endif /* HL_NEON_MATRIX_KERNEL_CUH_ */ diff --git a/paddle/cuda/include/hl_tensor_ops.h b/paddle/cuda/include/hl_tensor_ops.h index 7945b98201b1812790fb0d53123e9ee007640485..93d38b7d2299d994cde0934213668a525bffa80c 100644 --- a/paddle/cuda/include/hl_tensor_ops.h +++ b/paddle/cuda/include/hl_tensor_ops.h @@ -328,6 +328,208 @@ public: INLINE T operator()(const T a, const T b) const { return a < b ? b : a; } }; +#ifdef PADDLE_USE_SSE3 +#ifndef PADDLE_TYPE_DOUBLE +template <> +class add<__m128> { +public: + INLINE __m128 operator()(const __m128 a, const __m128 b) const { + return _mm_add_ps(a, b); + } +}; + +template <> +class add_scale<__m128> { +private: + const __m128 p1; + const __m128 p2; + +public: + INLINE add_scale(const __m128 s1, const __m128 s2) : p1(s1), p2(s2) {} + INLINE __m128 operator()(const __m128 a, const __m128 b) const { + return _mm_add_ps(_mm_mul_ps(p1, a), _mm_mul_ps(p2, b)); + } +}; + +template <> +class sub<__m128> { +public: + INLINE __m128 operator()(const __m128 a, const __m128 b) const { + return _mm_sub_ps(a, b); + } +}; + +template <> +class mul<__m128> { +public: + INLINE __m128 operator()(const __m128 a, const __m128 b) const { + return _mm_mul_ps(a, b); + } +}; + +template <> +class div<__m128> { +public: + INLINE __m128 operator()(const __m128 a, const __m128 b) const { + return _mm_div_ps(a, b); + } +}; + +template <> +class min<__m128> { +public: + INLINE __m128 operator()(const __m128 a, const __m128 b) const { + return _mm_min_ps(a, b); + } +}; + +template <> +class max<__m128> { +public: + INLINE __m128 operator()(const __m128 a, const __m128 b) const { + return _mm_max_ps(a, b); + } +}; +#else +template <> +class add<__m128d> { +public: + INLINE __m128d operator()(const __m128d a, const __m128d b) const { + return _mm_add_pd(a, b); + } +}; + +template <> +class add_scale<__m128d> { +private: + const __m128d p1; + const __m128d p2; + +public: + INLINE add_scale(const __m128d s1, const __m128d s2) : p1(s1), p2(s2) {} + INLINE __m128d operator()(const __m128d a, const __m128d b) const { + return _mm_add_pd(_mm_mul_pd(p1, a), _mm_mul_pd(p2, b)); + } +}; + +template <> +class sub<__m128d> { +public: + INLINE __m128d operator()(const __m128d a, const __m128d b) const { + return _mm_sub_pd(a, b); + } +}; + +template <> +class mul<__m128d> { +public: + INLINE __m128d operator()(const __m128d a, const __m128d b) const { + return _mm_mul_pd(a, b); + } +}; + +template <> +class div<__m128d> { +public: + INLINE __m128d operator()(const __m128d a, const __m128d b) const { + return _mm_div_pd(a, b); + } +}; + +template <> +class min<__m128d> { +public: + INLINE __m128d operator()(const __m128d a, const __m128d b) const { + return _mm_min_pd(a, b); + } +}; + +template <> +class max<__m128d> { +public: + INLINE __m128d operator()(const __m128d a, const __m128d b) const { + return _mm_max_pd(a, b); + } +}; +#endif // PADDLE_TYPE_DOUBLE +#endif // PADDLE_USE_SSE3 + +#ifdef PADDLE_USE_NEON +#ifndef PADDLE_TYPE_DOUBLE +template <> +class add { +public: + INLINE float32x4_t operator()(const float32x4_t a, + const float32x4_t b) const { + return vmulq_f32(a, b); + } +}; + +template <> +class add_scale { +private: + const float32x4_t p1; + const float32x4_t p2; + +public: + INLINE add_scale(const float32x4_t s1, const float32x4_t s2) + : p1(s1), p2(s2) {} + INLINE float32x4_t operator()(const float32x4_t a, + const float32x4_t b) const { + return vaddq_f32(vmulq_f32(p1, a), vmulq_f32(p2, b)); + } +}; + +template <> +class sub { +public: + INLINE float32x4_t operator()(const float32x4_t a, + const float32x4_t b) const { + return vsubq_f32(a, b); + } +}; + +template <> +class mul { +public: + INLINE float32x4_t operator()(const float32x4_t a, + const float32x4_t b) const { + return vmulq_f32(a, b); + } +}; + +template <> +class div { +public: + INLINE float32x4_t operator()(const float32x4_t a, + const float32x4_t b) const { + float32x4_t tmp = vrecpeq_f32(b); + return vmulq_f32(a, tmp); + } +}; + +template <> +class min { +public: + INLINE float32x4_t operator()(const float32x4_t a, + const float32x4_t b) const { + return vminq_f32(a, b); + } +}; + +template <> +class max { +public: + INLINE float32x4_t operator()(const float32x4_t a, + const float32x4_t b) const { + return vmaxq_f32(a, b); + } +}; +#else +#error To be implemented +#endif // PADDLE_TYPE_DOUBLE +#endif // PADDLE_USE_NEON + } // namespace binary } // namespace hppl diff --git a/paddle/function/CMakeLists.txt b/paddle/function/CMakeLists.txt index 233a53709a80f06dd2a06995b159c1aef10e2788..5e170714cf5b183fcf6e76d34746333397e6b060 100644 --- a/paddle/function/CMakeLists.txt +++ b/paddle/function/CMakeLists.txt @@ -14,8 +14,8 @@ add_library(paddle_function STATIC ${cpp_files} ${cu_objs}) add_dependencies(paddle_function ${external_project_dependencies}) add_dependencies(paddle_function gen_proto_cpp) -if(WITH_GPU) if(WITH_TESTING) +if(WITH_GPU) # TODO: # file(GLOB test_files . *OpTest.cpp) # add_executable(${test_bin} EXCLUDE_FROM_ALL ${test_files}) @@ -28,7 +28,10 @@ if(WITH_TESTING) add_simple_unittest(PadOpTest) add_simple_unittest(MulOpTest) add_simple_unittest(CosSimOpTest) + add_simple_unittest(RowConvOpTest) endif() + +add_simple_unittest(ConvOpTest) endif() add_style_check_target(paddle_function ${h_files}) diff --git a/paddle/function/ContextProjectionOpTest.cpp b/paddle/function/ContextProjectionOpTest.cpp index 1b25172ca5c0c4e64db01806fb8239af7e06d90d..9e9dd20e6f3abe3bd087e434d7b64eec5bfadcfb 100644 --- a/paddle/function/ContextProjectionOpTest.cpp +++ b/paddle/function/ContextProjectionOpTest.cpp @@ -28,7 +28,7 @@ void testMatrixProjectionForward(int context_start, std::max(0, (int)(context_start + context_length - 1)); if (pad == 0) is_padding = false; - FunctionCompare test( + CpuGpuFuncCompare test( "ContextProjectionForward", FuncConfig() .set("context_length", context_length) @@ -60,7 +60,7 @@ void testMatrixProjectionBackward(int context_start, std::max(0, (int)(context_start + context_length - 1)); if (pad == 0) is_padding = false; - FunctionCompare test( + CpuGpuFuncCompare test( "ContextProjectionBackward", FuncConfig() .set("context_length", context_length) diff --git a/paddle/function/ConvOp.h b/paddle/function/ConvOp.h new file mode 100644 index 0000000000000000000000000000000000000000..65b9d1d53f9210b08cdc8bbd9d93b03305e582e4 --- /dev/null +++ b/paddle/function/ConvOp.h @@ -0,0 +1,146 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "Function.h" + +namespace paddle { + +/* + * \brief Based on the ConvFunctionBase class, the forward calculation, + * backward input calculation and backward filter calculation + * of convolution operations can be implemented. + * + * Arguments of forward and backward calculation: + * 1. Forward calculation of convolution. + * inputs = {INPUT, FILTER}, outputs = {OUTPUT} + * The first and second input arguments are input image and filter data. + * The output argument is output image. + * + * 2. Backward input calculation of convolution. + * inputs = {OUTPUT_GRAD, FILTER}, outputs = {INPUT_GRAD} + * The first and second input arguments are output grad image + * and filter data. + * The output argument is input grad image. + * + * 3. Backward filter calculation of convolution. + * inputs = {OUTPUT_GRAD, INPUT}, outputs = {FILTER_GRAD} + * The first and second input arguments are output grad image + * and input image. + * The output argument is filter grad. + * + * Arguments format of input, filter and output: + * 1. Input image, output image, input image gradient, output image gradient + * are all NCHW format. Where N is batch size, C is the number of channels, + * H and W is the height and width of image or image gradient. + * + * 2. The format of the filter data is MCHW, where M is the number of output + * image channels, C is the number of input image channels, + * H and W is height and width of filter. + * + * If `groups` is greater than 1, the filter's data format should be GMCHW, + * where G is the `groups`, and G * M is the number of output image + * channels, G * C is the number of input image channels, + * H and W is height and width of filter. + */ +class ConvFunctionBase : public FunctionBase { +public: + void init(const FuncConfig& config) override { + // function arguments + strides_ = config.get>("strides"); + paddings_ = config.get>("paddings"); + groups_ = config.get("groups"); + + // number of inputs and outputs + numInputs_ = 2; + numOutputs_ = 1; + } + + virtual void calc(const BufferArgs& inputs, const BufferArgs& outputs) {} + + // input can be INPUT and INPUT_GRAD + // filter can be FILTER and FILTER_GRAD + // output can be OUTPUT and OUTPUT_GRAD + void check(const TensorShape& input, + const TensorShape& filter, + const TensorShape& output) { + // inputs and outputs arguments should be 4-dimensional. + CHECK_EQ(input.ndims(), (size_t)4); + CHECK_EQ(output.ndims(), (size_t)4); + // The batchSize of the input needs to be equal to + // the batchSize of the output. + CHECK_EQ(input[0], output[0]); + + if (filter.ndims() == (size_t)4) { + // If the filter's dimension is 4, groups convolution is not supported. + CHECK_EQ(groups_, (size_t)1); + // The input and output channel dimensions are the second and first + // dimensions of the filter shape. + CHECK_EQ(input[1], filter[1]); + CHECK_EQ(output[1], filter[0]); + } else { + // filter argument should be 5-dimensional. + CHECK_EQ(filter.ndims(), (size_t)5); + // The first dimension of the filter is the size of the group + CHECK_EQ(filter[0], groups_); + // The input and output channel dimensions are the third and second + // dimensions of the filter shape. + CHECK_EQ(input[1], filter[2] * groups_); + CHECK_EQ(output[1], filter[1] * groups_); + } + } + +protected: + size_t getFilterHeight(const TensorShape& filter) const { + return filter[filter.ndims() - 2]; + } + + size_t getFilterWidth(const TensorShape& filter) const { + return filter[filter.ndims() - 1]; + } + + std::vector strides_; + std::vector paddings_; + + /// Group size, refer to grouped convolution in + /// Alex Krizhevsky's paper: when group=2, the first half of the + /// filters are only connected to the first half of the input channels, + /// and the second half only connected to the second half. + size_t groups_; + + inline int strideH() const { return strides_[0]; } + + inline int strideW() const { return strides_[1]; } + + inline int paddingH() const { return paddings_[0]; } + + inline int paddingW() const { return paddings_[1]; } + + // A temporary memory in convolution calculation. + MemoryHandlePtr memory_; + + template + void resizeBuffer(size_t newSize) { + if (!memory_ || newSize * sizeof(real) > memory_->getAllocSize()) { + if (Device == DEVICE_TYPE_CPU) { + memory_ = std::make_shared(newSize * sizeof(real)); + } else { + memory_ = std::make_shared(newSize * sizeof(real)); + } + } + } +}; + +} // namespace paddle diff --git a/paddle/function/ConvOpTest.cpp b/paddle/function/ConvOpTest.cpp new file mode 100644 index 0000000000000000000000000000000000000000..dfa2f784610b0dd60340e0ebc6a066437f3715eb --- /dev/null +++ b/paddle/function/ConvOpTest.cpp @@ -0,0 +1,210 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include "Function.h" +#include "FunctionTest.h" + +namespace paddle { + +enum TestType { + kForwardTest = 0, + kBackwardInputTest = 1, + kBackwardFilterTest = 2, +}; + +template +class ConvolutionTest { +public: + ConvolutionTest(const std::string& conv1, + const std::string& conv2, + TestType type, + std::string algo = "auto") { + for (size_t batchSize : {1, 32}) { + for (size_t inputSize : {7, 14, 54}) { + for (size_t filterSize : {1, 3, 5}) { + for (size_t inputChannels : {3, 64}) { + for (size_t outputChannels : {3, 64, 128}) { + if (inputChannels < outputChannels) break; + for (size_t stride : {1, 2}) { + for (size_t padding : {0, 1}) { + if (padding >= filterSize) break; + size_t outputSize = + (inputSize - filterSize + 2 * padding + stride) / stride; + VLOG(3) << " batchSize=" << batchSize + << " inputChannels=" << inputChannels + << " inputHeight=" << inputSize + << " inputWidth=" << inputSize + << " outputChannels=" << outputChannels + << " filterHeight=" << filterSize + << " filterWidth=" << filterSize + << " outputHeight=" << outputSize + << " outputWidth=" << outputSize + << " stride=" << stride << " padding=" << padding; + + std::vector paddings = {padding, padding}; + std::vector strides = {stride, stride}; + Compare2Function test( + conv1, + conv2, + FuncConfig() + .set("paddings", paddings) + .set("strides", strides) + .set("groups", (size_t)1) + .set("algo", algo)); + + TensorShape input{ + batchSize, inputChannels, inputSize, inputSize}; + TensorShape filter{ + outputChannels, inputChannels, filterSize, filterSize}; + TensorShape output{ + batchSize, outputChannels, outputSize, outputSize}; + + if (type == kForwardTest) { + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); + test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output)); + test.run(); + } else if (type == kBackwardInputTest) { + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); + test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO); + test.run(); + } else if (type == kBackwardFilterTest) { + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); + test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter)); + test.run(); + } + } + } + } + } + } + } + } + } +}; + +// Mainly used to test cases where the height and width (input, filter) +// are not equal. +template +class ConvolutionTest2 { +public: + ConvolutionTest2(const std::string& conv1, + const std::string& conv2, + TestType type, + std::string algo = "auto") { + for (size_t batchSize : {16}) { + for (size_t inputHeight : {7, 31}) { + for (size_t inputWidth : {10, 54}) { + for (size_t filterHeight : {1, 5}) { + for (size_t filterWidth : {3, 7}) { + for (size_t inputChannels : {7}) { + for (size_t outputChannels : {32}) { + size_t stride = 1; + size_t padding = 0; + size_t outputHeight = + (inputHeight - filterHeight + 2 * padding + stride) / + stride; + size_t outputWidth = + (inputWidth - filterWidth + 2 * padding + stride) / + stride; + VLOG(3) << " batchSize=" << batchSize + << " inputChannels=" << inputChannels + << " inputHeight=" << inputHeight + << " inputWidth=" << inputWidth + << " outputChannels=" << outputChannels + << " filterHeight=" << filterHeight + << " filterWidth=" << filterWidth + << " outputHeight=" << outputHeight + << " outputWidth=" << outputWidth + << " stride=" << stride << " padding=" << padding; + + std::vector paddings = {padding, padding}; + std::vector strides = {stride, stride}; + Compare2Function test( + conv1, + conv2, + FuncConfig() + .set("paddings", paddings) + .set("strides", strides) + .set("groups", (size_t)1) + .set("algo", algo)); + + TensorShape input{ + batchSize, inputChannels, inputHeight, inputWidth}; + TensorShape filter{ + outputChannels, inputChannels, filterHeight, filterWidth}; + TensorShape output{ + batchSize, outputChannels, outputHeight, outputWidth}; + + if (type == kForwardTest) { + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); + test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output)); + test.run(); + } else if (type == kBackwardInputTest) { + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); + test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO); + test.run(); + } else if (type == kBackwardFilterTest) { + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); + test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter)); + test.run(); + } + } + } + } + } + } + } + } + } +}; + +TEST(Forward, GEMM) { + ConvolutionTest test( + "NaiveConv-CPU", "GemmConv-CPU", kForwardTest); + ConvolutionTest2 test2( + "NaiveConv-CPU", "GemmConv-CPU", kForwardTest); +} + +#ifndef PADDLE_ONLY_CPU +TEST(Forward, GEMM2) { + ConvolutionTest test( + "GemmConv-CPU", "GemmConv-GPU", kForwardTest); + ConvolutionTest2 test2( + "GemmConv-CPU", "GemmConv-GPU", kForwardTest); +} + +TEST(BackwardInput, GEMM) { + ConvolutionTest test( + "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest); + ConvolutionTest2 test2( + "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest); +} + +TEST(BackwardFilter, GEMM) { + ConvolutionTest test( + "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest); + ConvolutionTest2 test2( + "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest); +} +#endif + +} // namespace paddle diff --git a/paddle/function/CosSimOpTest.cpp b/paddle/function/CosSimOpTest.cpp index 48c815f027161b48c17ce654ab819156fd856199..f6c0041101f50f8f47d45e0fe0fe1064e0f9cb69 100644 --- a/paddle/function/CosSimOpTest.cpp +++ b/paddle/function/CosSimOpTest.cpp @@ -22,7 +22,7 @@ void testCosSimForward(size_t height_x, size_t height_y, size_t width, real scale) { - FunctionCompare test("CosSimForward", FuncConfig().set("scale", scale)); + CpuGpuFuncCompare test("CosSimForward", FuncConfig().set("scale", scale)); // prepare input arguments test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, width})); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_y, width})); @@ -36,7 +36,7 @@ void testCosSimBackward(size_t height_x, size_t height_y, size_t width, real scale) { - FunctionCompare test("CosSimBackward", FuncConfig().set("scale", scale)); + CpuGpuFuncCompare test("CosSimBackward", FuncConfig().set("scale", scale)); // prepare input arguments test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1})); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1})); diff --git a/paddle/function/CrossMapNormalOpTest.cpp b/paddle/function/CrossMapNormalOpTest.cpp index 51f5da81bfc9ae870ac9949ba74da01a9449a04d..ed17b17da616db9d52318f21c133458d698b0dd8 100644 --- a/paddle/function/CrossMapNormalOpTest.cpp +++ b/paddle/function/CrossMapNormalOpTest.cpp @@ -28,11 +28,11 @@ TEST(CrossMapNormal, real) { << " size=" << size; // init Test object - FunctionCompare test("CrossMapNormal", - FuncConfig() - .set("size", size) - .set("scale", (real)1.5) - .set("pow", (real)0.5)); + CpuGpuFuncCompare test("CrossMapNormal", + FuncConfig() + .set("size", size) + .set("scale", (real)1.5) + .set("pow", (real)0.5)); // prepare input arguments TensorShape shape{numSamples, channels, imgSizeH, imgSizeW}; test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape)); @@ -57,11 +57,11 @@ TEST(CrossMapNormalGrad, real) { << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW << " size=" << size; - FunctionCompare test("CrossMapNormalGrad", - FuncConfig() - .set("size", size) - .set("scale", (real)1.5) - .set("pow", (real)0.5)); + CpuGpuFuncCompare test("CrossMapNormalGrad", + FuncConfig() + .set("size", size) + .set("scale", (real)1.5) + .set("pow", (real)0.5)); TensorShape shape{numSamples, channels, imgSizeH, imgSizeW}; test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape)); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape)); diff --git a/paddle/function/FunctionTest.h b/paddle/function/FunctionTest.h index 0cfafdb27f55a3e6617d31a968d2a05fc77f5b46..ba446bf92da264fafa1fb47a2c30da9cb13176ce 100644 --- a/paddle/function/FunctionTest.h +++ b/paddle/function/FunctionTest.h @@ -22,14 +22,62 @@ namespace paddle { typedef std::shared_ptr BufferArgPtr; +namespace test { +template +struct Allocator; + +template <> +struct Allocator { + using type = CpuMemoryHandle; +}; + +template <> +struct Allocator { + using type = GpuMemoryHandle; +}; + +// Copy argument1 to argument2 +template +class CopyArgument { +public: + void operator()(const BufferArg& arg1, BufferArg& arg2) { + CHECK_EQ(arg1.valueType(), arg2.valueType()); + CHECK_LE(arg1.shape().getElements(), arg2.shape().getElements()); + + if (arg1.valueType() == VALUE_TYPE_INT32) { + IVectorPtr vector1 = + IVector::create((int*)arg1.data(), + arg1.shape().getElements(), + DType1 == DEVICE_TYPE_CPU ? false : true); + IVectorPtr vector2 = + IVector::create((int*)arg2.data(), + arg2.shape().getElements(), + DType2 == DEVICE_TYPE_CPU ? false : true); + vector2->copyFrom(*vector1); + } else { + VectorPtr vector1 = + Vector::create((real*)arg1.data(), + arg1.shape().getElements(), + DType1 == DEVICE_TYPE_CPU ? false : true); + VectorPtr vector2 = + Vector::create((real*)arg2.data(), + arg2.shape().getElements(), + DType2 == DEVICE_TYPE_CPU ? false : true); + vector2->copyFrom(*vector1); + } + } +}; +} // namespace test + /** - * \brief A class for comparing CPU and GPU implementations of Function. - * + * \brief A class for comparing two Functions of different implementations. + * For example, can be used to compare the CPU and GPU implementation + * of the function is consistent. * * Use case: * // Initializes a test object, the corresponding cpu and gpu Function * // are constructed according to FunctionName and FuncConfig. - * FunctionCompare test(FunctionName, FuncConfig); + * CpuGpuFuncCompare test(FunctionName, FuncConfig); * // Prepare inputs and outputs arguments. * // Here the input and output can not contain real data, * // only contains the argument type and shape. @@ -45,28 +93,38 @@ typedef std::shared_ptr BufferArgPtr; * // Compares CPU and GPU calculation results for consistency. * test.run(); */ -class FunctionCompare { +template +class Compare2Function { public: - FunctionCompare(const std::string& name, const FuncConfig& config) - : cpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-CPU")), - gpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) { - cpuFunc_->init(config); - gpuFunc_->init(config); + typedef typename test::Allocator::type Allocator1; + typedef typename test::Allocator::type Allocator2; + typedef typename Tensor::Vector Vector1; + typedef typename Tensor::Vector Vector2; + typedef typename Tensor::SparseMatrix SparseMatrix1; + typedef typename Tensor::SparseMatrix SparseMatrix2; + + Compare2Function(const std::string& name1, + const std::string& name2, + const FuncConfig& config) + : function1_(FunctionBase::funcRegistrar_.createByType(name1)), + function2_(FunctionBase::funcRegistrar_.createByType(name2)) { + function1_->init(config); + function2_->init(config); } - ~FunctionCompare() {} + ~Compare2Function() {} // input need only contains shape, do not contains data. void addInputs(const BufferArg& input) { size_t size = input.shape().getElements() * sizeOfValuType(input.valueType()); - cpuMemory_.emplace_back(std::make_shared(size)); - gpuMemory_.emplace_back(std::make_shared(size)); + func1Memory_.emplace_back(std::make_shared(size)); + func2Memory_.emplace_back(std::make_shared(size)); - cpuInputs_.emplace_back(std::make_shared( - cpuMemory_.back()->getBuf(), input.valueType(), input.shape())); - gpuInputs_.emplace_back(std::make_shared( - gpuMemory_.back()->getBuf(), input.valueType(), input.shape())); + func1Inputs_.emplace_back(std::make_shared( + func1Memory_.back()->getBuf(), input.valueType(), input.shape())); + func2Inputs_.emplace_back(std::make_shared( + func2Memory_.back()->getBuf(), input.valueType(), input.shape())); } // assume one copy of sequence is shared by different SequenceArgs @@ -75,62 +133,57 @@ public: size_t batchSize = input.shape()[0]; size_t numSeqs = batchSize / 10 + 1; size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32); - cpuMemory_.emplace_back(std::make_shared(sizeId)); - gpuMemory_.emplace_back(std::make_shared(sizeId)); - cpuSeq_ = std::make_shared(cpuMemory_.back()->getBuf(), - TensorShape{numSeqs + 1}); - gpuSeq_ = std::make_shared(gpuMemory_.back()->getBuf(), - TensorShape{numSeqs + 1}); + func1Memory_.emplace_back(std::make_shared(sizeId)); + func2Memory_.emplace_back(std::make_shared(sizeId)); + seq1_ = std::make_shared(func1Memory_.back()->getBuf(), + TensorShape{numSeqs + 1}); + seq2_ = std::make_shared(func2Memory_.back()->getBuf(), + TensorShape{numSeqs + 1}); /// init sequence Id - initArg(*cpuSeq_, batchSize); + initArg(*seq1_, batchSize); - // todo(tianbing), delete it - CHECK_EQ(cpuSeq_->shape().getElements(), cpuSeq_->numSeqs() + 1); - - CpuIVector cpuSeq(cpuSeq_->shape().getElements(), (int*)cpuSeq_->data()); - GpuIVector gpuSeq(gpuSeq_->shape().getElements(), (int*)gpuSeq_->data()); - gpuSeq.copyFrom(cpuSeq); + copyArg_(*seq1_, *seq2_); } void addInputs(const SequenceArg& input) { CHECK_EQ(input.shape().ndims(), 2UL); size_t batchSize = input.shape()[0]; - if (!cpuSeq_ || !gpuSeq_) { // sequence not exist + if (!seq1_ || !seq2_) { // sequence not exist addSequence(SequenceIdArg(TensorShape{batchSize})); } size_t size = input.shape().getElements() * sizeOfValuType(input.valueType()); - cpuMemory_.emplace_back(std::make_shared(size)); - gpuMemory_.emplace_back(std::make_shared(size)); + func1Memory_.emplace_back(std::make_shared(size)); + func2Memory_.emplace_back(std::make_shared(size)); /// SequenceArg - cpuInputs_.emplace_back( - std::make_shared(cpuMemory_.back()->getBuf(), + func1Inputs_.emplace_back( + std::make_shared(func1Memory_.back()->getBuf(), input.valueType(), input.shape(), - *cpuSeq_)); - gpuInputs_.emplace_back( - std::make_shared(gpuMemory_.back()->getBuf(), + *seq1_)); + func2Inputs_.emplace_back( + std::make_shared(func2Memory_.back()->getBuf(), input.valueType(), input.shape(), - *gpuSeq_)); + *seq2_)); } // output need only contains shape, do not contains data. void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) { size_t size = output.shape().getElements() * sizeOfValuType(output.valueType()); - cpuMemory_.emplace_back(std::make_shared(size)); - gpuMemory_.emplace_back(std::make_shared(size)); + func1Memory_.emplace_back(std::make_shared(size)); + func2Memory_.emplace_back(std::make_shared(size)); - cpuOutputs_.emplace_back( - std::make_shared(cpuMemory_.back()->getBuf(), + func1Outputs_.emplace_back( + std::make_shared(func1Memory_.back()->getBuf(), output.valueType(), output.shape(), argType)); - gpuOutputs_.emplace_back( - std::make_shared(gpuMemory_.back()->getBuf(), + func2Outputs_.emplace_back( + std::make_shared(func2Memory_.back()->getBuf(), output.valueType(), output.shape(), argType)); @@ -138,14 +191,14 @@ public: /// add and init output sparse matrix void addOutputs(const SparseMatrixArg& output, ArgType argType = ASSIGN_TO) { - cpuSparse_ = std::make_shared( + sparse1_ = std::make_shared( output.shape()[0], output.shape()[1], output.nnz(), static_cast(output.dataType()), static_cast(output.dataFormat())); - gpuSparse_ = std::make_shared( + sparse2_ = std::make_shared( output.shape()[0], output.shape()[1], output.nnz(), @@ -154,52 +207,52 @@ public: /// init sparse matrix hl_stream_t stream(HPPL_STREAM_1); - cpuSparse_->randomizeUniform(); - gpuSparse_->copyFrom(*cpuSparse_, stream); + sparse1_->randomizeUniform(); + sparse2_->copyFrom(*sparse1_, stream); hl_stream_synchronize(stream); - cpuOutputs_.emplace_back( - std::make_shared(*cpuSparse_, argType)); - gpuOutputs_.emplace_back( - std::make_shared(*gpuSparse_, argType)); + func1Outputs_.emplace_back( + std::make_shared(*sparse1_, argType)); + func2Outputs_.emplace_back( + std::make_shared(*sparse2_, argType)); } void addOutputs(const SequenceArg& output, ArgType argType = ASSIGN_TO) { CHECK_EQ(output.shape().ndims(), 2UL); size_t batchSize = output.shape()[0]; - if (!cpuSeq_ || !gpuSeq_) { // sequence not exist + if (!seq1_ || !seq2_) { // sequence not exist addSequence(SequenceIdArg(TensorShape{batchSize})); } size_t size = output.shape().getElements() * sizeOfValuType(output.valueType()); - cpuMemory_.emplace_back(std::make_shared(size)); - gpuMemory_.emplace_back(std::make_shared(size)); + func1Memory_.emplace_back(std::make_shared(size)); + func2Memory_.emplace_back(std::make_shared(size)); /// SequenceArg - cpuOutputs_.emplace_back( - std::make_shared(cpuMemory_.back()->getBuf(), + func1Outputs_.emplace_back( + std::make_shared(func1Memory_.back()->getBuf(), output.valueType(), output.shape(), - *cpuSeq_, + *seq1_, argType)); - gpuOutputs_.emplace_back( - std::make_shared(gpuMemory_.back()->getBuf(), + func2Outputs_.emplace_back( + std::make_shared(func2Memory_.back()->getBuf(), output.valueType(), output.shape(), - *gpuSeq_, + *seq2_, argType)); } void addInputs(const SparseMatrixArg& input) { - cpuSparse_ = std::make_shared( + sparse1_ = std::make_shared( input.shape()[0], input.shape()[1], input.nnz(), static_cast(input.dataType()), static_cast(input.dataFormat())); - gpuSparse_ = std::make_shared( + sparse2_ = std::make_shared( input.shape()[0], input.shape()[1], input.nnz(), @@ -208,12 +261,12 @@ public: /// init sparse matrix hl_stream_t stream(HPPL_STREAM_1); - cpuSparse_->randomizeUniform(); - gpuSparse_->copyFrom(*cpuSparse_, stream); + sparse1_->randomizeUniform(); + sparse2_->copyFrom(*sparse1_, stream); hl_stream_synchronize(stream); - cpuInputs_.emplace_back(std::make_shared(*cpuSparse_)); - gpuInputs_.emplace_back(std::make_shared(*gpuSparse_)); + func1Inputs_.emplace_back(std::make_shared(*sparse1_)); + func2Inputs_.emplace_back(std::make_shared(*sparse2_)); } void run() { @@ -236,27 +289,27 @@ public: function->calc(inArgs, outArgs); }; - callFunction(cpuFunc_.get(), cpuInputs_, cpuOutputs_); - callFunction(gpuFunc_.get(), gpuInputs_, gpuOutputs_); + callFunction(function1_.get(), func1Inputs_, func1Outputs_); + callFunction(function2_.get(), func2Inputs_, func2Outputs_); // check outputs compareOutputs(); } - std::shared_ptr getCpuFunction() const { return cpuFunc_; } + std::shared_ptr getFunction1() const { return function1_; } - std::shared_ptr getGpuFunction() const { return gpuFunc_; } + std::shared_ptr getFunction2() const { return function2_; } protected: // only init cpu argument, gpu argument copy from cpu argument. void initArg(BufferArg& arg) { - CpuVector vector(arg.shape().getElements(), (real*)arg.data()); + Vector1 vector(arg.shape().getElements(), (real*)arg.data()); vector.uniform(0.001, 1); } void initArg(SequenceArg& arg) { /// init only matrix - CpuVector vector(arg.shape().getElements(), (real*)arg.data()); + Vector1 vector(arg.shape().getElements(), (real*)arg.data()); vector.uniform(0.001, 1); } @@ -276,73 +329,72 @@ protected: } void initInputs() { - for (size_t i = 0; i < cpuInputs_.size(); i++) { - if (cpuInputs_[i]->isSparseArg()) { + for (size_t i = 0; i < func1Inputs_.size(); i++) { + if (func1Inputs_[i]->isSparseArg()) { continue; /// sparse matrix already init } - if (cpuInputs_[i]->isSequenceArg()) { - initArg(dynamic_cast(*cpuInputs_[i])); + if (func1Inputs_[i]->isSequenceArg()) { + initArg(dynamic_cast(*func1Inputs_[i])); } else { - initArg(*cpuInputs_[i]); + initArg(*func1Inputs_[i]); } - // TODO: Need a BufferCopy used to copy from one BufferArg to another. - CpuVector cpuVector(cpuInputs_[i]->shape().getElements(), - (real*)cpuInputs_[i]->data()); - GpuVector gpuVector(gpuInputs_[i]->shape().getElements(), - (real*)gpuInputs_[i]->data()); - gpuVector.copyFrom(cpuVector); + copyArg_(*func1Inputs_[i], *func2Inputs_[i]); } } void initOutputs() { - for (size_t i = 0; i < cpuOutputs_.size(); i++) { - if (cpuOutputs_[i]->isSparseArg()) { + for (size_t i = 0; i < func1Outputs_.size(); i++) { + if (func1Outputs_[i]->isSparseArg()) { continue; /// sparse matrix already init } - if (cpuOutputs_[i]->isSequenceArg()) { - initArg(dynamic_cast(*cpuOutputs_[i])); + if (func1Outputs_[i]->isSequenceArg()) { + initArg(dynamic_cast(*func1Outputs_[i])); } else { - initArg(*cpuOutputs_[i]); + initArg(*func1Outputs_[i]); } - // TODO: Need a BufferCopy used to copy from one BufferArg to another. - CpuVector cpuVector(cpuOutputs_[i]->shape().getElements(), - (real*)cpuOutputs_[i]->data()); - GpuVector gpuVector(gpuOutputs_[i]->shape().getElements(), - (real*)gpuOutputs_[i]->data()); - - gpuVector.copyFrom(cpuVector); + copyArg_(*func1Outputs_[i], *func2Outputs_[i]); } } void compareOutputs() { - for (size_t i = 0; i < cpuOutputs_.size(); i++) { + for (size_t i = 0; i < func1Outputs_.size(); i++) { // TODO, Need a BufferCheck used to compare the two buffers. - const auto cpu = cpuOutputs_[i]; - const auto gpu = gpuOutputs_[i]; + const auto cpu = func1Outputs_[i]; + const auto gpu = func2Outputs_[i]; CHECK_EQ(cpu->numElements(), gpu->numElements()); - CpuVector cpuVector(cpu->numElements(), (real*)cpu->data()); - GpuVector gpuVector(gpu->numElements(), (real*)gpu->data()); + Vector1 cpuVector(cpu->numElements(), (real*)cpu->data()); + Vector2 gpuVector(gpu->numElements(), (real*)gpu->data()); autotest::TensorCheckErr(cpuVector, gpuVector); } } protected: - std::shared_ptr cpuFunc_; - std::shared_ptr gpuFunc_; - std::vector cpuMemory_; - std::vector gpuMemory_; - std::vector cpuInputs_; - std::vector cpuOutputs_; - std::vector gpuInputs_; - std::vector gpuOutputs_; - std::shared_ptr cpuSparse_; - std::shared_ptr gpuSparse_; - std::shared_ptr cpuSeq_; - std::shared_ptr gpuSeq_; + std::shared_ptr function1_; + std::shared_ptr function2_; + std::vector> func1Memory_; + std::vector> func2Memory_; + std::vector func1Inputs_; + std::vector func1Outputs_; + std::vector func2Inputs_; + std::vector func2Outputs_; + std::shared_ptr sparse1_; + std::shared_ptr sparse2_; + std::shared_ptr seq1_; + std::shared_ptr seq2_; + test::CopyArgument copyArg_; +}; + +class CpuGpuFuncCompare + : public Compare2Function { +public: + CpuGpuFuncCompare(const std::string& name, const FuncConfig& config) + : Compare2Function(name + "-CPU", name + "-GPU", config) {} + + ~CpuGpuFuncCompare() {} }; } // namespace paddle diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c7a57801ed6098260af5ba22be82ac4ea7c2e601 --- /dev/null +++ b/paddle/function/GemmConvOp.cpp @@ -0,0 +1,386 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "GemmConvOp.h" +#include "GemmFunctor.h" +#include "paddle/math/MemoryHandle.h" + +namespace paddle { + +/* + * imData = [input_channels, input_height, input_width] + * colData = [input_channels, filter_height, filter_width, + * output_height, output_width] + */ +template +class Im2ColFunctor { +public: + void operator()(const T* imData, + int inputChannels, + int inputHeight, + int inputWidth, + int filterHeight, + int filterWidth, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int outputHeight, + int outputWidth, + T* colData) { + int channelsCol = inputChannels * filterHeight * filterWidth; + + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterWidth; + int hOffset = (c / filterWidth) % filterHeight; + int c_im = c / filterWidth / filterHeight; + for (int h = 0; h < outputHeight; ++h) { + for (int w = 0; w < outputWidth; ++w) { + int imRowIdx = h * strideHeight + hOffset; + int imColIdx = w * strideWidth + wOffset; + if ((imRowIdx - paddingHeight) < 0 || + (imRowIdx - paddingHeight) >= inputHeight || + (imColIdx - paddingWidth) < 0 || + (imColIdx - paddingWidth) >= inputWidth) { + colData[(c * outputHeight + h) * outputWidth + w] = T(0); + } else { + imRowIdx += c_im * inputHeight - paddingHeight; + imColIdx -= paddingWidth; + colData[(c * outputHeight + h) * outputWidth + w] = + imData[imRowIdx * inputWidth + imColIdx]; + } + } + } + } + } +}; + +template +class Col2ImFunctor { +public: + void operator()(const T* colData, + int inputChannels, + int inputHeight, + int inputWidth, + int filterHeight, + int filterWidth, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int outputHeight, + int outputWidth, + T* imData) { + int channelsCol = inputChannels * filterHeight * filterWidth; + + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterWidth; + int hOffset = (c / filterWidth) % filterHeight; + int c_im = c / filterWidth / filterHeight; + for (int h = 0; h < outputHeight; ++h) { + for (int w = 0; w < outputWidth; ++w) { + int imRowIdx = h * strideHeight + hOffset; + int imColIdx = w * strideWidth + wOffset; + if ((imRowIdx - paddingHeight) >= 0 && + (imRowIdx - paddingHeight) < inputHeight && + (imColIdx - paddingWidth) >= 0 && + (imColIdx - paddingWidth) < inputWidth) { + imRowIdx += c_im * inputHeight - paddingHeight; + imColIdx -= paddingWidth; + imData[imRowIdx * inputWidth + imColIdx] += + colData[(c * outputHeight + h) * outputWidth + w]; + } + } + } + } + } +}; + +/* + * \brief Forward calculation of convolution. + */ +template +class GemmConvFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + // TODO(hedaoyuan): Need to define some index macros, + // to avoid useing 0 and 1. + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + check(input, filter, output); + + real beta; + if (outputs[0].getArgType() == ADD_TO) { + beta = 1.0; + } else { + beta = 0.0; + } + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + + real* inputData = inputs[0].data(); + real* filterData = inputs[1].data(); + real* outputData = outputs[0].data(); + + size_t size = inputChannels / groups_ * filterHeight * filterWidth * + outputHeight * outputWidth; + resizeBuffer(size); + real* colData = reinterpret_cast(memory_->getBuf()); + + Im2ColFunctor im2col; + GemmFunctor gemm; + size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth; + size_t outputOffset = + (outputChannels / groups_) * outputHeight * outputWidth; + size_t filterOffset = filter.getElements() / groups_; + + for (size_t i = 0; i < batchSize; i++) { + for (size_t g = 0; g < groups_; g++) { + im2col(inputData + g * inputOffset, + inputChannels / groups_, + inputHeight, + inputWidth, + filterHeight, + filterWidth, + strideH(), + strideW(), + paddingH(), + paddingW(), + outputHeight, + outputWidth, + colData); + + int M = outputChannels / groups_; + int N = outputHeight * outputWidth; + int K = inputChannels / groups_ * filterHeight * filterWidth; + gemm(CblasNoTrans, + CblasNoTrans, + M, + N, + K, + 1.0f, + filterData + g * filterOffset, + K, + colData, + N, + beta, + outputData + g * outputOffset, + N); + } + inputData += inputChannels * inputHeight * inputWidth; + outputData += outputChannels * outputHeight * outputWidth; + } + } +}; + +/* + * \brief Backward input calculation of convolution. + */ +template +class GemmConvGradInputFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + // Since the implementation of Col2ImFunctor is ADD_TO, + // this function only supports ADD_TO mode. + CHECK_EQ(outputs[0].getArgType(), ADD_TO); + const TensorShape& output = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& input = outputs[0].shape(); + check(input, filter, output); + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + + real* outputGrad = inputs[0].data(); + real* filterData = inputs[1].data(); + real* inputGrad = outputs[0].data(); + + size_t size = inputChannels / groups_ * filterHeight * filterWidth * + outputHeight * outputWidth; + resizeBuffer(size); + real* colData = reinterpret_cast(memory_->getBuf()); + + Col2ImFunctor col2im; + GemmFunctor gemm; + size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth; + size_t outputOffset = + (outputChannels / groups_) * outputHeight * outputWidth; + size_t filterOffset = filter.getElements() / groups_; + + for (size_t i = 0; i < batchSize; i++) { + for (size_t g = 0; g < groups_; g++) { + int K = outputChannels / groups_; + int N = outputHeight * outputWidth; + int M = inputChannels / groups_ * filterHeight * filterWidth; + gemm(CblasTrans, + CblasNoTrans, + M, + N, + K, + 1.0f, + filterData + g * filterOffset, + M, + outputGrad + g * outputOffset, + N, + 0.0f, + colData, + N); + + col2im(colData, + inputChannels / groups_, + inputHeight, + inputWidth, + filterHeight, + filterWidth, + strideH(), + strideW(), + paddingH(), + paddingW(), + outputHeight, + outputWidth, + inputGrad + g * inputOffset); + } + inputGrad += inputChannels * inputHeight * inputWidth; + outputGrad += outputChannels * outputHeight * outputWidth; + } + } +}; + +/* + * \brief Backward filter calculation of convolution. + */ +template +class GemmConvGradFilterFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + const TensorShape& output = inputs[0].shape(); + const TensorShape& input = inputs[1].shape(); + const TensorShape& filter = outputs[0].shape(); + check(input, filter, output); + + real beta; + if (outputs[0].getArgType() == ADD_TO) { + beta = 1.0; + } else { + beta = 0.0; + } + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + + real* outputGrad = inputs[0].data(); + real* inputData = inputs[1].data(); + real* filterGrad = outputs[0].data(); + + size_t size = inputChannels / groups_ * filterHeight * filterWidth * + outputHeight * outputWidth; + resizeBuffer(size); + real* colData = reinterpret_cast(memory_->getBuf()); + + Im2ColFunctor im2col; + GemmFunctor gemm; + size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth; + size_t outputOffset = + (outputChannels / groups_) * outputHeight * outputWidth; + size_t filterOffset = filter.getElements() / groups_; + for (size_t i = 0; i < batchSize; i++) { + for (size_t g = 0; g < groups_; g++) { + im2col(inputData + g * inputOffset, + inputChannels / groups_, + inputHeight, + inputWidth, + filterHeight, + filterWidth, + strideH(), + strideW(), + paddingH(), + paddingW(), + outputHeight, + outputWidth, + colData); + + int M = outputChannels / groups_; + int K = outputHeight * outputWidth; + int N = inputChannels / groups_ * filterHeight * filterWidth; + gemm(CblasNoTrans, + CblasTrans, + M, + N, + K, + 1.0f, + outputGrad + g * outputOffset, + K, + colData, + K, + i == 0 ? beta : 1.0f, + filterGrad + g * filterOffset, + N); + } + inputData += inputChannels * inputHeight * inputWidth; + outputGrad += outputChannels * outputHeight * outputWidth; + } + } +}; + +REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction); +REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction); +REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction); +#ifndef PADDLE_ONLY_CPU +REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction); +REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction); +REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction); +#endif + +} // namespace paddle diff --git a/paddle/function/GemmConvOp.h b/paddle/function/GemmConvOp.h new file mode 100644 index 0000000000000000000000000000000000000000..9f11cce597a07ce2a54f518be30b657c26ab7516 --- /dev/null +++ b/paddle/function/GemmConvOp.h @@ -0,0 +1,62 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "ConvOp.h" + +namespace paddle { + +/* + * imData = [input_channels, input_height, input_width] + * colData = [input_channels, filter_height, filter_width, + * output_height, output_width] + */ +template +class Im2ColFunctor { +public: + void operator()(const T* imData, + int inputChannels, + int inputHeight, + int inputWidth, + int filterHeight, + int filterWidth, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int outputHeight, + int outputWidth, + T* colData); +}; + +template +class Col2ImFunctor { +public: + void operator()(const T* colData, + int inputChannels, + int inputHeight, + int inputWidth, + int filterHeight, + int filterWidth, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int outputHeight, + int outputWidth, + T* imData); +}; + +} // namespace paddle diff --git a/paddle/function/GemmConvOpGpu.cu b/paddle/function/GemmConvOpGpu.cu new file mode 100644 index 0000000000000000000000000000000000000000..2a1795ff0fb5643ea436c94fe893fe866056fccb --- /dev/null +++ b/paddle/function/GemmConvOpGpu.cu @@ -0,0 +1,186 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "ConvOp.h" +#include "GemmConvOp.h" + +namespace paddle { + +template +__global__ +void im2col(const T* data_im, int numOuts, int height, int width, + int blockH, int blockW, + int strideH, int strideW, + int paddingH, int paddingW, + int height_col, int width_col, + T* data_col) { + int index = + (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; + if (index < numOuts) { + int w_out = index % width_col; + index /= width_col; + int h_out = index % height_col; + int channel_in = index / height_col; + int channel_out = channel_in * blockH * blockW; + int h_in = h_out * strideH; + int w_in = w_out * strideW; + + data_col += (channel_out * height_col + h_out) * width_col + w_out; + for (int i = 0; i < blockH; ++i) { + for (int j = 0; j < blockW; ++j) { + int rIdx = int(h_in+i); + int cIdx = int(w_in+j); + if ((rIdx-(int)paddingH) >= (int)height || + (rIdx-(int)paddingH) < 0 || + (cIdx-(int)paddingW) >= (int)width || + (cIdx-(int)paddingW) < 0) { + *data_col = 0; + } else { + rIdx = rIdx + channel_in*height - paddingH; + cIdx = cIdx - paddingW; + *data_col = data_im[rIdx* width + cIdx]; + } + data_col += height_col * width_col; + } + } + } +} + +template +class Im2ColFunctor { +public: + void operator()(const T* imData, + int inputChannels, + int inputHeight, + int inputWidth, + int filterHeight, + int filterWidth, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int outputHeight, + int outputWidth, + T* colData) { + int numKernels = inputChannels * outputHeight * outputWidth; + int blocks = (numKernels + 1024 -1) / 1024; + int blockX = 512; + int blockY = (blocks + 512 - 1) / 512; + dim3 threads(1024, 1); + dim3 grid(blockX, blockY); + im2col<<< grid, threads, 0, STREAM_DEFAULT >>> + (imData, numKernels, inputHeight, inputWidth, filterHeight, filterWidth, + strideHeight, strideWidth, paddingHeight, paddingWidth, + outputHeight, outputWidth, colData); + CHECK_SYNC("Im2ColFunctor GPU failed"); + } +}; + +template +__global__ +void col2im(size_t n, const T* data_col, size_t height, + size_t width, size_t channels, + size_t blockH, size_t blockW, + size_t strideH, size_t strideW, + size_t paddingH, size_t paddingW, + size_t height_col, size_t width_col, + T* data_im) { + size_t index = + (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; + if (index < n) { + T val = 0; + int w = int(index % width); + int h = int((index / width) % height); + int c = int(index / (width * height)); + if ((w - (int)paddingW) >= 0 && + (w - (int)paddingW) < (width-2 * paddingW) && + (h - (int)paddingH) >= 0 && + (h - paddingH) < (height - 2 * paddingH)) { + // compute the start and end of the output + int w_col_start = + (w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1; + int w_col_end = + min((int)(w / (int)strideW + 1), (int)(width_col)); + int h_col_start = + (h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1; + int h_col_end = min(int(h / strideH + 1), int(height_col)); + for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { + for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { + // the col location: [c * width * height + h_out, w_out] + int c_col = int(c * blockH* blockW) + \ + (h - h_col * (int)strideH) * (int)blockW + + (w - w_col * (int)strideW); + val += data_col[(c_col * height_col + h_col) * width_col + w_col]; + } + } + h -= paddingH; + w -= paddingW; + data_im[c*((width-2*paddingW) * (height-2*paddingH)) + + h*(width-2*paddingW) + w] += val; + } + } +} + +template +class Col2ImFunctor { +public: + void operator()(const T* colData, + int inputChannels, + int inputHeight, + int inputWidth, + int filterHeight, + int filterWidth, + int strideHeight, + int strideWidth, + int paddingHeight, + int paddingWidth, + int outputHeight, + int outputWidth, + T* imData) { + size_t numKernels = inputChannels * (inputHeight + 2*paddingHeight) + * (inputWidth + 2*paddingWidth); + + size_t blocks = (numKernels + 1024 -1) / 1024; + size_t blockX = 512; + size_t blockY = (blocks+512-1)/512; + dim3 threads(1024, 1); + dim3 grid(blockX, blockY); + + // To avoid involving atomic operations, we will launch one kernel per + // bottom dimension, and then in the kernel add up the top dimensions. + col2im<<< grid, threads, 0, STREAM_DEFAULT >>> + (numKernels, + colData, + inputHeight + 2*paddingHeight, + inputWidth + 2*paddingWidth, + inputChannels, + filterHeight, + filterWidth, + strideHeight, + strideWidth, + paddingHeight, + paddingWidth, + outputHeight, + outputWidth, + imData); + CHECK_SYNC("Col2ImFunctor GPU failed"); + } +}; + +template class Im2ColFunctor; +template class Im2ColFunctor; +template class Col2ImFunctor; +template class Col2ImFunctor; + +} // namespace paddle diff --git a/paddle/function/GemmFunctor.h b/paddle/function/GemmFunctor.h new file mode 100644 index 0000000000000000000000000000000000000000..d5db5cf5e7a855d89b262fe8cf42aa2c55f419f1 --- /dev/null +++ b/paddle/function/GemmFunctor.h @@ -0,0 +1,96 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/math/MathFunctions.h" + +namespace paddle { + +// TODO(hedaoyuan): Since the hl_matrix_mul interface does not conform to the +// cblas_dgemm interface's parameter format, it is necessary to introduce +// GemmFunctor as a new interface. Later, when considering the implementation +// of MatMulFunction, we need to consider the reconstruction of hl_matrix_mul +// interface. +template +class GemmFunctor { +public: + void operator()(const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE TransB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc); +}; + +template +class GemmFunctor { +public: + void operator()(const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE TransB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc) { + gemm(transA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); + } +}; + +template +class GemmFunctor { +public: + void operator()(const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE TransB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc) { + hl_matrix_mul((T*)A, + transA == CblasNoTrans ? HPPL_OP_N : HPPL_OP_T, + (T*)B, + TransB == CblasNoTrans ? HPPL_OP_N : HPPL_OP_T, + C, + M, + N, + K, + alpha, + beta, + lda, + ldb, + ldc); + } +}; + +} // namespace paddle diff --git a/paddle/function/MulOpTest.cpp b/paddle/function/MulOpTest.cpp index 8753057ebf73c99336b2f5d9c610e4aaf293f845..d31eb0c74f25f5c2ef910264bdf2779e16b1a004 100644 --- a/paddle/function/MulOpTest.cpp +++ b/paddle/function/MulOpTest.cpp @@ -35,7 +35,7 @@ void testFuncDDDMatrix( size_t heightC = dimM; size_t widthC = dimN; // init Test object - FunctionCompare test( + CpuGpuFuncCompare test( "MulOp", FuncConfig().set("aTrans", transa).set("bTrans", transb)); // prepare input arguments /// matrix A : HA * WA @@ -81,8 +81,8 @@ void testFuncDSparseDMatrix( size_t dimM, size_t dimN, size_t dimK, size_t nnz, SparseFormat FORMAT) { real scaleT = 1.0; // init Test object - FunctionCompare test("MulOp", - FuncConfig().set("aTrans", false).set("bTrans", false)); + CpuGpuFuncCompare test( + "MulOp", FuncConfig().set("aTrans", false).set("bTrans", false)); // prepare input arguments /// sparse matrix A : M * K test.addInputs(SparseMatrixArg( @@ -126,8 +126,8 @@ void testFuncDDSparseMatrix( size_t dimM, size_t dimN, size_t dimK, size_t nnz, SparseFormat FORMAT) { real scaleT = 1.0; // init Test object - FunctionCompare test("MulOp", - FuncConfig().set("aTrans", false).set("bTrans", false)); + CpuGpuFuncCompare test( + "MulOp", FuncConfig().set("aTrans", false).set("bTrans", false)); // prepare input arguments /// matrix A : M * K test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{dimM, dimK})); @@ -172,8 +172,8 @@ void testFuncSparseDDMatrix( size_t dimM, size_t dimN, size_t dimK, size_t nnz, SparseFormat FORMAT) { real scaleT = 1.0; // init Test object - FunctionCompare test("MulOp", - FuncConfig().set("aTrans", false).set("bTrans", false)); + CpuGpuFuncCompare test( + "MulOp", FuncConfig().set("aTrans", false).set("bTrans", false)); // prepare input arguments /// matrix A : M * K test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{dimM, dimK})); diff --git a/paddle/function/NaiveConvOp.cpp b/paddle/function/NaiveConvOp.cpp new file mode 100644 index 0000000000000000000000000000000000000000..1d204f99e0e127688eeda28b46715a37c1100c4e --- /dev/null +++ b/paddle/function/NaiveConvOp.cpp @@ -0,0 +1,137 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "ConvOp.h" + +namespace paddle { + +/* + * The three arguments are stored in memory in row major order. + * inputData = [batchSize, inputChannels, inputHeight, inputWidth] + * filterData = [outputChannels, inputChannels, filterHeight, filterWidth] + * outputData = [batchSize, outputChannels, outputHeight, outputWidth] + */ +template +class NaiveConvFunctor { +public: + void operator()(const T* inputData, + size_t batchSize, + size_t inputChannels, + size_t inputHeight, + size_t inputWidth, + const T* filterData, + size_t filterHeight, + size_t filterWidth, + T* outputData, + size_t outputChannels, + size_t outputHeight, + size_t outputWidth, + size_t paddingH, + size_t paddingW, + size_t strideH, + size_t strideW) { + for (size_t batch = 0; batch < batchSize; batch++) { + for (size_t outC = 0; outC < outputChannels; outC++) { + for (size_t outH = 0; outH < outputHeight; outH++) { + for (size_t outW = 0; outW < outputWidth; outW++) { + const int inStartH = (outH * strideH) - paddingH; + const int inStartW = (outW * strideW) - paddingW; + T outValue = (T)0; + for (size_t inC = 0; inC < inputChannels; inC++) { + for (size_t fH = 0; fH < filterHeight; fH++) { + for (size_t fW = 0; fW < filterWidth; fW++) { + T inValue; + const int inH = inStartH + fH; + const int inW = inStartW + fW; + if ((inH >= 0 && inH < inputHeight) && + (inW >= 0 && inW < inputWidth)) { + size_t offsetInput = + batch * inputChannels * inputHeight * inputWidth + + inC * inputHeight * inputWidth + inH * inputWidth + inW; + inValue = inputData[offsetInput]; + } else { + inValue = (T)0; + } + size_t offsetFilter = + outC * inputChannels * filterHeight * filterWidth + + inC * filterHeight * filterWidth + fH * filterWidth + fW; + T filterValue = filterData[offsetFilter]; + outValue += (inValue * filterValue); + } + } + } + + size_t offset = + batch * outputChannels * outputHeight * outputWidth + + outC * outputHeight * outputWidth + outH * outputWidth + outW; + outputData[offset] = outValue; + } + } + } + } + } +}; + +template +class NaiveConvFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + check(input, filter, output); + CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO); + + size_t batchSize = inputs[0].shape()[0]; + size_t inputChannels = inputs[0].shape()[1]; + size_t inputHeight = inputs[0].shape()[2]; + size_t inputWidth = inputs[0].shape()[3]; + size_t filterHeight = inputs[1].shape()[2]; + size_t filterWidth = inputs[1].shape()[3]; + size_t outputChannels = outputs[0].shape()[1]; + size_t outputHeight = outputs[0].shape()[2]; + size_t outputWidth = outputs[0].shape()[3]; + + real* inputData = inputs[0].data(); + real* filterData = inputs[1].data(); + real* outputData = outputs[0].data(); + NaiveConvFunctor conv; + conv(inputData, + batchSize, + inputChannels, + inputHeight, + inputWidth, + filterData, + filterHeight, + filterWidth, + outputData, + outputChannels, + outputHeight, + outputWidth, + paddingH(), + paddingW(), + strideH(), + strideW()); + } +}; + +REGISTER_TYPED_FUNC(NaiveConv, CPU, NaiveConvFunction); + +} // namespace paddle diff --git a/paddle/function/PadOpTest.cpp b/paddle/function/PadOpTest.cpp index f77ac2a8c49c83f2d6c64c2a30b6a2f2eb09ac10..e286f4e5b8a42348b9d23fd4c3ad44194ca1f299 100644 --- a/paddle/function/PadOpTest.cpp +++ b/paddle/function/PadOpTest.cpp @@ -25,7 +25,7 @@ TEST(Pad, real) { VLOG(3) << " numSamples=" << numSamples << " channels=" << channels << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW; for (bool test_grad : {false, true}) { - FunctionCompare compare( + CpuGpuFuncCompare compare( test_grad ? "PadGrad" : "Pad", FuncConfig() .set>("channel", {2, 3}) diff --git a/paddle/function/RowConvOp.cpp b/paddle/function/RowConvOp.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b6501e8f4db7fd33891cd80e07a6f36dd0b34532 --- /dev/null +++ b/paddle/function/RowConvOp.cpp @@ -0,0 +1,225 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "RowConvOp.h" +#include +#include "paddle/math/Vector.h" + +namespace paddle { + +template <> +void RowConv(CpuMatrix& out, + const CpuMatrix& in, + const CpuMatrix& filter, + const CpuIVector& seq) { + const int* starts = seq.getData(); + const size_t numSeq = seq.getSize() - 1; + const size_t contextLength = filter.getHeight(); + for (size_t i = 0; i < numSeq; ++i) { + size_t begin = starts[i]; + size_t end = starts[i + 1]; + for (size_t j = begin; j < end; ++j) { + MatrixPtr x; + MatrixPtr w; + if ((j + contextLength) < end) { + x = (const_cast(in)).subMatrix(j, contextLength); + w = (const_cast(filter)).subMatrix(0, contextLength); + } else { + x = (const_cast(in)).subMatrix(j, end - j); + w = (const_cast(filter)).subMatrix(0, end - j); + } + MatrixPtr y = out.subMatrix(j, 1); + y->addDotMulVMM(*x, *w); + } + } +} + +template <> +void RowConvGrad(const CpuMatrix& outG, + const CpuMatrix& in, + const CpuMatrix& filter, + CpuMatrix& inG, + CpuMatrix& filterG, + const CpuIVector& seq) { + // gradient w.r.t filter + const int* starts = seq.getData(); + const size_t numSeq = seq.getSize() - 1; + const size_t contextLength = filter.getHeight(); + if (filterG) { + for (size_t i = 0; i < numSeq; ++i) { + size_t begin = starts[i]; + size_t end = starts[i + 1]; + size_t steps = end - begin; + for (size_t j = 0; j < contextLength && (begin + j) < end; ++j) { + MatrixPtr x = + (const_cast(in)).subMatrix(begin + j, steps - j); + MatrixPtr dy = + (const_cast(outG)).subMatrix(begin, steps - j); + MatrixPtr dw = filterG.subMatrix(j, 1); + dw->addDotMulVMM(*dy, *x); + } + } + } + + // gradient w.r.t input feature + if (inG) { + for (size_t i = 0; i < numSeq; ++i) { + size_t begin = starts[i]; + size_t end = starts[i + 1]; + size_t steps = end - begin; + for (size_t j = 0; j < steps; ++j) { + MatrixPtr dx = inG.subMatrix(begin + j, 1); + for (size_t t = 0; t < contextLength; ++t) { + if (int(j - t) >= 0) { + MatrixPtr dy = + (const_cast(outG)).subMatrix(begin + j - t, 1); + MatrixPtr w = (const_cast(filter)).subMatrix(t, 1); + dx->addDotMul(*dy, *w, 1.0, 1.0); + } + } + } + } + } +} + +/** + * \brief The row convolution is called lookahead convolution. It is firstly + * introduced in deep-speech2 system. The bidirectional RNN that learns + * representation for a sequence by performing a forward and a backward pass + * through the entire sequence. However, unlike unidirectional RNNs, + * bidirectional RNNs are challenging to deploy in an online and low-latency + * setting. The lookahead convolution incorporates information from future + * subsequences in a computationally efficient manner to improve unidirectional + * recurrent neural networks. + * + * The connection of row convolution is different form the 1D sequence + * convolution. Assumed that, the future context-length is k, that is to say, + * it can get the output at timestep t by using the the input feature from t-th + * timestep to (t+k)-th timestep. Assumed that the hidden dim of input + * activations are d, the activations r_t for the new layer at time-step t are: + * + * + * -- k + 1 + * r(t,i) = > W(i,j) * h(t+j-1, i), for (1 <= i <= d) + * -- j = 1 + * + * + * The weight shape is: (k + 1) x d + * Function Arguments: + * + * \param inputs[0] The input activations. + * \param inputs[0] The filter (or weight) and shape is (k+1) x d. + * \param outputs[1] The output activations. + * + * [1] Dario Amodei, etc. Deep Speech 2 : End-to-End Speech Recognition in + * English + * and Mandarin. https://arxiv.org/abs/1512.02595 + */ + +template +class RowConvFunc : public FunctionBase { +public: + void init(const FuncConfig& config) override {} + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + // check + CHECK_EQ(2UL, inputs.size()); + CHECK_EQ(1UL, outputs.size()); + // TODO(qingqing): support ASSIGN_TO. + CHECK_EQ(outputs[0].getArgType(), ADD_TO); + CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg()) + << "SequenceArg required here."; + const auto in = dynamic_cast(inputs[0]); + auto out = dynamic_cast(outputs[0]); + auto w = inputs[1]; + CHECK(in.data() && out.data() && in.getSequenceId().data()); + CHECK_EQ(in.shape().ndims(), 2UL); + CHECK(in.shape() == out.shape()); + CHECK_EQ(w.shape()[1], in.shape()[1]); + + auto outMat = out.matrix(); + const auto inMat = in.matrix(); + const auto wMat = w.matrix(); + const auto seqId = in.getSequenceId().vector(); + + RowConv(outMat, inMat, wMat, seqId); + } +}; + +/** + * \brief The backward of row convolution function. This function calculated + * the gradient w.r.t filter and the gradient w.r.t input activations(or data). + * + * Argument in this Function: + * + * \param inputs[0] The gradient w.r.t output activations. + * \param inputs[1] The input activations. + * \param inputs[2] The filter (or weight) and shape is (k+1) x d. + * \param outputs[0] The gradient w.r.t input activations. + * \param outputs[1] The gradient w.r.r filter. + * + * Abbreviation: + * w.r.t: with respect to. + */ + +template +class RowConvGradFunc : public FunctionBase { + // TODO(qingqing): split into RowConvDataFunc and RowConvWeightFunc +public: + void init(const FuncConfig& config) override {} + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + // check + CHECK_EQ(3UL, inputs.size()); + CHECK_EQ(2UL, outputs.size()); + CHECK_EQ(outputs[0].getArgType(), ADD_TO); + CHECK_EQ(outputs[1].getArgType(), ADD_TO); + CHECK(inputs[0].isSequenceArg() && inputs[1].isSequenceArg() && + outputs[0].isSequenceArg()) + << "SequenceArg required here."; + + const auto outGrad = dynamic_cast(inputs[0]); + const auto in = dynamic_cast(inputs[1]); + const auto w = inputs[2]; + auto inGrad = dynamic_cast(outputs[0]); + auto wGrad = outputs[1]; + + CHECK_EQ(in.shape().ndims(), 2UL); + CHECK(in.shape() == inGrad.shape()); + CHECK(in.shape() == outGrad.shape()); + CHECK_EQ(wGrad.shape()[1], in.shape()[1]); + + const auto outGMat = outGrad.matrix(); + const auto inMat = in.matrix(); + const auto wMat = w.matrix(); + auto inGMat = inGrad.data() + ? inGrad.matrix() + : typename Tensor::Matrix(nullptr, 0, 0); + auto wGMat = wGrad.data() + ? wGrad.matrix() + : typename Tensor::Matrix(nullptr, 0, 0); + const auto seqId = in.getSequenceId().vector(); + + RowConvGrad(outGMat, inMat, wMat, inGMat, wGMat, seqId); + } +}; + +REGISTER_TYPED_FUNC(RowConv, CPU, RowConvFunc); +REGISTER_TYPED_FUNC(RowConvGrad, CPU, RowConvGradFunc); +#ifndef PADDLE_ONLY_CPU +REGISTER_TYPED_FUNC(RowConv, GPU, RowConvFunc); +REGISTER_TYPED_FUNC(RowConvGrad, GPU, RowConvGradFunc); +#endif + +} // namespace paddle diff --git a/paddle/function/RowConvOp.h b/paddle/function/RowConvOp.h new file mode 100644 index 0000000000000000000000000000000000000000..2c5de6151aa2ed73ace1569d880b1c3677c195c4 --- /dev/null +++ b/paddle/function/RowConvOp.h @@ -0,0 +1,56 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "Function.h" + +namespace paddle { + +/** + * \brief The forward of row convolution. + * + * \param[out] out The output data and shape is h x d. h is the sum of + * time steps of all samples in one mini-batch. + * \param[in] in The input data and shape is h x d. + * \param[in] filter The filter and shape is k x d. The lookahead step + * number plus one equals k. + * \param[in] seq The sequence start positions. + * + */ +template +void RowConv(typename Tensor::Matrix& out, + const typename Tensor::Matrix& in, + const typename Tensor::Matrix& filter, + const typename Tensor::Vector& seq); + +/** + * \brief The backward of row convolution. + * + * \param[in] outG The gradient w.r.t output data. + * \param[in] in The input data. + * \param[in] filter The filter. + * \param[out] inG The gradient w.r.t input data. + * \param[out] filterG The gradient w.r.t filter. + * \param[in] seq The sequence start positions. + * + */ +template +void RowConvGrad(const typename Tensor::Matrix& outG, + const typename Tensor::Matrix& in, + const typename Tensor::Matrix& filter, + typename Tensor::Matrix& inG, + typename Tensor::Matrix& filterG, + const typename Tensor::Vector& seq); +} // namespace paddle diff --git a/paddle/function/RowConvOpGpu.cu b/paddle/function/RowConvOpGpu.cu new file mode 100644 index 0000000000000000000000000000000000000000..c0b947e224313abaf4fadfb8293dc78ca085ff84 --- /dev/null +++ b/paddle/function/RowConvOpGpu.cu @@ -0,0 +1,344 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "hl_base.h" +#include "RowConvOp.h" + +namespace paddle { + +template +__global__ void KeRowConv(real* y, const real* x, const real* w, + const int* starts, const int height, const int width, + const int numSeq, const int context) { + + const int tidx = threadIdx.x; + const int tidy = threadIdx.y; + const int blky = blockDim.y; + const int gidx = blockIdx.x * blockDim.x; + + __shared__ real sw[BLOCK_H][BLOCK_W]; + + for (int i = tidy; i < context; i += blky) { + sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0; + } + + __syncthreads(); + + for (int i = 0; i < numSeq; ++i) { + const int start = starts[i]; + const int end = starts[i + 1]; + const int steps = end - start; + for (int j = tidy; j < steps; j += blky) { + real sum = 0; + int off = (start + j) * width; + for (int t = 0; t < context; ++t) { + if ((start + j + t) < end) { + int xoff = off + t * width; + real xVal = gidx + tidx < width ? x[xoff + gidx + tidx] : 0.0; + sum += sw[t][tidx] * xVal; + } + } + if (gidx + tidx < width) { + y[off + gidx + tidx] += sum; + } + } + } +} + +__global__ void KeRowConv2(real* y, const real* x, const real* w, + const int* starts, const int height, const int width, + const int numSeq, const int context) { + const int tidx = threadIdx.x; + const int tidy = threadIdx.y; + const int blky = blockDim.y; + const int gidx = blockIdx.x * blockDim.x; + + for (int i = 0; i < numSeq; ++i) { + const int start = starts[i]; + const int end = starts[i + 1]; + const int steps = end - start; + for (int j = tidy; j < steps; j += blky) { + int off = (start + j) * width; + real sum = 0; + for (int t = 0; t < context && (start + j + t) < end; ++t) { + int xoff = off + t * width; + real xd = gidx + tidx < width ? x[xoff + gidx + tidx] : 0.0; + real wd = gidx + tidx < width ? w[t * width + gidx + tidx] : 0.0; + sum += wd * xd; + } + if (gidx + tidx < width) { + y[off + gidx + tidx] += sum; + } + } + } +} + + + +template <> +void RowConv(GpuMatrix& out, + const GpuMatrix& in, + const GpuMatrix& filter, + const GpuIVector& seq) { + const size_t numSeq = seq.getSize() - 1; + const size_t contextLength = filter.getHeight(); + const size_t height = in.getHeight(); + const size_t width = in.getWidth(); + + real* y = out.getData(); + const real* x = in.getData(); + const real* w = filter.getData(); + const int* starts = seq.getData(); + + dim3 dimBlock(32, 32); + dim3 dimGrid(DIVUP(width, dimBlock.x), 1); + + if (contextLength <= 32) { + KeRowConv<32, 32><<>> + (y, x, w, starts, height, width, numSeq, contextLength); + } else { + KeRowConv2<<>> + (y, x, w, starts, height, width, numSeq, contextLength); + } + CHECK_SYNC("RowConv"); +} + + +template +__global__ void KeRowConvBwWeight(real* dw, const real* x, const real* dy, + const int* starts, const int height, const int width, const int numSeq, + const int context) { + + const int tidx = threadIdx.x; + const int tidy = threadIdx.y; + const int blky = blockDim.y; + const int gidx = blockIdx.x * blockDim.x; + + __shared__ real sh_x[BLOCK_W][BLOCK_H]; + __shared__ real sh_dy[BLOCK_W][BLOCK_H + CONTEXT - 1]; + __shared__ real sh_dw[CONTEXT][BLOCK_W]; + + if (tidy < context) { + sh_dw[tidy][tidx] = 0.0; + } + __syncthreads(); + + for (int i = 0; i < numSeq; ++i) { + const int start = starts[i]; + const int end = starts[i + 1]; + const int steps = end - start; + const int size = ((steps + BLOCK_H - 1)/BLOCK_H) * BLOCK_H; + for (int j = tidy; j < size; j += BLOCK_H) { + int xoff = gidx + tidx; + int yoff = start + j; + + // transpose + sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0; + sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ? dy[yoff * width + xoff] : 0.0; + __syncthreads(); + if (tidy < (context - 1)) { + yoff = yoff - context + 1; + sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ? dy[yoff * width + xoff] : 0.0; + } + __syncthreads(); + + for (int t = 0; t < context; t++) { + real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx + context - 1 - t]; + __syncthreads(); + // warp size and blockDim.x is 32. + val += __shfl_down(val, 16); + val += __shfl_down(val, 8); + val += __shfl_down(val, 4); + val += __shfl_down(val, 2); + val += __shfl_down(val, 1); + __syncthreads(); + if (tidx == 0) { + sh_dw[t][tidy] += val; + } + __syncthreads(); + } + } + } + + for (int t = tidy; (t < context) && ((gidx + tidx) < width); t += blky) { + dw[t * width + gidx + tidx] += sh_dw[t][tidx]; + } +} + +template +__global__ void KeRowConvBwWeight2(real* dw, const real* x, const real* dy, + const int* starts, const int height, const int width, const int numSeq, + const int context) { + + const int tidx = threadIdx.x; + const int tidy = threadIdx.y; + const int gidx = blockIdx.x * blockDim.x; + + __shared__ real sh_x[BLOCK_H][BLOCK_W]; + __shared__ real sh_dy[BLOCK_H][BLOCK_W]; + + for (int i = 0; i < numSeq; ++i) { + const int start = starts[i]; + const int end = starts[i + 1]; + const int steps = end - start; + + const int size = ((steps + BLOCK_H - 1)/BLOCK_H) * BLOCK_H; + for (int j = tidy; j < size; j += BLOCK_H) { + int xoff = gidx + tidx; + int yoff = start + j; + + // transpose + sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0; + __syncthreads(); + + for (int t = 0; t < context; t++) { + sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start && yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0; + __syncthreads(); + + real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx]; + __syncthreads(); + // warp size and blockDim.x is 32. + val += __shfl_down(val, 16); + val += __shfl_down(val, 8); + val += __shfl_down(val, 4); + val += __shfl_down(val, 2); + val += __shfl_down(val, 1); + __syncthreads(); + + if (tidx == 0 && (gidx + tidy) < width) { + dw[t*width + gidx + tidy] += val; + } + } + } + } +} + +template +__global__ void KeRowConvBwData(real* dx, const real* w, const real* dy, + const int* starts, const int height, const int width, const int numSeq, + const int context) { + + const int tidx = threadIdx.x; + const int tidy = threadIdx.y; + const int blky = blockDim.y; + const int gidx = blockIdx.x * blockDim.x; + + __shared__ real sw[BLOCK_H][BLOCK_W]; + + for (int i = tidy; i < context; i += blky) { + sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0; + } + + __syncthreads(); + + for (int i = 0; i < numSeq; ++i) { + const int start = starts[i]; + const int end = starts[i + 1]; + const int steps = end - start; + for (int j = tidy; j < steps; j += blky) { + real sum = 0; + int off = (start + j) * width; + for (int t = 0; t < context && (j - t) >= 0; ++t) { + int dyOff = off - t * width; + real dyVal = gidx + tidx < width ? dy[dyOff + gidx + tidx] : 0.0; + sum += sw[t][tidx] * dyVal; + } + if (gidx + tidx < width) { + dx[off + gidx + tidx] += sum; + } + } + } +} + +__global__ void KeRowConvBwData2(real* dx, const real* w, const real* dy, + const int* starts, const int height, const int width, const int numSeq, + const int context) { + + const int tidx = threadIdx.x; + const int tidy = threadIdx.y; + const int blky = blockDim.y; + const int gidx = blockIdx.x * blockDim.x; + + for (int i = 0; i < numSeq; ++i) { + const int start = starts[i]; + const int end = starts[i + 1]; + const int steps = end - start; + for (int j = tidy; j < steps; j += blky) { + real sum = 0; + int off = (start + j) * width; + for (int t = 0; t < context && (j - t) >= 0; ++t) { + int dyOff = off - t * width; + real dyVal = gidx + tidx < width ? dy[dyOff + gidx + tidx] : 0.0; + real wVal = gidx + tidx < width ? w[t * width + gidx + tidx] : 0.0; + sum += wVal * dyVal; + } + if (gidx + tidx < width) { + dx[off + gidx + tidx] += sum; + } + } + } +} + + +template <> +void RowConvGrad(const GpuMatrix& outG, + const GpuMatrix& in, + const GpuMatrix& filter, + GpuMatrix& inG, + GpuMatrix& filterG, + const GpuIVector& seq) { + const size_t numSeq = seq.getSize() - 1; + const size_t contextLength = filter.getHeight(); + const size_t height = in.getHeight(); + const size_t width = in.getWidth(); + + const real* dy = outG.getData(); + const real* x = in.getData(); + const real* w = filter.getData(); + const int* starts = seq.getData(); + + if (filterG) { + dim3 dimBlock(32, 32); + dim3 dimGrid(DIVUP(width, dimBlock.x), 1); + real* dw = filterG.getData(); + if (contextLength <= 32) { + KeRowConvBwWeight<32, 32, 32> + <<>> + (dw, x, dy, starts, height, width, numSeq, contextLength); + } else { + KeRowConvBwWeight2<32, 32> + <<>> + (dw, x, dy, starts, height, width, numSeq, contextLength); + } + } + + if (inG) { + real* dx = inG.getData(); + dim3 dimBlock2(32, 32); + dim3 dimGrid2(DIVUP(width, dimBlock2.x), 1); + if (contextLength <= 64) { + KeRowConvBwData<32, 64> + <<>> + (dx, w, dy, starts, height, width, numSeq, contextLength); + } else { + KeRowConvBwData2 + <<>> + (dx, w, dy, starts, height, width, numSeq, contextLength); + } + } + + CHECK_SYNC("RowConvGrad"); +} + +} // namespace paddle diff --git a/paddle/function/RowConvOpTest.cpp b/paddle/function/RowConvOpTest.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f52d18b0491ec444e2fe89fe8fb5c1baa128823e --- /dev/null +++ b/paddle/function/RowConvOpTest.cpp @@ -0,0 +1,62 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "FunctionTest.h" + +namespace paddle { + +void testRowConvFw(size_t batchSize, size_t dim, size_t contextLength) { + CpuGpuFuncCompare test("RowConv", FuncConfig()); + + test.addSequence(SequenceIdArg(TensorShape{batchSize})); + test.addInputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim})); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{contextLength, dim})); + + test.addOutputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim}), + ADD_TO); + + test.run(); +} + +void testRowConvBw(size_t batchSize, size_t dim, size_t contextLength) { + CpuGpuFuncCompare test("RowConvGrad", FuncConfig()); + + test.addSequence(SequenceIdArg(TensorShape{batchSize})); + test.addInputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim})); + test.addInputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim})); + test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{contextLength, dim})); + + test.addOutputs(SequenceArg(VALUE_TYPE_FLOAT, TensorShape{batchSize, dim}), + ADD_TO); + test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{contextLength, dim}), + ADD_TO); + + test.run(); +} + +TEST(RowConv, real) { + for (size_t numSamples : {17, 129, 2020}) { + for (size_t dim : {16, 512, 2560}) { + for (size_t context : {3, 19, 65}) { + VLOG(3) << " numSamples=" << numSamples << " dim=" << dim + << " context length=" << context; + testRowConvFw(numSamples, dim, context); + testRowConvBw(numSamples, dim, context); + } + } + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/ConvBaseLayer.cpp b/paddle/gserver/layers/ConvBaseLayer.cpp index 7b234dc2a6663dc677affcae7dc6306c104c1250..e161d89c38a290000a2cbdb2905e56901ae4c144 100644 --- a/paddle/gserver/layers/ConvBaseLayer.cpp +++ b/paddle/gserver/layers/ConvBaseLayer.cpp @@ -118,11 +118,7 @@ size_t ConvBaseLayer::calOutputSize() { layerSize = outH[0] * outW[0] * size_t(numFilters_); }; - if (isDeconv_) { - setLayerSize(outputH_, outputW_, imgSizeH_, imgSizeW_); - } else { - setLayerSize(imgSizeH_, imgSizeW_, outputH_, outputW_); - } + setLayerSize(imgSizeH_, imgSizeW_, outputH_, outputW_); return layerSize; } diff --git a/paddle/gserver/layers/CudnnConvBaseLayer.cpp b/paddle/gserver/layers/CudnnConvBaseLayer.cpp index 24363bb8b09cc354c25abe512257be68566c10e1..c056bbe4d1d354751d4f85f8d0743cf30486c087 100644 --- a/paddle/gserver/layers/CudnnConvBaseLayer.cpp +++ b/paddle/gserver/layers/CudnnConvBaseLayer.cpp @@ -70,14 +70,8 @@ void CudnnConvBaseLayer::forward(PassType passType) { if (biases_) { REGISTER_TIMER_INFO("CudnnConvBiasTimer", getName().c_str()); int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); - int outH, outW; - if (isDeconv_) { - outH = imgSizeH_[0]; - outW = imgSizeW_[0]; - } else { - outH = outputH_[0]; - outW = outputW_[0]; - } + int outH = outputH_[0]; + int outW = outputW_[0]; hl_tensor_reshape(outputDesc_, batchSize, diff --git a/paddle/gserver/layers/DetectionUtil.cpp b/paddle/gserver/layers/DetectionUtil.cpp new file mode 100644 index 0000000000000000000000000000000000000000..3e61adc66e60c54250e4f323452aa13045310879 --- /dev/null +++ b/paddle/gserver/layers/DetectionUtil.cpp @@ -0,0 +1,576 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "DetectionUtil.h" + +namespace paddle { + +size_t appendWithPermute(const Matrix& inMatrix, + size_t height, + size_t width, + size_t outTotalSize, + size_t outOffset, + size_t batchSize, + Matrix& outMatrix, + PermMode permMode) { + CHECK_EQ(inMatrix.useGpu(), outMatrix.useGpu()); + bool useGpu = inMatrix.useGpu(); + if (permMode == kNCHWToNHWC) { + size_t inElementCnt = inMatrix.getElementCnt(); + size_t channels = inElementCnt / (height * width * batchSize); + size_t imgSize = height * width; + for (size_t i = 0; i < batchSize; ++i) { + size_t offset = i * (outTotalSize / batchSize) + outOffset; + const MatrixPtr inTmp = Matrix::create( + const_cast(inMatrix.getData()) + i * channels * imgSize, + channels, + imgSize, + false, + useGpu); + MatrixPtr outTmp = + Matrix::create(const_cast(outMatrix.getData()) + offset, + imgSize, + channels, + false, + useGpu); + inTmp->transpose(outTmp, false); + } + return channels * imgSize; + } else { + LOG(FATAL) << "Unkown permute mode"; + } +} + +size_t decomposeWithPermute(const Matrix& inMatrix, + size_t height, + size_t width, + size_t inTotalSize, + size_t inOffset, + size_t batchSize, + Matrix& outMatrix, + PermMode permMode) { + CHECK_EQ(inMatrix.useGpu(), outMatrix.useGpu()); + bool useGpu = inMatrix.useGpu(); + if (permMode == kNHWCToNCHW) { + size_t outElementCnt = outMatrix.getElementCnt(); + size_t channels = outElementCnt / (height * width * batchSize); + size_t imgSize = height * width; + for (size_t i = 0; i < batchSize; ++i) { + size_t offset = i * (inTotalSize / batchSize) + inOffset; + const MatrixPtr inTmp = + Matrix::create(const_cast(inMatrix.getData()) + offset, + imgSize, + channels, + false, + useGpu); + MatrixPtr outTmp = Matrix::create( + const_cast(outMatrix.getData()) + i * channels * imgSize, + channels, + imgSize, + false, + useGpu); + inTmp->transpose(outTmp, false); + } + return channels * imgSize; + } else { + LOG(FATAL) << "Unkown permute mode"; + } +} + +real jaccardOverlap(const NormalizedBBox& bbox1, const NormalizedBBox& bbox2) { + if (bbox2.xMin > bbox1.xMax || bbox2.xMax < bbox1.xMin || + bbox2.yMin > bbox1.yMax || bbox2.yMax < bbox1.yMin) { + return 0.0; + } else { + real interXMin = std::max(bbox1.xMin, bbox2.xMin); + real interYMin = std::max(bbox1.yMin, bbox2.yMin); + real interXMax = std::min(bbox1.xMax, bbox2.xMax); + real interYMax = std::min(bbox1.yMax, bbox2.yMax); + + real interWidth = interXMax - interXMin; + real interHeight = interYMax - interYMin; + real interArea = interWidth * interHeight; + + real bboxArea1 = bbox1.getArea(); + real bboxArea2 = bbox2.getArea(); + + return interArea / (bboxArea1 + bboxArea2 - interArea); + } +} + +void encodeBBoxWithVar(const NormalizedBBox& priorBBox, + const vector& priorBBoxVar, + const NormalizedBBox& gtBBox, + vector& outVec) { + real priorBBoxWidth = priorBBox.getWidth(); + real priorBBoxHeight = priorBBox.getHeight(); + real priorBBoxCenterX = priorBBox.getCenterX(); + real priorBBoxCenterY = priorBBox.getCenterY(); + + real gtBBoxWidth = gtBBox.getWidth(); + real gtBBoxHeight = gtBBox.getHeight(); + real gtBBoxCenterX = gtBBox.getCenterX(); + real gtBBoxCenterY = gtBBox.getCenterY(); + + outVec.clear(); + outVec.push_back((gtBBoxCenterX - priorBBoxCenterX) / priorBBoxWidth / + priorBBoxVar[0]); + outVec.push_back((gtBBoxCenterY - priorBBoxCenterY) / priorBBoxHeight / + priorBBoxVar[1]); + outVec.push_back(std::log(std::fabs(gtBBoxWidth / priorBBoxWidth)) / + priorBBoxVar[2]); + outVec.push_back(std::log(std::fabs(gtBBoxHeight / priorBBoxHeight)) / + priorBBoxVar[3]); +} + +NormalizedBBox decodeBBoxWithVar(const NormalizedBBox& priorBBox, + const vector& priorBBoxVar, + const vector& locPredData) { + real priorBBoxWidth = priorBBox.getWidth(); + real priorBBoxHeight = priorBBox.getHeight(); + real priorBBoxCenterX = priorBBox.getCenterX(); + real priorBBoxCenterY = priorBBox.getCenterY(); + + real decodedBBoxCenterX = + priorBBoxVar[0] * locPredData[0] * priorBBoxWidth + priorBBoxCenterX; + real decodedBBoxCenterY = + priorBBoxVar[1] * locPredData[1] * priorBBoxHeight + priorBBoxCenterY; + real decodedBBoxWidth = + std::exp(priorBBoxVar[2] * locPredData[2]) * priorBBoxWidth; + real decodedBBoxHeight = + std::exp(priorBBoxVar[3] * locPredData[3]) * priorBBoxHeight; + + NormalizedBBox decodedBBox; + decodedBBox.xMin = decodedBBoxCenterX - decodedBBoxWidth / 2; + decodedBBox.yMin = decodedBBoxCenterY - decodedBBoxHeight / 2; + decodedBBox.xMax = decodedBBoxCenterX + decodedBBoxWidth / 2; + decodedBBox.yMax = decodedBBoxCenterY + decodedBBoxHeight / 2; + + return decodedBBox; +} + +void getBBoxFromPriorData(const real* priorData, + const size_t numBBoxes, + vector& bboxVec) { + size_t outOffset = bboxVec.size(); + bboxVec.resize(bboxVec.size() + numBBoxes); + for (size_t i = 0; i < numBBoxes; ++i) { + NormalizedBBox bbox; + bbox.xMin = *(priorData + i * 8); + bbox.yMin = *(priorData + i * 8 + 1); + bbox.xMax = *(priorData + i * 8 + 2); + bbox.yMax = *(priorData + i * 8 + 3); + bboxVec[outOffset + i] = bbox; + } +} + +void getBBoxVarFromPriorData(const real* priorData, + const size_t num, + vector>& varVec) { + size_t outOffset = varVec.size(); + varVec.resize(varVec.size() + num); + for (size_t i = 0; i < num; ++i) { + vector var; + var.push_back(*(priorData + i * 8 + 4)); + var.push_back(*(priorData + i * 8 + 5)); + var.push_back(*(priorData + i * 8 + 6)); + var.push_back(*(priorData + i * 8 + 7)); + varVec[outOffset + i] = var; + } +} + +void getBBoxFromLabelData(const real* labelData, + const size_t numBBoxes, + vector& bboxVec) { + size_t outOffset = bboxVec.size(); + bboxVec.resize(bboxVec.size() + numBBoxes); + for (size_t i = 0; i < numBBoxes; ++i) { + NormalizedBBox bbox; + bbox.xMin = *(labelData + i * 6 + 1); + bbox.yMin = *(labelData + i * 6 + 2); + bbox.xMax = *(labelData + i * 6 + 3); + bbox.yMax = *(labelData + i * 6 + 4); + real isDifficult = *(labelData + i * 6 + 5); + if (std::abs(isDifficult - 0.0) < 1e-6) + bbox.isDifficult = false; + else + bbox.isDifficult = true; + bboxVec[outOffset + i] = bbox; + } +} + +void getBBoxFromDetectData(const real* detectData, + const size_t numBBoxes, + vector& labelVec, + vector& scoreVec, + vector& bboxVec) { + size_t outOffset = bboxVec.size(); + labelVec.resize(outOffset + numBBoxes); + scoreVec.resize(outOffset + numBBoxes); + bboxVec.resize(outOffset + numBBoxes); + for (size_t i = 0; i < numBBoxes; ++i) { + labelVec[outOffset + i] = *(detectData + i * 7 + 1); + scoreVec[outOffset + i] = *(detectData + i * 7 + 2); + NormalizedBBox bbox; + bbox.xMin = *(detectData + i * 7 + 3); + bbox.yMin = *(detectData + i * 7 + 4); + bbox.xMax = *(detectData + i * 7 + 5); + bbox.yMax = *(detectData + i * 7 + 6); + bboxVec[outOffset + i] = bbox; + } +} + +void matchBBox(const vector& priorBBoxes, + const vector& gtBBoxes, + real overlapThreshold, + vector* matchIndices, + vector* matchOverlaps) { + map> overlaps; + size_t numPriors = priorBBoxes.size(); + size_t numGTs = gtBBoxes.size(); + + matchIndices->clear(); + matchIndices->resize(numPriors, -1); + matchOverlaps->clear(); + matchOverlaps->resize(numPriors, 0.0); + + // Store the positive overlap between predictions and ground truth + for (size_t i = 0; i < numPriors; ++i) { + for (size_t j = 0; j < numGTs; ++j) { + real overlap = jaccardOverlap(priorBBoxes[i], gtBBoxes[j]); + if (overlap > 1e-6) { + (*matchOverlaps)[i] = std::max((*matchOverlaps)[i], overlap); + overlaps[i][j] = overlap; + } + } + } + // Bipartite matching + vector gtPool; + for (size_t i = 0; i < numGTs; ++i) { + gtPool.push_back(i); + } + while (gtPool.size() > 0) { + // Find the most overlapped gt and corresponding predictions + int maxPriorIdx = -1; + int maxGTIdx = -1; + real maxOverlap = -1.0; + for (map>::iterator it = overlaps.begin(); + it != overlaps.end(); + ++it) { + size_t i = it->first; + if ((*matchIndices)[i] != -1) { + // The prediction already has matched ground truth or is ignored + continue; + } + for (size_t p = 0; p < gtPool.size(); ++p) { + int j = gtPool[p]; + if (it->second.find(j) == it->second.end()) { + // No overlap between the i-th prediction and j-th ground truth + continue; + } + // Find the maximum overlapped pair + if (it->second[j] > maxOverlap) { + maxPriorIdx = (int)i; + maxGTIdx = (int)j; + maxOverlap = it->second[j]; + } + } + } + if (maxPriorIdx == -1) { + break; + } else { + (*matchIndices)[maxPriorIdx] = maxGTIdx; + (*matchOverlaps)[maxPriorIdx] = maxOverlap; + gtPool.erase(std::find(gtPool.begin(), gtPool.end(), maxGTIdx)); + } + } + + // Get most overlaped for the rest prediction bboxes + for (map>::iterator it = overlaps.begin(); + it != overlaps.end(); + ++it) { + size_t i = it->first; + if ((*matchIndices)[i] != -1) { + // The prediction already has matched ground truth or is ignored + continue; + } + int maxGTIdx = -1; + real maxOverlap = -1; + for (size_t j = 0; j < numGTs; ++j) { + if (it->second.find(j) == it->second.end()) { + // No overlap between the i-th prediction and j-th ground truth + continue; + } + // Find the maximum overlapped pair + real overlap = it->second[j]; + if (overlap > maxOverlap && overlap >= overlapThreshold) { + maxGTIdx = j; + maxOverlap = overlap; + } + } + if (maxGTIdx != -1) { + (*matchIndices)[i] = maxGTIdx; + (*matchOverlaps)[i] = maxOverlap; + } + } +} + +pair generateMatchIndices( + const Matrix& priorValue, + const size_t numPriorBBoxes, + const Matrix& gtValue, + const int* gtStartPosPtr, + const size_t seqNum, + const vector>& maxConfScore, + const size_t batchSize, + const real overlapThreshold, + const real negOverlapThreshold, + const size_t negPosRatio, + vector>* matchIndicesVecPtr, + vector>* negIndicesVecPtr) { + vector priorBBoxes; // share same prior bboxes + getBBoxFromPriorData(priorValue.getData(), numPriorBBoxes, priorBBoxes); + size_t totalPos = 0; + size_t totalNeg = 0; + for (size_t n = 0; n < batchSize; ++n) { + vector matchIndices; + vector negIndices; + vector matchOverlaps; + matchIndices.resize(numPriorBBoxes, -1); + matchOverlaps.resize(numPriorBBoxes, 0.0); + size_t numGTBBoxes = 0; + if (n < seqNum) numGTBBoxes = gtStartPosPtr[n + 1] - gtStartPosPtr[n]; + if (!numGTBBoxes) { + matchIndicesVecPtr->push_back(matchIndices); + negIndicesVecPtr->push_back(negIndices); + continue; + } + vector gtBBoxes; + getBBoxFromLabelData( + gtValue.getData() + gtStartPosPtr[n] * 6, numGTBBoxes, gtBBoxes); + + matchBBox( + priorBBoxes, gtBBoxes, overlapThreshold, &matchIndices, &matchOverlaps); + + size_t numPos = 0; + size_t numNeg = 0; + for (size_t i = 0; i < matchIndices.size(); ++i) + if (matchIndices[i] != -1) ++numPos; + totalPos += numPos; + vector> scoresIndices; + for (size_t i = 0; i < matchIndices.size(); ++i) + if (matchIndices[i] == -1 && matchOverlaps[i] < negOverlapThreshold) { + scoresIndices.push_back(std::make_pair(maxConfScore[n][i], i)); + ++numNeg; + } + numNeg = std::min(static_cast(numPos * negPosRatio), numNeg); + std::sort(scoresIndices.begin(), + scoresIndices.end(), + sortScorePairDescend); + for (size_t i = 0; i < numNeg; ++i) + negIndices.push_back(scoresIndices[i].second); + totalNeg += numNeg; + matchIndicesVecPtr->push_back(matchIndices); + negIndicesVecPtr->push_back(negIndices); + } + return std::make_pair(totalPos, totalNeg); +} + +void getMaxConfidenceScores(const real* confData, + const size_t batchSize, + const size_t numPriorBBoxes, + const size_t numClasses, + const size_t backgroundId, + vector>* maxConfScoreVecPtr) { + maxConfScoreVecPtr->clear(); + for (size_t i = 0; i < batchSize; ++i) { + vector maxConfScore; + for (size_t j = 0; j < numPriorBBoxes; ++j) { + int offset = j * numClasses; + real maxVal = -FLT_MAX; + real maxPosVal = -FLT_MAX; + real maxScore = 0.0; + for (size_t c = 0; c < numClasses; ++c) { + maxVal = std::max(confData[offset + c], maxVal); + if (c != backgroundId) + maxPosVal = std::max(confData[offset + c], maxPosVal); + } + real sum = 0.0; + for (size_t c = 0; c < numClasses; ++c) + sum += std::exp(confData[offset + c] - maxVal); + maxScore = std::exp(maxPosVal - maxVal) / sum; + maxConfScore.push_back(maxScore); + } + confData += numPriorBBoxes * numClasses; + maxConfScoreVecPtr->push_back(maxConfScore); + } +} + +template +bool sortScorePairDescend(const pair& pair1, + const pair& pair2) { + return pair1.first > pair2.first; +} + +template <> +bool sortScorePairDescend(const pair& pair1, + const pair& pair2) { + return pair1.first > pair2.first; +} + +void applyNMSFast(const vector& bboxes, + const real* confScoreData, + size_t classIdx, + size_t topK, + real confThreshold, + real nmsThreshold, + size_t numPriorBBoxes, + size_t numClasses, + vector* indices) { + vector> scores; + for (size_t i = 0; i < numPriorBBoxes; ++i) { + size_t confOffset = i * numClasses + classIdx; + if (confScoreData[confOffset] > confThreshold) + scores.push_back(std::make_pair(confScoreData[confOffset], i)); + } + std::stable_sort(scores.begin(), scores.end(), sortScorePairDescend); + if (topK > 0 && topK < scores.size()) scores.resize(topK); + while (scores.size() > 0) { + const size_t idx = scores.front().second; + bool keep = true; + for (size_t i = 0; i < indices->size(); ++i) { + if (keep) { + const size_t savedIdx = (*indices)[i]; + real overlap = jaccardOverlap(bboxes[idx], bboxes[savedIdx]); + keep = overlap <= nmsThreshold; + } else { + break; + } + } + if (keep) indices->push_back(idx); + scores.erase(scores.begin()); + } +} + +size_t getDetectionIndices( + const real* confData, + const size_t numPriorBBoxes, + const size_t numClasses, + const size_t backgroundId, + const size_t batchSize, + const size_t confThreshold, + const size_t nmsTopK, + const real nmsThreshold, + const size_t keepTopK, + const vector>& allDecodedBBoxes, + vector>>* allDetectionIndices) { + size_t totalKeepNum = 0; + for (size_t n = 0; n < batchSize; ++n) { + const vector& decodedBBoxes = allDecodedBBoxes[n]; + size_t numDetected = 0; + map> indices; + size_t confOffset = n * numPriorBBoxes * numClasses; + for (size_t c = 0; c < numClasses; ++c) { + if (c == backgroundId) continue; + applyNMSFast(decodedBBoxes, + confData + confOffset, + c, + nmsTopK, + confThreshold, + nmsThreshold, + numPriorBBoxes, + numClasses, + &(indices[c])); + numDetected += indices[c].size(); + } + if (keepTopK > 0 && numDetected > keepTopK) { + vector>> scoreIndexPairs; + for (size_t c = 0; c < numClasses; ++c) { + const vector& labelIndices = indices[c]; + for (size_t i = 0; i < labelIndices.size(); ++i) { + size_t idx = labelIndices[i]; + scoreIndexPairs.push_back( + std::make_pair((confData + confOffset)[idx * numClasses + c], + std::make_pair(c, idx))); + } + } + std::sort(scoreIndexPairs.begin(), + scoreIndexPairs.end(), + sortScorePairDescend>); + scoreIndexPairs.resize(keepTopK); + map> newIndices; + for (size_t i = 0; i < scoreIndexPairs.size(); ++i) { + size_t label = scoreIndexPairs[i].second.first; + size_t idx = scoreIndexPairs[i].second.second; + newIndices[label].push_back(idx); + } + allDetectionIndices->push_back(newIndices); + totalKeepNum += keepTopK; + } else { + allDetectionIndices->push_back(indices); + totalKeepNum += numDetected; + } + } + return totalKeepNum; +} + +void getDetectionOutput(const real* confData, + const size_t numKept, + const size_t numPriorBBoxes, + const size_t numClasses, + const size_t batchSize, + const vector>>& allIndices, + const vector>& allDecodedBBoxes, + Matrix& out) { + MatrixPtr outBuffer; + Matrix::resizeOrCreate(outBuffer, numKept, 7, false, false); + real* bufferData = outBuffer->getData(); + size_t count = 0; + for (size_t n = 0; n < batchSize; ++n) { + for (map>::const_iterator it = allIndices[n].begin(); + it != allIndices[n].end(); + ++it) { + size_t label = it->first; + const vector& indices = it->second; + const vector& decodedBBoxes = allDecodedBBoxes[n]; + for (size_t i = 0; i < indices.size(); ++i) { + size_t idx = indices[i]; + size_t confOffset = n * numPriorBBoxes * numClasses + idx * numClasses; + bufferData[count * 7] = n; + bufferData[count * 7 + 1] = label; + bufferData[count * 7 + 2] = (confData + confOffset)[label]; + NormalizedBBox clippedBBox = clipBBox(decodedBBoxes[idx]); + bufferData[count * 7 + 3] = clippedBBox.xMin; + bufferData[count * 7 + 4] = clippedBBox.yMin; + bufferData[count * 7 + 5] = clippedBBox.xMax; + bufferData[count * 7 + 6] = clippedBBox.yMax; + ++count; + } + } + } + out.copyFrom(bufferData, numKept * 7); +} + +NormalizedBBox clipBBox(const NormalizedBBox& bbox) { + real realOne = static_cast(1.0); + real realZero = static_cast(0.0); + NormalizedBBox clippedBBox; + clippedBBox.xMin = std::max(std::min(bbox.xMin, realOne), realZero); + clippedBBox.yMin = std::max(std::min(bbox.yMin, realOne), realZero); + clippedBBox.xMax = std::max(std::min(bbox.xMax, realOne), realZero); + clippedBBox.yMax = std::max(std::min(bbox.yMax, realOne), realZero); + return clippedBBox; +} + +} // namespace paddle diff --git a/paddle/gserver/layers/DetectionUtil.h b/paddle/gserver/layers/DetectionUtil.h new file mode 100644 index 0000000000000000000000000000000000000000..fe4f9f075e4cf011c97f68f49598a828d62327b3 --- /dev/null +++ b/paddle/gserver/layers/DetectionUtil.h @@ -0,0 +1,307 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include +#include "paddle/math/Matrix.h" + +using std::vector; +using std::pair; +using std::map; + +namespace paddle { + +template +struct BBoxBase { + BBoxBase(T xMin, T yMin, T xMax, T yMax) + : xMin(xMin), yMin(yMin), xMax(xMax), yMax(yMax), isDifficult(false) {} + + BBoxBase() {} + + T getWidth() const { return xMax - xMin; } + + T getHeight() const { return yMax - yMin; } + + T getCenterX() const { return (xMin + xMax) / 2; } + + T getCenterY() const { return (yMin + yMax) / 2; } + + T getArea() const { return getWidth() * getHeight(); } + + // coordinate of bounding box + T xMin; + T yMin; + T xMax; + T yMax; + // whether difficult object (e.g. object with heavy occlusion is difficult) + bool isDifficult; +}; + +struct NormalizedBBox : BBoxBase { + NormalizedBBox() : BBoxBase() {} +}; + +enum PermMode { kNCHWToNHWC, kNHWCToNCHW }; + +/** + * @brief First permute input maxtrix then append to output matrix + */ +size_t appendWithPermute(const Matrix& inMatrix, + size_t height, + size_t width, + size_t outTotalSize, + size_t outOffset, + size_t batchSize, + Matrix& outMatrix, + PermMode permMode); + +/** + * @brief First permute input maxtrix then decompose to output + */ +size_t decomposeWithPermute(const Matrix& inMatrix, + size_t height, + size_t width, + size_t totalSize, + size_t offset, + size_t batchSize, + Matrix& outMatrix, + PermMode permMode); + +/** + * @brief Compute jaccard overlap between two bboxes. + * @param bbox1 The first bbox + * @param bbox2 The second bbox + */ +real jaccardOverlap(const NormalizedBBox& bbox1, const NormalizedBBox& bbox2); + +/** + * @brief Compute offset parameters between prior bbox and ground truth bbox + * and variances of prior bbox are considered + * @param priorBBox Input prior bbox + * @param priorBBoxVar Variance parameters of prior bbox + * @param gtBBox Groundtruth bbox + * @param outVec Output vector + */ +void encodeBBoxWithVar(const NormalizedBBox& priorBBox, + const vector& priorBBoxVar, + const NormalizedBBox& gtBBox, + vector& outVec); + +/** + * @brief Decode prior bbox with offset parameters + * and variances of prior bbox are considered + * @param priorBBox Prior bbox to be decoded + * @param priorBBoxVar Variance parameters of prior bbox + * @param locPredData Offset parameters + */ +NormalizedBBox decodeBBoxWithVar(const NormalizedBBox& priorBBox, + const vector& priorBBoxVar, + const vector& locPredData); + +/** + * @brief Extract bboxes from prior matrix, the layout is + * xmin1 | ymin1 | xmax1 | ymax1 | xmin1Var | ymin1Var | xmax1Var | ymax1Var ... + * @param priorData Matrix of prior value + * @param numBBoxes Number of bbox to be extracted + * @param bboxVec Append to the vector + */ +void getBBoxFromPriorData(const real* priorData, + const size_t numBBoxes, + vector& bboxVec); + +/** + * @brief Extract labels, scores and bboxes from detection matrix, the layout is + * imageId | label | score | xmin | ymin | xmax | ymax + * @param detectData Matrix of detection value + * @param numBBoxes Number of bbox to be extracted + * @param labelVec Label of bbox + * @param scoreVec Score of bbox + * @param bboxVec Append to the vector + */ +void getBBoxFromDetectData(const real* detectData, + const size_t numBBoxes, + vector& labelVec, + vector& scoreVec, + vector& bboxVec); + +/** + * @brief Extract variances from prior matrix, the layout is + * xmin1 | ymin1 | xmax1 | ymax1 | xmin1Var | ymin1Var | xmax1Var | ymax1Var ... + * @param priorData Matrix of prior value + * @param num Number to be extracted + * @param varVec Append to the vector + */ +void getBBoxVarFromPriorData(const real* priorData, + const size_t num, + vector>& varVec); + +/** + * @brief Extract bboxes from label matrix, the layout is + * class1_1 | xmin1_1 | ymin1_1 | xmax1_1 | ymax1_1 | difficult1_1 | ... + * @param labelData Matrix of label value + * @param numBBoxes Number to be extracted + * @param bboxVec Append to the vector + */ +void getBBoxFromLabelData(const real* labelData, + const size_t numBBoxes, + vector& bboxVec); + +/** +* @brief Match prior bbox to groundtruth bbox, the strategy is: +1. Find the most overlaped bbox pair (prior and groundtruth) +2. For rest of prior bboxes find the most overlaped groundtruth bbox +* @param priorBBoxes prior bbox +* @param gtBBoxes groundtruth bbox +* @param overlapThreshold Low boundary of overlap (judge whether matched) +* @param matchIndices For each prior bbox, groundtruth bbox index if matched +otherwise -1 +* @param matchOverlaps For each prior bbox, overap with all groundtruth bboxes +*/ +void matchBBox(const vector& priorBBoxes, + const vector& gtBBoxes, + real overlapThreshold, + vector* matchIndices, + vector* matchOverlaps); + +/** +* @brief Generate positive bboxes and negative bboxes, +|positive bboxes|/|negative bboxes| is negPosRatio +* @param priorValue Prior value +* @param numPriorBBoxes Number of prior bbox +* @param gtValue Groundtruth value +* @param gtStartPosPtr Since groundtruth value stored as sequence type, +this parameter indicates start position of each record +* @param seqNum Number of sequence +* @param maxConfScore Classification score for prior bbox, used to mine +negative examples +* @param batchSize Image number +* @param overlapThreshold Low boundary of overap +* @param negOverlapThreshold Upper boundary of overap (judge negative example) +* @param negPosRatio Control number of negative bboxes +* @param matchIndicesVecPtr Save indices of matched prior bbox +* @param negIndicesVecPtr Save indices of negative prior bbox +*/ +pair generateMatchIndices( + const Matrix& priorValue, + const size_t numPriorBBoxes, + const Matrix& gtValue, + const int* gtStartPosPtr, + const size_t seqNum, + const vector>& maxConfScore, + const size_t batchSize, + const real overlapThreshold, + const real negOverlapThreshold, + const size_t negPosRatio, + vector>* matchIndicesVecPtr, + vector>* negIndicesVecPtr); + +/** + * @brief Get max confidence score for each prior bbox + * @param confData Confidence scores, layout is + * class1 score | class2 score | ... | classN score ... + * @param batchSize Image number + * @param numPriorBBoxes Prior bbox number + * @param numClasses Classes number + * @param backgroundId Background id + * @param maxConfScoreVecPtr Ouput + */ +void getMaxConfidenceScores(const real* confData, + const size_t batchSize, + const size_t numPriorBBoxes, + const size_t numClasses, + const size_t backgroundId, + vector>* maxConfScoreVecPtr); + +template +bool sortScorePairDescend(const pair& pair1, + const pair& pair2); + +template <> +bool sortScorePairDescend(const pair& pair1, + const pair& pair2); + +/** + * @brief Do NMS for bboxes to remove duplicated bboxes + * @param bboxes BBoxes to apply NMS + * @param confScoreData Confidence scores + * @param classIdx Class to do NMS + * @param topK Number to keep + * @param confThreshold Low boundary of confidence score + * @param nmsThreshold Threshold of overlap + * @param numPriorBBoxes Total number of prior bboxes + * @param numClasses Total class number + * @param indices Indices of high quality bboxes + */ +void applyNMSFast(const vector& bboxes, + const real* confScoreData, + size_t classIdx, + size_t topK, + real confThreshold, + real nmsThreshold, + size_t numPriorBBoxes, + size_t numClasses, + vector* indices); + +/** + * @brief Get detection results which satify requirements + * @param numPriorBBoxes Prior bbox number + * @param numClasses Class number + * @param backgroundId Background class + * @param batchSize Image number + * @param confThreshold Threshold of class confidence + * @param nmsTopK Used in NMS operation to keep top k bbox + * @param nmsThreshold Used in NMS, threshold of overlap + * @param keepTopK How many bboxes keeped in an image + * @param allDecodedBBoxes Decoded bboxes for all images + * @param allDetectionIndices Save detection bbox indices + */ +size_t getDetectionIndices( + const real* confData, + const size_t numPriorBBoxes, + const size_t numClasses, + const size_t backgroundId, + const size_t batchSize, + const size_t confThreshold, + const size_t nmsTopK, + const real nmsThreshold, + const size_t keepTopK, + const vector>& allDecodedBBoxes, + vector>>* allDetectionIndices); + +/** + * @brief Get detection results + * @param confData Confidence scores + * @param numPriorBBoxes Prior bbox number + * @param numClasses Class number + * @param batchSize Image number + * @param allIndices Indices of predicted bboxes + * @param allDecodedBBoxes BBoxes decoded + * @param out Output matrix + * image number | label | confidence score | xMin | yMin | xMax | yMax + */ +void getDetectionOutput(const real* confData, + const size_t numKept, + const size_t numPriorBBoxes, + const size_t numClasses, + const size_t batchSize, + const vector>>& allIndices, + const vector>& allDecodedBBoxes, + Matrix& out); + +NormalizedBBox clipBBox(const NormalizedBBox& bbox); + +} // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.cpp b/paddle/gserver/layers/ExpandConvBaseLayer.cpp index fdcf994cdb47f2409b045a1337332e2f4c304fbc..77736e78f9349c0393e1e53ac700817a70893e53 100644 --- a/paddle/gserver/layers/ExpandConvBaseLayer.cpp +++ b/paddle/gserver/layers/ExpandConvBaseLayer.cpp @@ -22,26 +22,8 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap, /* Initialize the basic convolutional parent class */ ConvBaseLayer::init(layerMap, parameterMap); - /* The class fields channels_ and numFilters_ are the same as in the config - * i.e., channels_ is the for the input and numFilters_ is for the output - * - * But in order for the variables in convTrans having the same semantic - * meaning as in conv, we need to swap channels_ and numFilters here for - * convTrans, and in other functions too. - * */ - - /* Initialize the projection */ for (auto &inputConfig : config_.inputs()) { const ConvConfig &conf = inputConfig.conv_conf(); - int numFilters = isDeconv_ ? conf.channels() : numFilters_; - subM_.push_back(numFilters / conf.groups()); - subN_.push_back(conf.output_x() * - (conf.has_output_y() ? conf.output_y() : conf.output_x())); - int channel = isDeconv_ ? numFilters_ : conf.channels(); - subK_.push_back( - channel * conf.filter_size() * - (conf.has_filter_size_y() ? conf.filter_size_y() : conf.filter_size()) / - conf.groups()); /* Consistent caffe mode for multiple input */ caffeMode_ = conf.caffe_mode(); } @@ -54,17 +36,9 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap, size_t ExpandConvBaseLayer::getOutputSize() { CHECK_NE(inputLayers_.size(), 0UL); size_t layerSize = ConvBaseLayer::calOutputSize(); - subN_.clear(); - for (size_t i = 0; i < inputLayers_.size(); i++) { - subN_.push_back(outputH_[i] * outputW_[i]); - } return layerSize; } -void ExpandConvBaseLayer::resetExpandInput(size_t height, size_t width) { - Matrix::resizeOrCreate(expandInput_, height, width, false, useGpu_); -} - void ExpandConvBaseLayer::addSharedBias() { size_t mapW = getOutputSize() / numFilters_; size_t mapH = getOutputValue()->getElementCnt() / mapW; @@ -101,173 +75,6 @@ void ExpandConvBaseLayer::addUnsharedBias() { outValue->addBias(*bias, 1.0f); } -void ExpandConvBaseLayer::expandOneFrame(MatrixPtr image, - size_t startIdx, - int inIdx) { - int channel = isDeconv_ ? numFilters_ : channels_[inIdx]; - - resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]); - - CHECK_EQ(image->getWidth(), - static_cast(imgSizeH_[inIdx] * imgSizeW_[inIdx] * channel)); - - real *imgData = image->getData() + startIdx * image->getWidth(); - MatrixPtr imageTmp = - Matrix::create(imgData, - 1, - imgSizeH_[inIdx] * imgSizeW_[inIdx] * channel, - false, - useGpu_); - expandInput_->convExpand(*imageTmp, - imgSizeH_[inIdx], - imgSizeW_[inIdx], - channel, - filterSizeY_[inIdx], - filterSize_[inIdx], - strideY_[inIdx], - stride_[inIdx], - paddingY_[inIdx], - padding_[inIdx], - outputH_[inIdx], - outputW_[inIdx]); - imageTmp->clear(); -} - -void ExpandConvBaseLayer::expandFwdOnce(MatrixPtr image, - MatrixPtr out, - int inIdx, - int startIdx) { - int subM = subM_[inIdx]; - int subN = subN_[inIdx]; - int subK = subK_[inIdx]; - - expandOneFrame(image, startIdx, inIdx); - - int numFilters = isDeconv_ ? channels_[inIdx] : numFilters_; - - real *outData = out->getData() + startIdx * subN * numFilters; - - real *wgtData = weights_[inIdx]->getW()->getData(); - real *expInData = expandInput_->getData(); - for (int g = 0; g < groups_[inIdx]; ++g) { - MatrixPtr A = - Matrix::create(wgtData, subM, subK, false, useGpu_); // mark transpose - MatrixPtr B = Matrix::create(expInData, subK, subN, false, useGpu_); - MatrixPtr C = Matrix::create(outData, subM, subN, false, useGpu_); - C->mul(*A, *B, 1, 1); - - A->clear(); - B->clear(); - C->clear(); - wgtData += subK * subM; - expInData += subK * subN; - outData += subM * subN; - } -} - -void ExpandConvBaseLayer::bpropActs(MatrixPtr out, - MatrixPtr image, - int inpIdx) { - int channel = isDeconv_ ? numFilters_ : channels_[inpIdx]; - - int subM = subM_[inpIdx]; - int subN = subN_[inpIdx]; - int subK = subK_[inpIdx]; - size_t batchSize = image->getHeight(); - - /* reset the expand-grad memory */ - resetExpandInput(subK * groups_[inpIdx], subN); - - real *localGradData = out->getData(); - real *tgtGradData = image->getData(); - for (size_t n = 0; n < batchSize; n++) { - real *wgtData = weights_[inpIdx]->getW()->getData(); - real *expandInData = expandInput_->getData(); - - for (int g = 0; g < groups_[inpIdx]; g++) { - // create temporary matrix - MatrixPtr C = Matrix::create(expandInData, subK, subN, false, useGpu_); - MatrixPtr B = Matrix::create(localGradData, subM, subN, false, useGpu_); - MatrixPtr A = Matrix::create(wgtData, subM, subK, true, useGpu_); - C->mul(*A, *B); // mul - - // clear the temporary matrix - A->clear(); - B->clear(); - C->clear(); - - expandInData += subK * subN; - localGradData += subM * subN; - wgtData += subK * subM; - } - - // shrink one frame outGrad - MatrixPtr oneGradTmp = Matrix::create( - expandInput_->getData(), subK * groups_[inpIdx], subN, false, useGpu_); - MatrixPtr vTmp = - Matrix::create(tgtGradData, - 1, - imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel, - false, - useGpu_); - vTmp->convShrink(*oneGradTmp, - imgSizeH_[inpIdx], - imgSizeW_[inpIdx], - channel, - filterSizeY_[inpIdx], - filterSize_[inpIdx], - strideY_[inpIdx], - stride_[inpIdx], - paddingY_[inpIdx], - padding_[inpIdx], - outputH_[inpIdx], - outputW_[inpIdx], - 1.0f, - 1.0f); - vTmp->clear(); - oneGradTmp->clear(); - - // move the data-pointer - tgtGradData += imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel; - } -} - -void ExpandConvBaseLayer::bpropWeights(MatrixPtr image, - MatrixPtr out, - int inpIdx) { - MatrixPtr weightGrad = weights_[inpIdx]->getWGrad(); - - int subM = subM_[inpIdx]; - int subN = subN_[inpIdx]; - int subK = subK_[inpIdx]; - size_t batchSize = image->getHeight(); - resetExpandInput(subK * groups_[inpIdx], subN); - - real *gradData = out->getData(); - - for (size_t n = 0; n < batchSize; n++) { // frame by frame - // expand - expandOneFrame(image, n, inpIdx); - real *wGradData = weightGrad->getData(); - real *expandInData = expandInput_->getData(); - - // expand-mul one-group by one - for (int g = 0; g < groups_[inpIdx]; g++) { - MatrixPtr A = Matrix::create(expandInData, subK, subN, true, useGpu_); - MatrixPtr B = Matrix::create(gradData, subM, subN, false, useGpu_); - MatrixPtr C = Matrix::create(wGradData, subM, subK, false, useGpu_); - C->mul(*B, *A, 1, 1); - - A->clear(); - B->clear(); - C->clear(); - gradData += subM * subN; - wGradData += subK * subM; - expandInData += subK * subN; - } - } -} - void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) { size_t mapW = getOutputSize() / numFilters_; size_t mapH = v->getElementCnt() / mapW; diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.h b/paddle/gserver/layers/ExpandConvBaseLayer.h index aabcdfc392d3e242df84c820c336d8b32c7cb04f..01c699d2344443a1887ec0b5005125f617cbe279 100644 --- a/paddle/gserver/layers/ExpandConvBaseLayer.h +++ b/paddle/gserver/layers/ExpandConvBaseLayer.h @@ -26,19 +26,6 @@ namespace paddle { */ class ExpandConvBaseLayer : public ConvBaseLayer { protected: - /// For expand convolution. - /// subM_ = numFilters_ / groups_. - IntV subM_; - /// subN_ = outputH_ * outputW_. - IntV subN_; - /// subK_ = channels_ * filterPixels_ * groups_. - IntV subK_; - - /*The expandInput_ and transOutValue_ are used for CPU expand conv calc - * Expand one sample at a time. shape: - * (numChannels * filterPixels_, outputSizeH * outputSizeW) - * */ - MatrixPtr expandInput_; /// The transpose of output, which is an auxiliary matrix. MatrixPtr transOutValue_; @@ -52,10 +39,6 @@ public: const ParameterMap& parameterMap) override; size_t getOutputSize(); - /** - * Create or resize expandInput_. - */ - void resetExpandInput(size_t height, size_t width); /** * Add shared bias. @@ -66,20 +49,9 @@ public: * Add unshared bias. */ void addUnsharedBias(); - /** - * Expand one input sample. - */ - void expandOneFrame(MatrixPtr image, size_t startIdx, int inIdx); - - /** - * Expand one input sample and perform matrix multiplication. - */ - void expandFwdOnce(MatrixPtr image, MatrixPtr out, int inIdx, int startIdx); void bpropSharedBias(MatrixPtr biases, MatrixPtr v); void bpropBiases(MatrixPtr v); - void bpropWeights(MatrixPtr image, MatrixPtr out, int inpIdx); - void bpropActs(MatrixPtr image, MatrixPtr out, int inpIdx); }; } // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvLayer.cpp b/paddle/gserver/layers/ExpandConvLayer.cpp index f9267b81a7d4264f5f43552e3d54a45e4b212e00..914689e66cdb8947e886e17e75829183c1af1a42 100644 --- a/paddle/gserver/layers/ExpandConvLayer.cpp +++ b/paddle/gserver/layers/ExpandConvLayer.cpp @@ -18,32 +18,94 @@ limitations under the License. */ namespace paddle { +/* + * The calculation of the exconvt(convolution transpose (deconv) operation) + * is a swap of forward and backward of the calculation of exconv. + * */ REGISTER_LAYER(exconv, ExpandConvLayer); +REGISTER_LAYER(exconvt, ExpandConvLayer); bool ExpandConvLayer::init(const LayerMap &layerMap, const ParameterMap ¶meterMap) { /* Initialize the basic convolutional parent class */ ExpandConvBaseLayer::init(layerMap, parameterMap); + + size_t numInputs = config_.inputs_size(); + inputShape_.resize(numInputs); + filterShape_.resize(numInputs); + outputShape_.resize(numInputs); + for (int i = 0; i < config_.inputs_size(); i++) { + std::vector paddings = {(size_t)paddingY_[i], (size_t)padding_[i]}; + std::vector strides = {(size_t)strideY_[i], (size_t)stride_[i]}; + createFunction(forward_, + !isDeconv_ ? "GemmConv" : "GemmConvGradInput", + FuncConfig() + .set("paddings", paddings) + .set("strides", strides) + .set("groups", (size_t)groups_[i])); + + createFunction(backward_, + !isDeconv_ ? "GemmConvGradInput" : "GemmConv", + FuncConfig() + .set("paddings", paddings) + .set("strides", strides) + .set("groups", (size_t)groups_[i])); + + createFunction(backward_, + "GemmConvGradFilter", + FuncConfig() + .set("paddings", paddings) + .set("strides", strides) + .set("groups", (size_t)groups_[i])); + } return true; } +// i is the index of input layers +#define BACKWARD_INPUT(i, inputs, outputs) \ + backward_[2 * i]->calc(inputs, outputs) +#define BACKWARD_FILTER(i, inputs, outputs) \ + backward_[2 * i + 1]->calc(inputs, outputs) + void ExpandConvLayer::forward(PassType passType) { Layer::forward(passType); - /* malloc memory for the output_ if necessary */ - int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight(); resetOutput(batchSize, getOutputSize()); - MatrixPtr image = nullptr; - MatrixPtr outV = getOutputValue(); + // Calculate the shape of the input, output, and filter. for (size_t i = 0; i < inputLayers_.size(); ++i) { - LayerPtr prevLayer = getPrev(i); - image = prevLayer->getOutputValue(); - for (size_t off = 0; off < image->getHeight(); off++) { - REGISTER_TIMER_INFO("expandFwdOnce", getName().c_str()); - expandFwdOnce(image, outV, i, off); - } + inputShape_[i] = TensorShape({(size_t)batchSize, + (size_t)channels_[i], + (size_t)imgSizeH_[i], + (size_t)imgSizeW_[i]}); + filterShape_[i] = + TensorShape({(size_t)groups_[i], + !isDeconv_ ? (size_t)numFilters_ / groups_[i] + : (size_t)channels_[i] / groups_[i], + !isDeconv_ ? (size_t)channels_[i] / groups_[i] + : (size_t)numFilters_ / groups_[i], + (size_t)filterSizeY_[i], + (size_t)filterSize_[i]}); + outputShape_[i] = TensorShape({(size_t)batchSize, + (size_t)numFilters_, + (size_t)outputH_[i], + (size_t)outputW_[i]}); } + + // Calculate the output value. + for (size_t i = 0; i < inputLayers_.size(); ++i) { + BufferArgs inputs; + BufferArgs outputs; + inputs.addArg(*getInputValue(i), inputShape_[i]); + inputs.addArg(*weights_[i]->getW(), filterShape_[i]); + outputs.addArg(*getOutputValue(), + outputShape_[i], + !isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO); + + forward_[i]->calc(inputs, outputs); + } + /* add the bias-vector */ if (biases_.get()) { if (sharedBiases_) { @@ -67,14 +129,30 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) { biases_->getParameterPtr()->incUpdate(callback); } + // Calculate the input grad and filter grad. for (size_t i = 0; i < inputLayers_.size(); ++i) { - /* First, calculate the input layers error */ - if (getPrev(i)->getOutputGrad()) { - bpropActs(outGrad, getPrev(i)->getOutputGrad(), i); + if (getInputGrad(i)) { + BufferArgs inputs; + BufferArgs outputs; + inputs.addArg(*getOutputGrad(), outputShape_[i]); + inputs.addArg(*weights_[i]->getW(), filterShape_[i]); + outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO); + BACKWARD_INPUT(i, inputs, outputs); } + if (weights_[i]->getWGrad()) { - /* Then, calculate the W-gradient for the current layer */ - bpropWeights(getPrev(i)->getOutputValue(), outGrad, i); + BufferArgs inputs; + BufferArgs outputs; + if (!isDeconv_) { + inputs.addArg(*getOutputGrad(), outputShape_[i]); + inputs.addArg(*getInputValue(i), inputShape_[i]); + } else { + inputs.addArg(*getInputValue(i), inputShape_[i]); + inputs.addArg(*getOutputGrad(), outputShape_[i]); + } + outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO); + BACKWARD_FILTER(i, inputs, outputs); + /* Increasing the number of gradient */ weights_[i]->getParameterPtr()->incUpdate(callback); } diff --git a/paddle/gserver/layers/ExpandConvLayer.h b/paddle/gserver/layers/ExpandConvLayer.h index 60681690e5dd55b2e9aa4e1f25758db6033665a6..a1f943d1521547af0f82cec7da8a4efe9037cd71 100644 --- a/paddle/gserver/layers/ExpandConvLayer.h +++ b/paddle/gserver/layers/ExpandConvLayer.h @@ -40,6 +40,11 @@ public: void forward(PassType passType) override; void backward(const UpdateCallback& callback) override; + +protected: + std::vector inputShape_; + std::vector filterShape_; + std::vector outputShape_; }; } // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvTransLayer.cpp b/paddle/gserver/layers/ExpandConvTransLayer.cpp deleted file mode 100644 index 520586b13889790c94a3e29902a4ea0ee55e8555..0000000000000000000000000000000000000000 --- a/paddle/gserver/layers/ExpandConvTransLayer.cpp +++ /dev/null @@ -1,90 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "ExpandConvTransLayer.h" -#include "paddle/utils/Logging.h" -#include "paddle/utils/Stat.h" - -/* The implementation of the convTransLayer is basically a swap of forward and - * backward of the original convLayer. - * The variable naming follows the convention of the convLayer. - * */ - -namespace paddle { - -REGISTER_LAYER(exconvt, ExpandConvTransLayer); - -bool ExpandConvTransLayer::init(const LayerMap &layerMap, - const ParameterMap ¶meterMap) { - /* Initialize the basic convolutional parent class */ - ExpandConvBaseLayer::init(layerMap, parameterMap); - - return true; -} - -void ExpandConvTransLayer::forward(PassType passType) { - Layer::forward(passType); - - /* malloc memory for the output_ if necessary */ - int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); - resetOutput(batchSize, getOutputSize()); - - MatrixPtr output = nullptr; - for (size_t i = 0; i < inputLayers_.size(); ++i) { - LayerPtr prevLayer = getPrev(i); - output = prevLayer->getOutputValue(); - REGISTER_TIMER_INFO("shrinkFwd", getName().c_str()); - bpropActs(output, getOutputValue(), i); - } - - /* add the bias-vector */ - if (biases_.get()) { - if (sharedBiases_) { - addSharedBias(); - } else { - addUnsharedBias(); - } - } - - /* activation */ - forwardActivation(); -} - -void ExpandConvTransLayer::backward(const UpdateCallback &callback) { - backwardActivation(); - - MatrixPtr imageGrad = getOutputGrad(); - if (biases_ && biases_->getWGrad()) { - bpropBiases(imageGrad); - /* Increasing the number of gradient */ - biases_->getParameterPtr()->incUpdate(callback); - } - - for (size_t i = 0; i < inputLayers_.size(); ++i) { - /* First, calculate the input layers error */ - for (size_t off = 0; off < imageGrad->getHeight(); off++) { - if (getPrev(i)->getOutputGrad()) { - expandFwdOnce(imageGrad, getPrev(i)->getOutputGrad(), i, off); - } - } - if (weights_[i]->getWGrad()) { - /* Then, calculate the W-gradient for the current layer */ - bpropWeights(imageGrad, getPrev(i)->getOutputValue(), i); - /* Increasing the number of gradient */ - weights_[i]->getParameterPtr()->incUpdate(callback); - } - } -} - -} // namespace paddle diff --git a/paddle/gserver/layers/RowConvLayer.cpp b/paddle/gserver/layers/RowConvLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..54d77999ad5b30a8d9f4feaa02d81417957544a7 --- /dev/null +++ b/paddle/gserver/layers/RowConvLayer.cpp @@ -0,0 +1,106 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "RowConvLayer.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +REGISTER_LAYER(row_conv, RowConvLayer); + +bool RowConvLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + /* Initialize the basic parent class */ + Layer::init(layerMap, parameterMap); + + contexLength_ = config_.inputs(0).row_conv_conf().context_length(); + + CHECK_EQ(inputLayers_.size(), 1UL); + weight_.reset(new Weight(contexLength_, getSize(), parameters_[0])); + createFunction(forward_, "RowConv", FuncConfig()); + createFunction(backward_, "RowConvGrad", FuncConfig()); + + return true; +} + +void RowConvLayer::forward(PassType passType) { + Layer::forward(passType); + MatrixPtr input = getInputValue(0); + size_t height = input->getHeight(); + size_t width = input->getWidth(); + CHECK_EQ(width, getSize()); + resetOutput(height, width); + + const auto startPos = getInput(0).sequenceStartPositions->getVector(useGpu_); + MatrixPtr w = weight_->getW(); + wDims_ = TensorShape({w->getHeight(), w->getWidth()}); + + MatrixPtr outV = getOutputValue(); + BufferArgs inputs; + BufferArgs outputs; + inputs.addArg(*getInputValue(0), *startPos); + inputs.addArg(*w, wDims_); + outputs.addArg(*getOutputValue(), *startPos, ADD_TO); + + { + REGISTER_TIMER_INFO("RowConvForward", getName().c_str()); + forward_[0]->calc(inputs, outputs); + } + + /* activation */ { + REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str()); + forwardActivation(); + } +} + +void RowConvLayer::backward(const UpdateCallback& callback) { + /* Do derivation */ { + REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str()); + backwardActivation(); + } + + const auto startPos = getInput(0).sequenceStartPositions->getVector(useGpu_); + + BufferArgs inputs; + BufferArgs outputs; + inputs.addArg(*getOutputGrad(), *startPos); + inputs.addArg(*getInputValue(0), *startPos); + inputs.addArg(*weight_->getW(), wDims_); + + MatrixPtr inGrad = getInputGrad(0); + MatrixPtr wGrad = weight_->getWGrad(); + size_t h = getInputValue(0)->getHeight(); + size_t w = getInputValue(0)->getWidth(); + outputs.addArg( + inGrad ? (*inGrad) : *(Matrix::create(nullptr, h, w, false, useGpu_)), + *startPos, + ADD_TO); + outputs.addArg( + wGrad ? (*wGrad) + : *(Matrix::create(nullptr, contexLength_, w, false, useGpu_)), + wDims_, + ADD_TO); + + { + REGISTER_TIMER_INFO("RowConvBackward", getName().c_str()); + backward_[0]->calc(inputs, outputs); + } + + { + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + weight_->getParameterPtr()->incUpdate(callback); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvTransLayer.h b/paddle/gserver/layers/RowConvLayer.h similarity index 59% rename from paddle/gserver/layers/ExpandConvTransLayer.h rename to paddle/gserver/layers/RowConvLayer.h index 00b8f241889fdd3f423d75dedd9068aa3674f190..b3bdda2f3542b312eda531695c975ff2dfc29c93 100644 --- a/paddle/gserver/layers/ExpandConvTransLayer.h +++ b/paddle/gserver/layers/RowConvLayer.h @@ -14,31 +14,31 @@ limitations under the License. */ #pragma once -#include -#include "ExpandConvBaseLayer.h" -#include "paddle/math/Matrix.h" +#include "Layer.h" namespace paddle { /** - * @brief A subclass of convolution layer. - * This layer expands input and use matrix multiplication to - * calculate convolution transpose (deconv) operation. - * - * The config file api is img_conv_layer with flag trans=True. + * \brief Row Convolution Layer. */ -class ExpandConvTransLayer : public ExpandConvBaseLayer { +class RowConvLayer : public Layer { public: - explicit ExpandConvTransLayer(const LayerConfig& config) - : ExpandConvBaseLayer(config) {} + explicit RowConvLayer(const LayerConfig& config) : Layer(config) {} - ~ExpandConvTransLayer() {} + ~RowConvLayer() {} bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) override; - void forward(PassType passType) override; - void backward(const UpdateCallback& callback) override; -}; + void backward(const UpdateCallback& callback = nullptr) override; +protected: + // Row convolution weight, context_lenght_ * fan_out. + // fan_out is the size of output feature. + std::unique_ptr weight_; + + // The step number to look ahead plus one equals contexLength_. + size_t contexLength_; + TensorShape wDims_; +}; } // namespace paddle diff --git a/paddle/gserver/tests/test_BatchNorm.cpp b/paddle/gserver/tests/test_BatchNorm.cpp index d07299bfe3c4147742384a45dc6f1698d9c382f4..83fcfed46cd568d22237eeef9c0215e4e3ad2666 100644 --- a/paddle/gserver/tests/test_BatchNorm.cpp +++ b/paddle/gserver/tests/test_BatchNorm.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" diff --git a/paddle/gserver/tests/test_ConvTrans.cpp b/paddle/gserver/tests/test_ConvTrans.cpp index 40bb1e2d73c81280a9b12114c13de851285c276b..6035a866b4eee4c6a61fa93f3adbf5e1d2d549f7 100644 --- a/paddle/gserver/tests/test_ConvTrans.cpp +++ b/paddle/gserver/tests/test_ConvTrans.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/math/MathUtils.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" diff --git a/paddle/gserver/tests/test_ConvUnify.cpp b/paddle/gserver/tests/test_ConvUnify.cpp index 54b72375b743fe025e0ded5fdbce5699a0b4be1a..e7325e0cc3b7195b5fec77c878e3e087cfc643e0 100644 --- a/paddle/gserver/tests/test_ConvUnify.cpp +++ b/paddle/gserver/tests/test_ConvUnify.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/math/MathUtils.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index e1e8e7fae7ca4c96206d60703db1f35aa1196875..6adffcf53b7966bd6f3d02970e5f07cc9802f469 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -1705,6 +1705,26 @@ TEST(Layer, TransLayer) { } } +TEST(Layer, RowConvLayer) { + const int context = 3; + const int size = 512; + + TestConfig config; + config.layerConfig.set_type("row_conv"); + config.layerConfig.set_size(size); + config.layerConfig.set_active_type("sigmoid"); + + config.inputDefs.push_back( + {INPUT_SEQUENCE_DATA, "layer_0", size, context * size}); + LayerInputConfig* input = config.layerConfig.add_inputs(); + RowConvConfig* conv = input->mutable_row_conv_conf(); + conv->set_context_length(context); + + for (auto useGpu : {false, true}) { + testLayerGrad(config, "row_conv", 100, false, useGpu, false); + } +} + int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); diff --git a/paddle/parameter/Argument.cpp b/paddle/parameter/Argument.cpp index 6d9365af2d14673146d9e427138bf6dd5f5b41b6..5beced3bb5a1050078f88dfd4350a2df71d27f35 100644 --- a/paddle/parameter/Argument.cpp +++ b/paddle/parameter/Argument.cpp @@ -632,7 +632,7 @@ void Argument::printValueString(std::ostream& stream, const std::string& prefix) const { std::unordered_map out; getValueString(&out); - for (auto field : {"value", "id", "sequence pos", "sub-sequence pos"}) { + for (auto field : {"value", "ids", "sequence pos", "sub-sequence pos"}) { auto it = out.find(field); if (it != out.end()) { stream << prefix << field << ":\n" << it->second; diff --git a/paddle/parameter/tests/test_argument.cpp b/paddle/parameter/tests/test_argument.cpp index 81fe4ee397351a013c8616ad08fb8cb4b8dae4d0..98ab013548734059060eb06ce1a7cec23dbf1b72 100644 --- a/paddle/parameter/tests/test_argument.cpp +++ b/paddle/parameter/tests/test_argument.cpp @@ -42,7 +42,7 @@ TEST(Argument, poolSequenceWithStride) { CHECK_EQ(outStart[3], 4); CHECK_EQ(outStart[4], 7); - CHECK_EQ(stridePositions->getSize(), 8); + CHECK_EQ(stridePositions->getSize(), 8UL); auto result = reversed ? strideResultReversed : strideResult; for (int i = 0; i < 8; i++) { CHECK_EQ(stridePositions->getData()[i], result[i]); diff --git a/paddle/pserver/LightNetwork.cpp b/paddle/pserver/LightNetwork.cpp index 8c8ba0a2e51b85bde0544c6780b07130336a6bdd..922f25734dee0a6db7fbcfcef3d29d2bad5b7858 100644 --- a/paddle/pserver/LightNetwork.cpp +++ b/paddle/pserver/LightNetwork.cpp @@ -383,20 +383,23 @@ void SocketClient::TcpClient(const std::string &serverAddr, int serverPort) { setOption(sockfd); /// Now connect to the server - int retry_second = 0; - int error = 0; + int retry_count = 0; do { - error = connect(sockfd, (sockaddr *)&serv_addr, sizeof(serv_addr)); - if (error == ECONNREFUSED) { + if (connect(sockfd, (sockaddr *)&serv_addr, sizeof(serv_addr)) == 0) { + break; + } + + if (errno == ECONNREFUSED) { LOG(WARNING) << "connection refused by pserver, try again!"; - if (retry_second++ >= 7) { + if (retry_count++ >= 7) { LOG(FATAL) << "connection refused by pserver, maybe pserver failed!"; } std::this_thread::sleep_for(std::chrono::seconds(1)); } else { - PCHECK(error >= 0) << "ERROR connecting to " << serverAddr; + PCHECK(errno != 0) << "ERROR connecting to " << serverAddr << ":" + << serverPort << "errorno: " << errno; } - } while (error == ECONNREFUSED); + } while (errno == ECONNREFUSED); channel_.reset(new SocketChannel(sockfd, serverAddr)); tcpRdma_ = F_TCP; diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 9f0f9f2d74db8e0b538adb8263e2844c2cf4b74f..2b48e4dc0f875be9a87797fa14885926999a5010 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -58,7 +58,7 @@ EOF make -j `nproc` if [ ${WITH_TESTING:-OFF} == "ON" ] && [ ${RUN_TEST:-OFF} == "ON" ] ; then pip uninstall -y py-paddle paddle || true - ctest -V + ctest --output-on-failure fi diff --git a/paddle/strings/CMakeLists.txt b/paddle/strings/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..4e55eecd484c0e218ecd51bbd19b3eb4f6f92a25 --- /dev/null +++ b/paddle/strings/CMakeLists.txt @@ -0,0 +1,2 @@ +cc_library(stringpiece SRCS stringpiece.cc) +cc_test(stringpiece_test SRCS stringpiece_test.cc DEPS stringpiece glog gflags) diff --git a/paddle/strings/stringpiece.cc b/paddle/strings/stringpiece.cc new file mode 100644 index 0000000000000000000000000000000000000000..415b3558d5dfffde26275bcb16ea3922424ca9f3 --- /dev/null +++ b/paddle/strings/stringpiece.cc @@ -0,0 +1,141 @@ +/* + Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ + +#include "paddle/strings/stringpiece.h" + +#include + +#include +#include +#include + +namespace paddle { + +StringPiece::StringPiece() : data_(NULL), size_(0) {} + +StringPiece::StringPiece(const char* d, size_t n) : data_(d), size_(n) { + if (d == NULL && n != 0) + throw std::invalid_argument( + "StringPiece requires len to be 0 for NULL data"); +} + +StringPiece::StringPiece(const char* s) : data_(s) { + size_ = (s == NULL) ? 0 : strlen(s); +} + +StringPiece::StringPiece(const std::string& s) + : data_(s.data()), size_(s.size()) {} + +char StringPiece::operator[](size_t n) const { + if (n >= len()) + throw std::invalid_argument("index out of StringPiece length"); + return data_[n]; +} + +int Compare(StringPiece a, StringPiece b) { + const size_t min_len = (a.len() < b.len()) ? a.len() : b.len(); + int r = memcmp(a.data(), b.data(), min_len); + if (r == 0) { + if (a.len() < b.len()) + return -1; + else if (a.len() > b.len()) + return 1; + } + return r; +} + +bool operator==(StringPiece x, StringPiece y) { + return ((x.len() == y.len()) && + (x.data() == y.data() || memcmp(x.data(), y.data(), x.len()) == 0)); +} + +bool operator!=(StringPiece x, StringPiece y) { return !(x == y); } + +bool operator<(StringPiece x, StringPiece y) { return Compare(x, y) < 0; } +bool operator>(StringPiece x, StringPiece y) { return Compare(x, y) > 0; } + +bool operator<=(StringPiece x, StringPiece y) { return Compare(x, y) <= 0; } +bool operator>=(StringPiece x, StringPiece y) { return Compare(x, y) >= 0; } + +bool HasPrefix(StringPiece s, StringPiece x) { + return ((s.len() >= x.len()) && (memcmp(s.data(), x.data(), x.len()) == 0)); +} + +bool HasSuffix(StringPiece s, StringPiece x) { + return ((s.len() >= x.len()) && + (memcmp(s.data() + (s.len() - x.len()), x.data(), x.len()) == 0)); +} + +StringPiece SkipPrefix(StringPiece s, size_t n) { + if (n > s.len()) + throw std::invalid_argument("Skip distance larger than StringPiece length"); + return StringPiece(s.data() + n, s.len() - n); +} + +StringPiece SkipSuffix(StringPiece s, size_t n) { + if (n > s.len()) + throw std::invalid_argument("Skip distance larger than StringPiece length"); + return StringPiece(s.data(), s.len() - n); +} + +StringPiece TrimPrefix(StringPiece s, StringPiece x) { + return HasPrefix(s, x) ? SkipPrefix(s, x.len()) : s; +} + +StringPiece TrimSuffix(StringPiece s, StringPiece x) { + return HasSuffix(s, x) ? SkipSuffix(s, x.len()) : s; +} + +bool Contains(StringPiece s, StringPiece sub) { + return std::search(s.begin(), s.end(), sub.begin(), sub.end()) != s.end(); +} + +size_t Index(StringPiece s, StringPiece sub) { + auto e = std::search(s.begin(), s.end(), sub.begin(), sub.end()); + return e != s.end() ? e - s.data() : StringPiece::npos; +} + +size_t Find(StringPiece s, char c, size_t pos) { + if (pos >= s.len()) { + return StringPiece::npos; + } + const char* result = + reinterpret_cast(memchr(s.data() + pos, c, s.len() - pos)); + return result != nullptr ? result - s.data() : StringPiece::npos; +} + +size_t RFind(StringPiece s, char c, size_t pos) { + if (s.len() == 0) return StringPiece::npos; + for (const char* p = s.data() + std::min(pos, s.len() - 1); p >= s.data(); + p--) { + if (*p == c) { + return p - s.data(); + } + } + return StringPiece::npos; +} + +StringPiece SubStr(StringPiece s, size_t pos, size_t n) { + if (pos > s.len()) pos = s.len(); + if (n > s.len() - pos) n = s.len() - pos; + return StringPiece(s.data() + pos, n); +} + +std::ostream& operator<<(std::ostream& o, StringPiece piece) { + return o << piece.ToString(); +} + +} // namespace paddle diff --git a/paddle/strings/stringpiece.h b/paddle/strings/stringpiece.h new file mode 100644 index 0000000000000000000000000000000000000000..adff713e86f49349b8f189c1d24584bfc1bb8aa7 --- /dev/null +++ b/paddle/strings/stringpiece.h @@ -0,0 +1,105 @@ +/* + Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ + +#pragma once + +#include +#include + +namespace paddle { + +// StringPiece points into a std::string object but doesn't own the +// string. It is for efficient access to strings. Like Go's string +// type. Not that StringPiece doesn't mutate the underlying string, +// so it is thread-safe given that the underlying string doesn't +// change. Because StringPiece contains a little data members, and +// its syntax is simple as it doesn't own/manage the string, it is +// cheap to construct StringPieces and pass them around. +class StringPiece { +public: + static const size_t npos = static_cast(-1); + + // We provide non-explicit singleton constructors so users can + // pass in a "const char*" or a "string" wherever a "StringPiece" + // is expected. These contructors ensure that if data_ is NULL, + // size_ is 0. + StringPiece(); + StringPiece(const char* d, size_t n); + StringPiece(const char* d); + StringPiece(const std::string& s); + + const char* data() const { return data_; } + size_t len() const { return size_; } + + char operator[](size_t n) const; + + // StringPiece doesn't own the string, so both iterator and const + // iterator are const char* indeed. + typedef const char* const_iterator; + typedef const char* iterator; + iterator begin() const { return data_; } + iterator end() const { return data_ + size_; } + + // Return a string that contains the copy of the referenced data. + std::string ToString() const { return std::string(data_, size_); } + +private: + const char* data_; + size_t size_; + + // Intentionally copyable +}; + +int Compare(StringPiece a, StringPiece b); + +bool operator==(StringPiece x, StringPiece y); +bool operator!=(StringPiece x, StringPiece y); +bool operator<(StringPiece x, StringPiece y); +bool operator>(StringPiece x, StringPiece y); +bool operator<=(StringPiece x, StringPiece y); +bool operator>=(StringPiece x, StringPiece y); + +bool HasPrefix(StringPiece s, StringPiece prefix); +bool HasSuffix(StringPiece s, StringPiece suffix); + +StringPiece SkipPrefix(StringPiece s, size_t n); +StringPiece SkipSuffix(StringPiece s, size_t n); + +// Skip the prefix (or suffix) if it matches with the string. +StringPiece TrimPrefix(StringPiece s, StringPiece prefix); +StringPiece TrimSuffix(StringPiece s, StringPiece suffix); + +// Returns if s contains sub. Any s except for empty s contains an +// empty sub. +bool Contains(StringPiece s, StringPiece sub); + +// Return the first occurrence of sub in s, or npos. If both s and +// sub is empty, it returns npos; otherwise, if only sub is empty, it +// returns 0. +size_t Index(StringPiece s, StringPiece sub); + +// Return the first occurrence of c in s[pos:end], or npos. +size_t Find(StringPiece s, char c, size_t pos); + +// Search range is [0..pos] inclusive. If pos == npos, search everything. +size_t RFind(StringPiece s, char c, size_t pos); + +StringPiece SubStr(StringPiece s, size_t pos, size_t n); + +// allow StringPiece to be logged +std::ostream& operator<<(std::ostream& o, StringPiece piece); + +} // namespace paddle diff --git a/paddle/strings/stringpiece_test.cc b/paddle/strings/stringpiece_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..2ba66a04f641c3457efa713383484491a213668f --- /dev/null +++ b/paddle/strings/stringpiece_test.cc @@ -0,0 +1,293 @@ +/* + Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ + +#include "paddle/strings/stringpiece.h" + +#include + +#include "gtest/gtest.h" + +TEST(StringPiece, Construct) { + { + paddle::StringPiece s; + EXPECT_EQ(NULL, s.data()); + EXPECT_EQ(0U, s.len()); + } + { EXPECT_THROW(paddle::StringPiece s(NULL, 10000U), std::invalid_argument); } + { + paddle::StringPiece s(NULL); + EXPECT_EQ(0U, s.len()); + } + { + std::string a; + EXPECT_EQ(0U, a.size()); + paddle::StringPiece s(a); + EXPECT_EQ(0U, s.len()); + } +} + +TEST(StringPiece, CopyAndAssign) { + paddle::StringPiece empty; + EXPECT_EQ(0U, empty.len()); + + paddle::StringPiece a("hello"); + paddle::StringPiece b = a; + EXPECT_EQ(b.len(), strlen("hello")); + EXPECT_EQ(a, b); + + std::string storage("hello"); + paddle::StringPiece c(storage); + EXPECT_EQ(a, c); + EXPECT_NE(a.data(), c.data()); +} + +TEST(StringPiece, Compare) { + { + paddle::StringPiece a("hello"); + paddle::StringPiece b("world"); + EXPECT_TRUE(a != b); + EXPECT_FALSE(a == b); + EXPECT_TRUE(a < b); + EXPECT_TRUE(a <= b); + EXPECT_FALSE(a > b); + EXPECT_FALSE(a >= b); + EXPECT_LT(Compare(a, b), 0); + EXPECT_GT(Compare(b, a), 0); + } + { + paddle::StringPiece a, b; + EXPECT_TRUE(a == b); + EXPECT_FALSE(a != b); + EXPECT_FALSE(a < b); + EXPECT_FALSE(a > b); + EXPECT_TRUE(a <= b); + EXPECT_TRUE(a >= b); + EXPECT_EQ(0, Compare(a, b)); + EXPECT_EQ(0, Compare(b, a)); + } +} + +TEST(StringPiece, ToString) { + { + paddle::StringPiece s; + EXPECT_EQ(std::string(""), s.ToString()); + } + { + paddle::StringPiece s(NULL); + EXPECT_EQ(std::string(""), s.ToString()); + } + { + paddle::StringPiece s("hello"); + EXPECT_EQ(std::string("hello"), s.ToString()); + } +} + +TEST(StringPiece, HasPrefixSuffix) { + using paddle::HasPrefix; + using paddle::HasSuffix; + { + paddle::StringPiece s; + EXPECT_FALSE(HasPrefix(s, "something")); + EXPECT_TRUE(HasPrefix(s, "")); + EXPECT_FALSE(HasSuffix(s, "something")); + EXPECT_TRUE(HasSuffix(s, "")); + } + { + paddle::StringPiece s("app"); + EXPECT_TRUE(HasPrefix(s, "")); + EXPECT_TRUE(HasPrefix(s, "a")); + EXPECT_TRUE(HasPrefix(s, "ap")); + EXPECT_TRUE(HasPrefix(s, "app")); + + EXPECT_TRUE(HasSuffix(s, "")); + EXPECT_TRUE(HasSuffix(s, "p")); + EXPECT_TRUE(HasSuffix(s, "pp")); + EXPECT_TRUE(HasSuffix(s, "app")); + } +} + +TEST(StringPiece, SkipPrefixSuffix) { + using paddle::SkipPrefix; + using paddle::SkipSuffix; + { + paddle::StringPiece s; + EXPECT_EQ("", SkipPrefix(s, 0)); + EXPECT_THROW(SkipPrefix(s, 1), std::invalid_argument); + + EXPECT_EQ("", SkipSuffix(s, 0)); + EXPECT_THROW(SkipSuffix(s, 1), std::invalid_argument); + } + { + paddle::StringPiece s("app"); + EXPECT_EQ("app", SkipPrefix(s, 0)); + EXPECT_EQ("pp", SkipPrefix(s, 1)); + EXPECT_EQ("p", SkipPrefix(s, 2)); + EXPECT_EQ("", SkipPrefix(s, 3)); + EXPECT_THROW(SkipPrefix(s, 4), std::invalid_argument); + + EXPECT_EQ("app", SkipSuffix(s, 0)); + EXPECT_EQ("ap", SkipSuffix(s, 1)); + EXPECT_EQ("a", SkipSuffix(s, 2)); + EXPECT_EQ("", SkipSuffix(s, 3)); + EXPECT_THROW(SkipSuffix(s, 4), std::invalid_argument); + } +} + +TEST(StringPiece, TrimPrefixSuffix) { + using paddle::TrimPrefix; + using paddle::TrimSuffix; + { + paddle::StringPiece s; + EXPECT_EQ("", TrimPrefix(s, "")); + EXPECT_EQ("", TrimPrefix(s, "something")); + + EXPECT_EQ("", TrimSuffix(s, "")); + EXPECT_EQ("", TrimSuffix(s, "something")); + } + { + paddle::StringPiece s("app"); + EXPECT_EQ("app", TrimPrefix(s, "")); + EXPECT_EQ("pp", TrimPrefix(s, "a")); + EXPECT_EQ("p", TrimPrefix(s, "ap")); + EXPECT_EQ("", TrimPrefix(s, "app")); + EXPECT_EQ("app", TrimPrefix(s, "something")); + + EXPECT_EQ("app", TrimSuffix(s, "")); + EXPECT_EQ("ap", TrimSuffix(s, "p")); + EXPECT_EQ("a", TrimSuffix(s, "pp")); + EXPECT_EQ("", TrimSuffix(s, "app")); + EXPECT_EQ("app", TrimSuffix(s, "something")); + } +} + +TEST(StringPiece, Contains) { + using paddle::Contains; + { + paddle::StringPiece s; + EXPECT_FALSE(Contains(s, "")); + EXPECT_FALSE(Contains(s, "something")); + } + { + paddle::StringPiece s("app"); + EXPECT_TRUE(Contains(s, "")); + EXPECT_TRUE(Contains(s, "a")); + EXPECT_TRUE(Contains(s, "p")); + EXPECT_TRUE(Contains(s, "ap")); + EXPECT_TRUE(Contains(s, "pp")); + EXPECT_TRUE(Contains(s, "app")); + EXPECT_FALSE(Contains(s, "something")); + } +} + +TEST(StringPiece, Index) { + using paddle::Index; + auto npos = paddle::StringPiece::npos; + { + paddle::StringPiece s; + EXPECT_EQ(npos, Index(s, "")); + EXPECT_EQ(npos, Index(s, "something")); + } + { + paddle::StringPiece s("app"); + EXPECT_EQ(0U, Index(s, "")); + EXPECT_EQ(0U, Index(s, "a")); + EXPECT_EQ(1U, Index(s, "p")); + EXPECT_EQ(0U, Index(s, "ap")); + EXPECT_EQ(1U, Index(s, "pp")); + EXPECT_EQ(0U, Index(s, "app")); + EXPECT_EQ(npos, Index(s, "something")); + } +} + +TEST(StringPiece, Find) { + using paddle::Find; + auto npos = paddle::StringPiece::npos; + { + paddle::StringPiece s; + EXPECT_EQ(npos, Find(s, 'a', 0U)); + } + { + paddle::StringPiece s("app"); + EXPECT_EQ(0U, Find(s, 'a', 0U)); + EXPECT_EQ(1U, Find(s, 'p', 0U)); + EXPECT_EQ(1U, Find(s, 'p', 1U)); + EXPECT_EQ(2U, Find(s, 'p', 2U)); + EXPECT_EQ(npos, Find(s, 'z', 2U)); + } +} + +TEST(StringPiece, RFind) { + using paddle::RFind; + auto npos = paddle::StringPiece::npos; + { + paddle::StringPiece s; + EXPECT_EQ(npos, RFind(s, 'a', 0U)); + } + { + paddle::StringPiece s("app"); + EXPECT_EQ(2U, RFind(s, 'p', 2U)); + EXPECT_EQ(0U, RFind(s, 'a', 2U)); + EXPECT_EQ(1U, RFind(s, 'p', 1U)); + EXPECT_EQ(0U, RFind(s, 'a', 0)); + EXPECT_EQ(npos, RFind(s, 'z', 2U)); + } +} + +TEST(StringPiece, SubStr) { + using paddle::SubStr; + { + paddle::StringPiece s; + EXPECT_EQ("", SubStr(s, 0, 0)); + EXPECT_EQ("", SubStr(s, 0, 1)); + EXPECT_EQ("", SubStr(s, 1, 0)); + } + { + paddle::StringPiece s("app"); + EXPECT_EQ("", SubStr(s, 0, 0)); + EXPECT_EQ("", SubStr(s, 1, 0)); + EXPECT_EQ("", SubStr(s, 2, 0)); + EXPECT_EQ("", SubStr(s, 3, 0)); + + EXPECT_EQ("a", SubStr(s, 0, 1)); + EXPECT_EQ("p", SubStr(s, 1, 1)); + EXPECT_EQ("p", SubStr(s, 2, 1)); + EXPECT_EQ("", SubStr(s, 3, 1)); + + EXPECT_EQ("ap", SubStr(s, 0, 2)); + EXPECT_EQ("pp", SubStr(s, 1, 2)); + EXPECT_EQ("p", SubStr(s, 2, 2)); + EXPECT_EQ("", SubStr(s, 3, 2)); + + EXPECT_EQ("app", SubStr(s, 0, 3)); + EXPECT_EQ("pp", SubStr(s, 1, 3)); + EXPECT_EQ("p", SubStr(s, 2, 3)); + EXPECT_EQ("", SubStr(s, 3, 3)); + } +} + +TEST(StringPiece, StreamOutput) { + using paddle::StringPiece; + + std::stringstream o; + o << StringPiece(); + EXPECT_EQ("", o.str()); + + o << StringPiece("hello"); + EXPECT_EQ("hello", o.str()); + + o << StringPiece(); + EXPECT_EQ("hello", o.str()); +} diff --git a/paddle/trainer/CMakeLists.txt b/paddle/trainer/CMakeLists.txt index 06c019f0a97757b658d1bc3405246d8f47632aad..9d246b6690134d96e9a262c6ac64d998536128a9 100644 --- a/paddle/trainer/CMakeLists.txt +++ b/paddle/trainer/CMakeLists.txt @@ -4,6 +4,7 @@ set(TRAINER_SOURCES ParameterUpdater.cpp ParamUtil.cpp RemoteParameterUpdater.cpp + NewRemoteParameterUpdater.cpp Tester.cpp Trainer.cpp TrainerInternal.cpp @@ -16,6 +17,7 @@ set(TRAINER_HEADERS ParameterUpdater.h ParamUtil.h RemoteParameterUpdater.h + NewRemoteParameterUpdater.h Tester.h TesterConfig.h Trainer.h @@ -32,7 +34,7 @@ add_style_check_target(paddle_trainer_lib add_style_check_target(paddle_trainer_lib ${TRAINER_HEADERS}) add_dependencies(paddle_trainer_lib - gen_proto_cpp) + gen_proto_cpp paddle_pserver_cclient_lib) macro(add_paddle_exe TARGET_NAME) add_executable(${TARGET_NAME} ${ARGN}) @@ -56,3 +58,10 @@ install(TARGETS paddle_trainer paddle_merge_model set_target_properties(paddle_trainer PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE) set_target_properties(paddle_merge_model PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE) + +if(APPLE) + set(CMAKE_EXE_LINKER_FLAGS "-framework CoreFoundation -framework Security") +endif() + +target_link_libraries(paddle_trainer ${CMAKE_CURRENT_SOURCE_DIR}/libpaddle_pserver_cclient.a) +target_link_libraries(paddle_trainer_lib ${CMAKE_CURRENT_SOURCE_DIR}/libpaddle_pserver_cclient.a) diff --git a/paddle/trainer/NewRemoteParameterUpdater.cpp b/paddle/trainer/NewRemoteParameterUpdater.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f25ce2f7f06f6da0feab27da61b8e49689cbe213 --- /dev/null +++ b/paddle/trainer/NewRemoteParameterUpdater.cpp @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "NewRemoteParameterUpdater.h" +#include "Trainer.h" +#include "paddle/utils/Stat.h" + +DECLARE_int32(trainer_id); +DECLARE_string(save_dir); + +namespace paddle { +NewRemoteParameterUpdater::NewRemoteParameterUpdater( + const OptimizationConfig &config, const std::string pserverSpec) + : parameterClient_(-1), + newParameters_(nullptr), + newGradients_(nullptr), + pserverSpec_(pserverSpec) {} + +void NewRemoteParameterUpdater::init( + const std::vector ¶meters) { + ParameterUpdater::init(parameters); + + for (auto ¶ : parameters_) { + para->getBuf(PARAMETER_VALUE)->zeroMem(); + para->getBuf(PARAMETER_GRADIENT)->zeroMem(); + } + + // create parameter server client. + parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(), + FLAGS_trainer_id == 0); + + // init new parameter and gradient. + newParameters_ = initNewParameter(PARAMETER_VALUE); + newGradients_ = initNewParameter(PARAMETER_GRADIENT); + + // init parameter, one trainer will get the opportunity to int parameter and + // send them to parameter server. Others will get the initialized parameter + // from parameter server + if (paddle_begin_init_params(parameterClient_)) { + LOG(INFO) << "paddle_begin_init_params start"; + for (int i = 0; i < parameterSize(); ++i) { + auto paramConfig = parameters_[i]->getConfig(); + std::string bytes = paramConfig.SerializeAsString(); + const char *array = bytes.data(); + int size = (int)bytes.size(); + paddle_init_param( + parameterClient_, *newParameters_[i], (void *)array, size); + } + paddle_finish_init_params(parameterClient_); + LOG(INFO) << "paddle_begin_init_params done"; + } else { + paddle_get_params(parameterClient_, newParameters_, parameterSize()); + } + + LOG(INFO) << "NewRemoteParameterUpdater initialized"; +} + +void NewRemoteParameterUpdater::updateImpl(Parameter *para) {} + +void NewRemoteParameterUpdater::finishBatch(real cost) { + // send gradient to parameter server. + paddle_send_grads(parameterClient_, newGradients_, parameterSize()); + // get the updated parameter from parameterClient. + paddle_get_params(parameterClient_, newParameters_, parameterSize()); + + // clear gradient after update parameter. + for (auto ¶ : parameters_) { + para->getBuf(PARAMETER_GRADIENT)->zeroMem(); + } +} + +void NewRemoteParameterUpdater::startPass() {} + +bool NewRemoteParameterUpdater::finishPass() { return true; } +} diff --git a/paddle/trainer/NewRemoteParameterUpdater.h b/paddle/trainer/NewRemoteParameterUpdater.h new file mode 100644 index 0000000000000000000000000000000000000000..f735185f62b3491a63e34cfc4a2ef73dae12243e --- /dev/null +++ b/paddle/trainer/NewRemoteParameterUpdater.h @@ -0,0 +1,114 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include "ParameterUpdater.h" +#include "libpaddle_pserver_cclient.h" +#include "paddle/pserver/ParameterClient2.h" +#include "paddle/utils/Queue.h" +#include "paddle/utils/Util.h" + +namespace paddle { + +/** + * New remote parameter updater for dense parameters that use cclient of go. + */ +class NewRemoteParameterUpdater : public ParameterUpdater { +public: + NewRemoteParameterUpdater(const OptimizationConfig& config, + const std::string pserverSpec); + ~NewRemoteParameterUpdater() { + releaseNewParameter(newParameters_); + releaseNewParameter(newGradients_); + if (parameterClient_ >= 0) paddle_pserver_client_release(parameterClient_); + } + + /** + * initialize the internal parameter client and itself. + */ + virtual void init(const std::vector& parameters); + /** + * @brief start batch + * + * @note one batch training exhibits stateful feature to help + * to do performance tuning, sgd optimization if necessary. + */ + virtual PassType startBatch(int64_t batchSize) { return PASS_TRAIN; } + + /** + * send parameters to pservers and get returned parameters + * from all pservers if necessary. + */ + virtual void finishBatch(real cost); + virtual void startPass(); + virtual bool finishPass(); + +protected: + /** + * work need to do after finishBatch + */ + virtual void updateImpl(Parameter* para); + +private: + int parameterSize() { return (int)parameters_.size(); } + + /** + * init parameter of go paddle pserver cclient. + * @param new_params + * @param type + */ + paddle_parameter** initNewParameter(ParameterType type) { + paddle_parameter** new_params = + (paddle_parameter**)malloc(sizeof(paddle_parameter*) * parameterSize()); + for (int i = 0; i < parameterSize(); ++i) { + new_params[i] = (paddle_parameter*)malloc(sizeof(paddle_parameter)); + memset(new_params[i], 0, sizeof(paddle_parameter)); + } + + for (int i = 0; i < parameterSize(); ++i) { + ParameterPtr param = parameters_[i]; + new_params[i]->element_type = PADDLE_ELEMENT_TYPE_FLOAT32; + new_params[i]->name = (char*)param->getName().c_str(); + new_params[i]->content = + (unsigned char*)(param->getBuf(type).get()->getData()); + new_params[i]->content_len = + (int)param->getBuf(type).get()->getSize() * sizeof(real); + } + return new_params; + } + + void releaseNewParameter(paddle_parameter** newParams) { + if (newParams != nullptr) { + for (int i = 0; i < parameterSize(); ++i) { + free(newParams[i]); + } + free(newParams); + } + } + +protected: + /// internal parameter client object for exchanging data with pserver + paddle_pserver_client parameterClient_; + /// the parameters for new pserver client + paddle_parameter** newParameters_; + /// the gradinets for new pserver client + paddle_parameter** newGradients_; + /// the specification of parameter server "host1:port,host1:port" + std::string pserverSpec_; +}; + +} // namespace paddle diff --git a/proto/ModelConfig.proto b/proto/ModelConfig.proto index 4f9b53d6f6553e55406dd000029a598a92fd2fb6..29270829bbc3af6990aaf03a5228ef7f6a892a5c 100644 --- a/proto/ModelConfig.proto +++ b/proto/ModelConfig.proto @@ -194,6 +194,10 @@ message MaxOutConfig { required uint32 groups = 2; } +message RowConvConfig { + required uint32 context_length = 1; +} + message ProjectionConfig { required string type = 1; required string name = 2; @@ -279,6 +283,7 @@ message LayerInputConfig { optional SppConfig spp_conf = 12; optional PriorBoxConfig priorbox_conf = 13; optional PadConfig pad_conf = 14; + optional RowConvConfig row_conv_conf = 15; } message LayerConfig { diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 3640dd3a75ea212a84255ea7f6369b63606482ab..0e17c42d34f147db190ac5e5ccd5339360cc35bb 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -18,7 +18,7 @@ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in add_custom_command(OUTPUT ${OUTPUT_DIR}/.timestamp COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT_DIR}/.timestamp - DEPENDS gen_proto_py ${PY_FILES} ${external_project_dependencies}) + DEPENDS gen_proto_py ${PY_FILES} ${external_project_dependencies} paddle_master_shared) add_custom_target(paddle_python ALL DEPENDS ${OUTPUT_DIR}/.timestamp) diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 5d540664a7f56b4fc27ecd5dc46bf36b0268eb98..fc2e3bbcde0e94b6325bd0ca1fd41e088df0b950 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -73,7 +73,6 @@ To use this from paddle_trainer, paddle_trainer should be called with --config_args=extension_module_name=[MODULE_NAME] ''' - import copy import logging import os @@ -127,6 +126,7 @@ def init_config_environment( g_config=TrainerConfig(), g_layer_map={}, g_parameter_map={}, + g_parameter_initializer_map={}, g_extended_config_funcs={}, # store command args of paddle_trainer @@ -440,22 +440,22 @@ def model_type(name): @config_class class Bias(Cfg): - def __init__( - self, - parameter_name=None, - learning_rate=None, - momentum=None, - decay_rate=None, - decay_rate_l1=None, - initial_mean=None, - initial_std=None, - initial_strategy=None, - initial_smart=None, - num_batches_regularization=None, - sparse_remote_update=None, - gradient_clipping_threshold=None, - is_static=None, - is_shared=None, ): + def __init__(self, + parameter_name=None, + learning_rate=None, + momentum=None, + decay_rate=None, + decay_rate_l1=None, + initial_mean=None, + initial_std=None, + initial_strategy=None, + initial_smart=None, + num_batches_regularization=None, + sparse_remote_update=None, + gradient_clipping_threshold=None, + is_static=None, + is_shared=None, + initializer=None): self.add_keys(locals()) @@ -466,6 +466,7 @@ class Input(Cfg): self, input_layer_name, parameter_name=None, + initializer=None, learning_rate=None, momentum=None, decay_rate=None, @@ -522,6 +523,7 @@ class Projection(Input): initial_std=None, initial_strategy=None, initial_smart=None, + initializer=None, num_batches_regularization=None, sparse_remote_update=None, sparse_update=None, @@ -1480,7 +1482,8 @@ class LayerBase(object): gradient_clipping_threshold=bias. gradient_clipping_threshold, is_static=bias.is_static, - is_shared=bias.is_shared, ) + is_shared=bias.is_shared, + initializer=bias.initializer) if for_self: self.config.bias_parameter_name = bias.parameter_name else: @@ -1537,7 +1540,8 @@ class LayerBase(object): format=format, is_static=input_config.is_static, is_shared=input_config.is_shared, - update_hooks=input_config.update_hooks) + update_hooks=input_config.update_hooks, + initializer=input_config.initializer) def set_layer_size(self, size): if self.config.size == 0: @@ -1731,9 +1735,10 @@ class ParameterReluLayer(LayerBase): def __init__(self, name, inputs, partial_sum=1, **args): super(ParameterReluLayer, self).__init__( name, self.layer_type, 0, inputs=inputs, **args) - config_assert(len(self.inputs) == 1) - config_assert(self.input_layer.size % partial_sum == 0) input_layer = self.get_input_layer(0) + config_assert(len(self.inputs) == 1, "prelu layer has only one input.") + config_assert(input_layer.size % partial_sum == 0, + "a wrong setting for partial_sum") self.set_layer_size(input_layer.size) self.create_input_parameter(0, input_layer.size / partial_sum) @@ -2081,6 +2086,23 @@ class MaxOutLayer(LayerBase): g_layer_map[input_layer.name].width, out_channels) +@config_layer('row_conv') +class RowConvLayer(LayerBase): + def __init__(self, name, inputs, context_length, **xargs): + super(RowConvLayer, self).__init__( + name, 'maxout', 0, inputs=inputs, **xargs) + config_assert( + len(self.inputs) == 1, + 'TransLayer must have one and only one input') + input_layer = self.get_input_layer(0) + row_conv_conf = self.config.inputs[0].row_conv_conf + row_conv_conf.context_length = context_length + self.set_layer_size(input_layer.size) + psize = context_length * input_layer.size + dims = [context_length, input_layer.size] + self.create_input_parameter(0, psize, dims) + + # key: cost type # value: cost class g_cost_map = {} @@ -3204,7 +3226,8 @@ def Parameter(name, need_compact=None, is_static=None, is_shared=None, - update_hooks=None): + update_hooks=None, + initializer=None): config_assert(name not in g_parameter_map, 'Duplicated parameter name: ' + name) @@ -3292,6 +3315,11 @@ def Parameter(name, para.update_hooks.extend(update_hooks) g_parameter_map[name] = para + if initializer is not None: + config_assert( + callable(initializer), + "parameter initializer should be a callable object") + g_parameter_initializer_map[name] = initializer @config_func @@ -3546,11 +3574,7 @@ def update_g_config(): return g_config -def begin_parse(config_arg_str=''): - ''' - @param config_arg_str: a string of the form var1=val1,var2=val2. It will be - passed to config script as a dictionary CONFIG_ARGS - ''' +def begin_parse(): init_config_environment() for hook in _parse_config_hooks: hook() @@ -3568,8 +3592,12 @@ def begin_parse(config_arg_str=''): def parse_config(trainer_config, config_arg_str): - begin_parse(config_arg_str) + ''' + @param config_arg_str: a string of the form var1=val1,var2=val2. It will be + passed to config script as a dictionary CONFIG_ARGS + ''' + begin_parse() config_args = {} if config_arg_str: diff --git a/python/paddle/trainer_config_helpers/attrs.py b/python/paddle/trainer_config_helpers/attrs.py index d1167a234caed3753c6beedfc89b01054e3688e1..4100697c9c3770f1b748ea630d5f8193167fe7fc 100644 --- a/python/paddle/trainer_config_helpers/attrs.py +++ b/python/paddle/trainer_config_helpers/attrs.py @@ -95,6 +95,10 @@ class ParameterAttribute(object): :param sparse_update: Enable sparse update for this parameter. It will enable both local and remote sparse update. :type sparse_update: bool + :param initializer: If not None, it should be a callable object which accepts + a parameter name and returns numpy array for the initial + value of the parameter + :param initializer: callable object """ def __init__(self, @@ -109,7 +113,8 @@ class ParameterAttribute(object): learning_rate=None, momentum=None, gradient_clipping_threshold=None, - sparse_update=False): + sparse_update=False, + initializer=None): self.attr = {} if is_static: @@ -161,6 +166,8 @@ class ParameterAttribute(object): is_compatible_with(gradient_clipping_threshold, float): self.attr['gradient_clipping_threshold'] = \ gradient_clipping_threshold + if initializer is not None: + self.attr['initializer'] = initializer def set_default_parameter_name(self, name): """ diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 81cce31feccf0f1b26888738c1a7e1e3504c7616..2d8ddbb9007b241eb1986887d8ea6c2de8235c29 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -31,31 +31,31 @@ except ImportError: import copy __all__ = [ - "full_matrix_projection", - "AggregateLevel", - "ExpandLevel", - "identity_projection", - "dotmul_projection", - "dotmul_operator", - "repeat_layer", - "seq_reshape_layer", - "table_projection", - "mixed_layer", - "data_layer", - "embedding_layer", - "fc_layer", - "grumemory", - "pooling_layer", - "lstmemory", - "last_seq", - "first_seq", - "cos_sim", - "hsigmoid", - "conv_projection", - "mse_cost", - "regression_cost", + 'full_matrix_projection', + 'AggregateLevel', + 'ExpandLevel', + 'identity_projection', + 'dotmul_projection', + 'dotmul_operator', + 'repeat_layer', + 'seq_reshape_layer', + 'table_projection', + 'mixed_layer', + 'data_layer', + 'embedding_layer', + 'fc_layer', + 'grumemory', + 'pooling_layer', + 'lstmemory', + 'last_seq', + 'first_seq', + 'cos_sim', + 'hsigmoid', + 'conv_projection', + 'mse_cost', + 'regression_cost', 'classification_cost', - "LayerOutput", + 'LayerOutput', 'img_conv_layer', 'img_pool_layer', 'batch_norm_layer', @@ -111,6 +111,7 @@ __all__ = [ 'block_expand_layer', 'maxout_layer', 'out_prod_layer', + 'printer_layer', 'print_layer', 'priorbox_layer', 'cross_channel_norm_layer', @@ -120,6 +121,9 @@ __all__ = [ 'smooth_l1_cost', 'layer_support', 'multiplex_layer', + 'row_conv_layer', + 'dropout_layer', + 'prelu_layer', ] @@ -128,26 +132,26 @@ class LayerType(object): Layer type enumerations. """ - DATA = "data" - MIXED_LAYER = "mixed" - LSTMEMORY = "lstmemory" - GRUMEMORY = "gated_recurrent" - SEQUENCE_LAST_INSTANCE = "seqlastins" - SEQUENCE_FIRST_INSTANCE = "seqfirstins" - SEQUENCE_RESHAPE = "seqreshape" - POOLING_MAX = "max" + DATA = 'data' + MIXED_LAYER = 'mixed' + LSTMEMORY = 'lstmemory' + GRUMEMORY = 'gated_recurrent' + SEQUENCE_LAST_INSTANCE = 'seqlastins' + SEQUENCE_FIRST_INSTANCE = 'seqfirstins' + SEQUENCE_RESHAPE = 'seqreshape' + POOLING_MAX = 'max' POOLING_AVG = 'average' - FC_LAYER = "fc" + FC_LAYER = 'fc' COST = 'cost' COSINE_SIM_VEC = 'cos_vm' COSINE_SIM = 'cos' HSIGMOID = 'hsigmoid' - CONV_LAYER = "conv" - CONVTRANS_LAYER = "convt" - EXCONV_LAYER = "exconv" - EXCONVTRANS_LAYER = "exconvt" - CUDNNCONV_LAYER = "cudnn_conv" - POOL_LAYER = "pool" + CONV_LAYER = 'conv' + CONVTRANS_LAYER = 'convt' + EXCONV_LAYER = 'exconv' + EXCONVTRANS_LAYER = 'exconvt' + CUDNNCONV_LAYER = 'cudnn_conv' + POOL_LAYER = 'pool' BATCH_NORM_LAYER = 'batch_norm' NORM_LAYER = 'norm' SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm' @@ -187,25 +191,28 @@ class LayerType(object): SPP_LAYER = "spp" PAD_LAYER = "pad" MULTIPLEX_LAYER = "multiplex" + ROW_CONV_LAYER = "row_conv" - PRINT_LAYER = "print" - PRIORBOX_LAYER = "priorbox" + PRINT_LAYER = 'print' + PRIORBOX_LAYER = 'priorbox' - CTC_LAYER = "ctc" - WARP_CTC_LAYER = "warp_ctc" - CRF_LAYER = "crf" - CRF_DECODING_LAYER = "crf_decoding" + CTC_LAYER = 'ctc' + WARP_CTC_LAYER = 'warp_ctc' + CRF_LAYER = 'crf' + CRF_DECODING_LAYER = 'crf_decoding' NCE_LAYER = 'nce' - RANK_COST = "rank-cost" - LAMBDA_COST = "lambda_cost" - HUBER = "huber" - CROSS_ENTROPY = "multi-class-cross-entropy" - CROSS_ENTROPY_WITH_SELFNORM = "multi_class_cross_entropy_with_selfnorm" - SOFT_BIN_CLASS_CROSS_ENTROPY = "soft_binary_class_cross_entropy" - MULTI_BIN_LABEL_CROSS_ENTROPY = "multi_binary_label_cross_entropy" - SUM_COST = "sum_cost" - SMOOTH_L1 = "smooth_l1" + RANK_COST = 'rank-cost' + LAMBDA_COST = 'lambda_cost' + HUBER = 'huber' + CROSS_ENTROPY = 'multi-class-cross-entropy' + CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm' + SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy' + MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy' + SUM_COST = 'sum_cost' + SMOOTH_L1 = 'smooth_l1' + + PRELU = 'prelu' @staticmethod def is_layer_type(type_name): @@ -969,7 +976,7 @@ def fc_layer(input, @wrap_name_default("print") -def print_layer(input, name=None): +def printer_layer(input, name=None): """ Print the output value of input layers. This layer is useful for debugging. @@ -991,6 +998,13 @@ def print_layer(input, name=None): inputs=[l.name for l in input], ) # this layer don't return anything, can not be input of other layer. +# Keep print_layer for compatibility with V1 API. +# 'print_layer' does not work for V2 API because it will be changed to +# 'print' for V2 API. But 'print' is a reserved key word in python. + + +print_layer = printer_layer + @wrap_name_default("priorbox") def priorbox_layer(input, @@ -2916,11 +2930,11 @@ def memory(name, to specify the layer needs to be remembered as the following: .. code-block:: python + mem = memory(size=256) state = fc_layer(input=mem, size=256) mem.set_input(mem) - :param name: the name of the layer which this memory remembers. If name is None, user should call set_input() to specify the name of the layer which this memory remembers. @@ -3407,7 +3421,7 @@ def recurrent_group(step, else, for training or testing, one of the input type must be LayerOutput. - : type is_generating: bool + :type is_generating: bool :return: LayerOutput object. :rtype: LayerOutput @@ -3760,7 +3774,6 @@ def beam_search(step, assert generated_input_index != -1 gipt = input[generated_input_index] - assert isinstance(gipt, BaseGeneratedInput) gipt.bos_id = bos_id gipt.eos_id = eos_id @@ -3780,7 +3793,6 @@ def beam_search(step, predict = gipt.after_real_step(step(*args)) eos_layer(input=predict, eos_id=eos_id, name=eos_name) - return predict tmp = recurrent_group( @@ -3814,7 +3826,7 @@ def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None): .. math:: - \frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2 + \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2 :param name: layer name. :type name: basestring @@ -3852,7 +3864,6 @@ def classification_cost(input, label, weight=None, name=None, - top_k=None, evaluator=classification_error_evaluator, layer_attr=None): """ @@ -3867,8 +3878,6 @@ def classification_cost(input, :param weight: The weight affects the cost, namely the scale of cost. It is an optional argument. :type weight: LayerOutput - :param top_k: number k in top-k error rate - :type top_k: int :param evaluator: Evaluator method. :param layer_attr: layer's extra attribute. :type layer_attr: ExtraLayerAttribute @@ -3896,7 +3905,7 @@ def classification_cost(input, assert isinstance(e.for_classification, bool) assert e.for_classification - e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k) + e(name=e.__name__, input=input, label=label, weight=weight) if not isinstance(evaluator, collections.Sequence): evaluator = [evaluator] @@ -4717,7 +4726,7 @@ def ctc_layer(input, fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer should also be num_classes + 1. - The simple usage: + The example usage is: .. code-block:: python @@ -4769,27 +4778,42 @@ def warp_ctc_layer(input, layer_attr=None): """ A layer intergrating the open-source `warp-ctc - ` library, which is used in + `_ library, which is used in `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin - `, to compute Connectionist Temporal - Classification (CTC) loss. + `_, to compute Connectionist Temporal + Classification (CTC) loss. Besides, another `warp-ctc + `_ repository, which is forked from + the official one, is maintained to enable more compiling options. During the + building process, PaddlePaddle will clone the source codes, build and + install it to :code:`third_party/install/warpctc` directory. + + To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`, + using following methods: + + 1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api), + such as :code:`paddle.init(use_gpu=True, + warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`. + + 2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH + on Mac OS. For instance, :code:`export + LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`. More details of CTC can be found by referring to `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks `_ + icml2006_GravesFGS06.pdf>`_. Note: - Let num_classes represent the category number. Considering the 'blank' - label needed by CTC, you need to use (num_classes + 1) as the input - size. Thus, the size of both warp_ctc_layer and 'input' layer should - be set to num_classes + 1. + label needed by CTC, you need to use (num_classes + 1) as the input size. + Thus, the size of both warp_ctc layer and 'input' layer should be set to + num_classes + 1. - You can set 'blank' to any value ranged in [0, num_classes], which should be consistent as that used in your labels. - As a native 'softmax' activation is interated to the warp-ctc library, 'linear' activation is expected instead in the 'input' layer. - The simple usage: + The example usage is: .. code-block:: python @@ -4850,7 +4874,7 @@ def crf_layer(input, A layer for calculating the cost of sequential conditional random field model. - The simple usage: + The example usage is: .. code-block:: python @@ -4924,7 +4948,7 @@ def crf_decoding_layer(input, this layer will also calculate error. output.value[i] is 1 for incorrect decoding or 0 for correct decoding. - The simple usage: + The example usage is: .. code-block:: python @@ -5117,7 +5141,7 @@ def rank_cost(left, - :math:`o_i` and :math:`o_j`: the left output and right output. Their dimension is one. - The simple usage: + The example usage is: .. code-block:: python @@ -5174,7 +5198,7 @@ def lambda_cost(input, """ lambdaCost for lambdaRank LTR approach. - The simple usage: + The example usage is: .. code-block:: python @@ -5232,6 +5256,8 @@ def cross_entropy(input, """ A loss layer for multi class entropy. + The example usage is: + .. code-block:: python cost = cross_entropy(input=input_layer, @@ -5278,6 +5304,8 @@ def cross_entropy_with_selfnorm(input, A loss layer for multi class entropy with selfnorm. Input should be a vector of positive numbers, without normalization. + The example usage is: + .. code-block:: python cost = cross_entropy_with_selfnorm(input=input_layer, @@ -5319,6 +5347,8 @@ def sum_cost(input, name=None, layer_attr=None): """ A loss layer which calculate the sum of the input as loss + The example usage is: + .. code-block:: python cost = sum_cost(input=input_layer) @@ -5348,6 +5378,8 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None): """ A loss layer for huber loss. + The example usage is: + .. code-block:: python cost = huber_cost(input=input_layer, @@ -5388,6 +5420,8 @@ def multi_binary_label_cross_entropy(input, """ A loss layer for multi binary label cross entropy. + The example usage is: + .. code-block:: python cost = multi_binary_label_cross_entropy(input=input_layer, @@ -5447,6 +5481,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None): More details can be found by referring to `Fast R-CNN `_ + The example usage is: + .. code-block:: python cost = smooth_l1_cost(input=input_layer, @@ -5496,6 +5532,8 @@ def multiplex_layer(input, name=None, layer_attr=None): where, y is output. :math:`x_{k}` is the k-th input layer and :math:`k = x_{0}[i] + 1`. + The example usage is: + .. code-block:: python maxid = multiplex_layer(input=layers) @@ -5528,3 +5566,155 @@ def multiplex_layer(input, name=None, layer_attr=None): layer_type=LayerType.MULTIPLEX_LAYER, parents=input, size=l.config.size) + + +@wrap_name_default("dropout") +def dropout_layer(input, dropout_rate, name=None): + """ + @TODO(yuyang18): Add comments. + + :param name: + :param input: + :param dropout_rate: + :return: + """ + return addto_layer( + name=name, + input=input, + act=LinearActivation(), + bias_attr=False, + layer_attr=ExtraAttr(drop_rate=dropout_rate)) + + +@wrap_name_default() +@wrap_act_default(act=LinearActivation()) +@wrap_param_attr_default() +@layer_support(DROPOUT) +def row_conv_layer(input, + context_len, + act=None, + name=None, + param_attr=None, + layer_attr=None): + """ + + The row convolution is called lookahead convolution. It is firstly + introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition + in English and Mandarin `_ . + + The bidirectional RNN that learns representation for a sequence by + performing a forward and a backward pass through the entire sequence. + However, unlike unidirectional RNNs, bidirectional RNNs are challenging + to deploy in an online and low-latency setting. The lookahead convolution + incorporates information from future subsequences in a computationally + efficient manner to improve unidirectional recurrent neural networks. + + The connection of row convolution is different form the 1D sequence + convolution. Assumed that, the future context-length is k, that is to say, + it can get the output at timestep t by using the the input feature from t-th + timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input + activations are d, the activations r_t for the new layer at time-step t are: + + .. math:: + + r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}} + \quad \text{for} \quad (1 \leq i \leq d) + + Note: + The `context_len` is `k + 1`. That is to say, the lookahead step + number plus one equals context_len. + + + .. code-block:: python + + row_conv = row_conv_layer(input=input_layer, context_len=3) + + + :param input: The input layer. + :type input: LayerOutput + :param context_len: The context length equals the lookahead step number + plus one. + :type context_len: int + :param act: Activation Type. Default is linear activation. + :type act: BaseActivation + :param param_attr: The Parameter Attribute. If None, the parameter will be + initialized smartly. It's better set it by yourself. + :type param_attr: ParameterAttribute + :param layer_attr: Extra Layer config. + :type layer_attr: ExtraLayerAttribute|None + :return: LayerOutput object. + :rtype: LayerOutput + + """ + assert isinstance(input, LayerOutput) + assert context_len > 0, "the context_len must be greatet than 0." + + Layer( + inputs=[Input(input.name, **param_attr.attr)], + name=name, + context_length=context_len, + type=LayerType.ROW_CONV_LAYER, + active_type=act.name, + **ExtraLayerAttribute.to_kwargs(layer_attr)) + return LayerOutput( + name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size) + + +@layer_support() +@wrap_name_default() +@wrap_param_attr_default() +def prelu_layer(input, + name=None, + partial_sum=1, + param_attr=None, + layer_attr=None): + """ + The Parameter Relu activation that actives outputs with a learnable weight. + + Reference: + Delving Deep into Rectifiers: Surpassing Human-Level Performance on + ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf + + .. math:: + z_i &\\quad if \\quad z_i > 0 \\\\ + a_i * z_i &\\quad \\mathrm{otherwise} + + The example usage is: + + .. code-block:: python + + prelu = prelu_layer(input=layers, partial_sum=1) + + :param name: Name of this layer. + :type name: basestring + :param input: The input layer. + :type input: LayerOutput + :param partial_sum: this parameter makes a group of inputs share a same weight. + + - partial_sum = 1, indicates the element-wise activation: each element has a weight. + - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight. + - partial_sum = number of outputs, indicates all elements share a same weight. + + :type partial_sum: int + :param param_attr: The parameter attribute. See ParameterAttribute for details. + :type param_attr: ParameterAttribute|None + :param layer_attr: Extra layer configurations. Default is None. + :type layer_attr: ExtraLayerAttribute|None + :return: LayerOutput object. + :rtype: LayerOutput + """ + + assert isinstance(input, LayerOutput), 'prelu_layer only accepts one input' + assert isinstance(param_attr, ParameterAttribute) + + l = Layer( + name=name, + type=LayerType.PRELU, + inputs=Input(input.name, **param_attr.attr), + partial_sum=partial_sum, + **ExtraLayerAttribute.to_kwargs(layer_attr)) + return LayerOutput( + name=name, + layer_type=LayerType.PRELU, + parents=input, + size=l.config.size) diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index fb533a47e0b0585be6f0e019086993f8b3aa7f38..1bf59ed4840ae69afc5bce49c86a08b60e9603ee 100755 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -26,10 +26,10 @@ from paddle.trainer.config_parser import * __all__ = [ 'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool", - "img_conv_bn_pool", 'dropout_layer', 'lstmemory_group', 'lstmemory_unit', - 'small_vgg', 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', - 'simple_gru', 'simple_attention', 'simple_gru2', 'bidirectional_gru', - 'text_conv_pool', 'bidirectional_lstm', 'inputs', 'outputs' + "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg', + 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru', + 'simple_attention', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool', + 'bidirectional_lstm', 'inputs', 'outputs' ] ###################################################### @@ -1366,29 +1366,6 @@ def simple_attention(encoded_sequence, input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) -############################################################################ -# Miscs # -############################################################################ - - -@wrap_name_default("dropout") -def dropout_layer(input, dropout_rate, name=None): - """ - @TODO(yuyang18): Add comments. - - :param name: - :param input: - :param dropout_rate: - :return: - """ - return addto_layer( - name=name, - input=input, - act=LinearActivation(), - bias_attr=False, - layer_attr=ExtraAttr(drop_rate=dropout_rate)) - - def inputs(layers, *args): """ Declare the inputs of network. The order of input should be as same as diff --git a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh index 981ccbf248391b5db4339570d918404df6033f3d..c24102255f5bbed0f551b2dbfec20be7daf5f5b4 100755 --- a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh +++ b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh @@ -5,6 +5,7 @@ last_first_seq test_expand_layer test_ntm_layers test_hsigmoid img_layers img_trans_layers util_layers simple_rnn_layers unused_layers test_cost_layers test_rnn_group shared_fc shared_lstm shared_gru test_cost_layers_with_weight test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops -test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer) +test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer +test_prelu_layer test_row_conv) export whole_configs=(test_split_datasource) diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..64d227565f2b21ff43d4391c682ca90c0f47908e --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr @@ -0,0 +1,36 @@ +type: "nn" +layers { + name: "input" + type: "data" + size: 300 + active_type: "" +} +layers { + name: "__prelu_layer_0__" + type: "prelu" + size: 300 + active_type: "" + inputs { + input_layer_name: "input" + input_parameter_name: "___prelu_layer_0__.w0" + } +} +parameters { + name: "___prelu_layer_0__.w0" + size: 300 + initial_mean: 0.0 + initial_std: 0.057735026919 + initial_strategy: 0 + initial_smart: true +} +input_layer_names: "input" +output_layer_names: "__prelu_layer_0__" +sub_models { + name: "root" + layer_names: "input" + layer_names: "__prelu_layer_0__" + input_layer_names: "input" + output_layer_names: "__prelu_layer_0__" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_row_conv.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_row_conv.protostr new file mode 100644 index 0000000000000000000000000000000000000000..9ec15d2a19ec50a1729f9eeaa6dce8b1153c776b --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_row_conv.protostr @@ -0,0 +1,41 @@ +type: "nn" +layers { + name: "data" + type: "data" + size: 2560 + active_type: "" +} +layers { + name: "__row_conv_layer_0__" + type: "maxout" + size: 2560 + active_type: "relu" + inputs { + input_layer_name: "data" + input_parameter_name: "___row_conv_layer_0__.w0" + row_conv_conf { + context_length: 19 + } + } +} +parameters { + name: "___row_conv_layer_0__.w0" + size: 48640 + initial_mean: 0.0 + initial_std: 0.229415733871 + dims: 19 + dims: 2560 + initial_strategy: 0 + initial_smart: true +} +input_layer_names: "data" +output_layer_names: "__row_conv_layer_0__" +sub_models { + name: "root" + layer_names: "data" + layer_names: "__row_conv_layer_0__" + input_layer_names: "data" + output_layer_names: "__row_conv_layer_0__" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..2e3057f323db22ffc3911cce30ec2e8bb95e3dbe --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py @@ -0,0 +1,6 @@ +from paddle.trainer_config_helpers import * + +data = data_layer(name='input', size=300) +prelu = prelu_layer(input=data) + +outputs(prelu) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_row_conv.py b/python/paddle/trainer_config_helpers/tests/configs/test_row_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..ab33c496b0663d8472ce4b272be6c5cecbcfc978 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_row_conv.py @@ -0,0 +1,9 @@ +from paddle.trainer_config_helpers import * + +settings(batch_size=1000, learning_rate=1e-5) + +data = data_layer(name='data', size=2560) + +row_conv = row_conv_layer(input=data, context_len=19, act=ReluActivation()) + +outputs(row_conv) diff --git a/python/paddle/utils/image_multiproc.py b/python/paddle/utils/image_multiproc.py index 6ce32f7811d6be6864a567cf41bf408f422409a7..e8db525ff5c388aef1a39d8db56633d509cb4fb9 100644 --- a/python/paddle/utils/image_multiproc.py +++ b/python/paddle/utils/image_multiproc.py @@ -12,7 +12,7 @@ from paddle.trainer.config_parser import logger try: import cv2 except ImportError: - logger.warning("OpenCV2 is not installed, using PIL to prcoess") + logger.warning("OpenCV2 is not installed, using PIL to process") cv2 = None __all__ = ["CvTransformer", "PILTransformer", "MultiProcessImageTransformer"] diff --git a/python/paddle/v2/__init__.py b/python/paddle/v2/__init__.py index b9d0a7f29138cae281236b26509a56738f3801f4..102331c0bb6477cbeb618f015aad76a0414723ba 100644 --- a/python/paddle/v2/__init__.py +++ b/python/paddle/v2/__init__.py @@ -26,6 +26,7 @@ import evaluator from . import dataset from . import reader from . import plot +from . import master import attr import op import pooling @@ -37,9 +38,26 @@ import plot import image __all__ = [ - 'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer', - 'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader', - 'topology', 'networks', 'infer', 'plot', 'evaluator', 'image' + 'optimizer', + 'layer', + 'activation', + 'parameters', + 'init', + 'trainer', + 'event', + 'data_type', + 'attr', + 'pooling', + 'data_feeder', + 'dataset', + 'reader', + 'topology', + 'networks', + 'infer', + 'plot', + 'evaluator', + 'image', + 'master', ] diff --git a/python/paddle/v2/dataset/common.py b/python/paddle/v2/dataset/common.py index 418b592a5ac638cc61b86a9b3fbdcee1e3a0bcaf..9c614914b5e372e8e5e3c3c072b18b83edf51e87 100644 --- a/python/paddle/v2/dataset/common.py +++ b/python/paddle/v2/dataset/common.py @@ -149,3 +149,57 @@ def cluster_files_reader(files_pattern, yield line return reader + + +def convert(output_path, + reader, + num_shards, + name_prefix, + max_lines_to_shuffle=1000): + import recordio + import cPickle as pickle + import random + """ + Convert data from reader to recordio format files. + + :param output_path: directory in which output files will be saved. + :param reader: a data reader, from which the convert program will read data instances. + :param num_shards: the number of shards that the dataset will be partitioned into. + :param name_prefix: the name prefix of generated files. + :param max_lines_to_shuffle: the max lines numbers to shuffle before writing. + """ + + assert num_shards >= 1 + assert max_lines_to_shuffle >= 1 + + def open_writers(): + w = [] + for i in range(0, num_shards): + n = "%s/%s-%05d-of-%05d" % (output_path, name_prefix, i, + num_shards - 1) + w.append(recordio.writer(n)) + + return w + + def close_writers(w): + for i in range(0, num_shards): + w[i].close() + + def write_data(w, lines): + random.shuffle(lines) + for i, d in enumerate(lines): + d = pickle.dumps(d, pickle.HIGHEST_PROTOCOL) + w[i % num_shards].write(d) + + w = open_writers() + lines = [] + + for i, d in enumerate(reader()): + lines.append(d) + if i % max_lines_to_shuffle == 0 and i >= max_lines_to_shuffle: + write_data(w, lines) + lines = [] + continue + + write_data(w, lines) + close_writers(w) diff --git a/python/paddle/v2/dataset/flowers.py b/python/paddle/v2/dataset/flowers.py new file mode 100644 index 0000000000000000000000000000000000000000..07c13cf719ae0c864c23fef51f0bd7d47f265759 --- /dev/null +++ b/python/paddle/v2/dataset/flowers.py @@ -0,0 +1,184 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +This module will download dataset from +http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html +and parse train/test set intopaddle reader creators. + +This set contains images of flowers belonging to 102 different categories. +The images were acquired by searching the web and taking pictures. There are a +minimum of 40 images for each category. + +The database was used in: + +Nilsback, M-E. and Zisserman, A. Automated flower classification over a large + number of classes.Proceedings of the Indian Conference on Computer Vision, +Graphics and Image Processing (2008) +http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}. + +""" +import cPickle +import itertools +from common import download +import tarfile +import scipy.io as scio +from paddle.v2.image import * +import os +import numpy as np +import paddle.v2 as paddle +from multiprocessing import cpu_count +__all__ = ['train', 'test', 'valid'] + +DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz' +LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat' +SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat' +DATA_MD5 = '52808999861908f626f3c1f4e79d11fa' +LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d' +SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c' + + +def default_mapper(sample): + ''' + map image bytes data to type needed by model input layer + ''' + img, label = sample + img = paddle.image.load_image_bytes(img) + img = paddle.image.simple_transform(img, 256, 224, True) + return img.flatten().astype('float32'), label + + +def reader_creator(data_file, + label_file, + setid_file, + dataset_name, + mapper=default_mapper, + buffered_size=1024): + ''' + 1. read images from tar file and + merge images into batch files in 102flowers.tgz_batch/ + 2. get a reader to read sample from batch file + + :param data_file: downloaded data file + :type data_file: string + :param label_file: downloaded label file + :type label_file: string + :param setid_file: downloaded setid file containing information + about how to split dataset + :type setid_file: string + :param dataset_name: data set name (tstid|trnid|valid) + :type dataset_name: string + :param mapper: a function to map image bytes data to type + needed by model input layer + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: data reader + :rtype: callable + ''' + labels = scio.loadmat(label_file)['labels'][0] + indexes = scio.loadmat(setid_file)[dataset_name][0] + img2label = {} + for i in indexes: + img = "jpg/image_%05d.jpg" % i + img2label[img] = labels[i - 1] + file_list = batch_images_from_tar(data_file, dataset_name, img2label) + + def reader(): + for file in open(file_list): + file = file.strip() + batch = None + with open(file, 'r') as f: + batch = cPickle.load(f) + data = batch['data'] + labels = batch['label'] + for sample, label in itertools.izip(data, batch['label']): + yield sample, int(label) + + return paddle.reader.xmap_readers(mapper, reader, + cpu_count(), buffered_size) + + +def train(mapper=default_mapper, buffered_size=1024): + ''' + Create flowers training set reader. + It returns a reader, each sample in the reader is + image pixels in [0, 1] and label in [1, 102] + translated from original color image by steps: + 1. resize to 256*256 + 2. random crop to 224*224 + 3. flatten + :param mapper: a function to map sample. + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: train data reader + :rtype: callable + ''' + return reader_creator( + download(DATA_URL, 'flowers', DATA_MD5), + download(LABEL_URL, 'flowers', LABEL_MD5), + download(SETID_URL, 'flowers', SETID_MD5), 'trnid', mapper, + buffered_size) + + +def test(mapper=default_mapper, buffered_size=1024): + ''' + Create flowers test set reader. + It returns a reader, each sample in the reader is + image pixels in [0, 1] and label in [1, 102] + translated from original color image by steps: + 1. resize to 256*256 + 2. random crop to 224*224 + 3. flatten + :param mapper: a function to map sample. + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: test data reader + :rtype: callable + ''' + return reader_creator( + download(DATA_URL, 'flowers', DATA_MD5), + download(LABEL_URL, 'flowers', LABEL_MD5), + download(SETID_URL, 'flowers', SETID_MD5), 'tstid', mapper, + buffered_size) + + +def valid(mapper=default_mapper, buffered_size=1024): + ''' + Create flowers validation set reader. + It returns a reader, each sample in the reader is + image pixels in [0, 1] and label in [1, 102] + translated from original color image by steps: + 1. resize to 256*256 + 2. random crop to 224*224 + 3. flatten + :param mapper: a function to map sample. + :type mapper: callable + :param buffered_size: the size of buffer used to process images + :type buffered_size: int + :return: test data reader + :rtype: callable + ''' + return reader_creator( + download(DATA_URL, 'flowers', DATA_MD5), + download(LABEL_URL, 'flowers', LABEL_MD5), + download(SETID_URL, 'flowers', SETID_MD5), 'valid', mapper, + buffered_size) + + +def fetch(): + download(DATA_URL, 'flowers', DATA_MD5) + download(LABEL_URL, 'flowers', LABEL_MD5) + download(SETID_URL, 'flowers', SETID_MD5) diff --git a/python/paddle/v2/dataset/tests/common_test.py b/python/paddle/v2/dataset/tests/common_test.py index f9815d4f9e1ee3bbe9ccf2dae588c51c262468c1..cfa194eba38ea70311c4deeac2635dc0a0103576 100644 --- a/python/paddle/v2/dataset/tests/common_test.py +++ b/python/paddle/v2/dataset/tests/common_test.py @@ -57,6 +57,38 @@ class TestCommon(unittest.TestCase): for idx, e in enumerate(reader()): self.assertEqual(e, str("0")) + def test_convert(self): + record_num = 10 + num_shards = 4 + + def test_reader(): + def reader(): + for x in xrange(record_num): + yield x + + return reader + + path = tempfile.mkdtemp() + paddle.v2.dataset.common.convert(path, + test_reader(), num_shards, + 'random_images') + + files = glob.glob(path + '/random_images-*') + self.assertEqual(len(files), num_shards) + + recs = [] + for i in range(0, num_shards): + n = "%s/random_images-%05d-of-%05d" % (path, i, num_shards - 1) + r = recordio.reader(n) + while True: + d = r.read() + if d is None: + break + recs.append(d) + + recs.sort() + self.assertEqual(total, record_num) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/dataset/tests/flowers_test.py b/python/paddle/v2/dataset/tests/flowers_test.py new file mode 100644 index 0000000000000000000000000000000000000000..cc0626f4feae287d18dfb227cc69a4174da055da --- /dev/null +++ b/python/paddle/v2/dataset/tests/flowers_test.py @@ -0,0 +1,51 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.v2.dataset.flowers +import unittest + + +class TestFlowers(unittest.TestCase): + def check_reader(self, reader): + sum = 0 + label = 0 + size = 224 * 224 * 3 + for l in reader(): + self.assertEqual(l[0].size, size) + if l[1] > label: + label = l[1] + sum += 1 + return sum, label + + def test_train(self): + instances, max_label_value = self.check_reader( + paddle.v2.dataset.flowers.train()) + self.assertEqual(instances, 1020) + self.assertEqual(max_label_value, 102) + + def test_test(self): + instances, max_label_value = self.check_reader( + paddle.v2.dataset.flowers.test()) + self.assertEqual(instances, 6149) + self.assertEqual(max_label_value, 102) + + def test_valid(self): + instances, max_label_value = self.check_reader( + paddle.v2.dataset.flowers.valid()) + self.assertEqual(instances, 1020) + self.assertEqual(max_label_value, 102) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/image.py b/python/paddle/v2/image.py index 85ad6984ba08440d8f8c24a6ca5842024dbafe4b..0d648e9ae697ff0373c6cdc166608d395a8d8086 100644 --- a/python/paddle/v2/image.py +++ b/python/paddle/v2/image.py @@ -1,14 +1,16 @@ import numpy as np try: import cv2 -except: - print( - "import cv2 error, please install opencv-python: pip install opencv-python" - ) +except ImportError: + cv2 = None +import os +import tarfile +import cPickle __all__ = [ - "load_image", "resize_short", "to_chw", "center_crop", "random_crop", - "left_right_flip", "simple_transform", "load_and_transform" + "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop", + "random_crop", "left_right_flip", "simple_transform", "load_and_transform", + "batch_images_from_tar" ] """ This file contains some common interfaces for image preprocess. @@ -28,6 +30,90 @@ the image layout as follows. """ +def batch_images_from_tar(data_file, + dataset_name, + img2label, + num_per_batch=1024): + """ + Read images from tar file and batch them into batch file. + param data_file: path of image tar file + type data_file: string + param dataset_name: 'train','test' or 'valid' + type dataset_name: string + param img2label: a dic with image file name as key + and image's label as value + type img2label: dic + param num_per_batch: image number per batch file + type num_per_batch: int + return: path of list file containing paths of batch file + rtype: string + """ + batch_dir = data_file + "_batch" + out_path = "%s/%s" % (batch_dir, dataset_name) + meta_file = "%s/%s.txt" % (batch_dir, dataset_name) + + if os.path.exists(out_path): + return meta_file + else: + os.makedirs(out_path) + + tf = tarfile.open(data_file) + mems = tf.getmembers() + data = [] + labels = [] + file_id = 0 + for mem in mems: + if mem.name in img2label: + data.append(tf.extractfile(mem).read()) + labels.append(img2label[mem.name]) + if len(data) == num_per_batch: + output = {} + output['label'] = labels + output['data'] = data + cPickle.dump( + output, + open('%s/batch_%d' % (out_path, file_id), 'w'), + protocol=cPickle.HIGHEST_PROTOCOL) + file_id += 1 + data = [] + labels = [] + if len(data) > 0: + output = {} + output['label'] = labels + output['data'] = data + cPickle.dump( + output, + open('%s/batch_%d' % (out_path, file_id), 'w'), + protocol=cPickle.HIGHEST_PROTOCOL) + + with open(meta_file, 'a') as meta: + for file in os.listdir(out_path): + meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n") + return meta_file + + +def load_image_bytes(bytes, is_color=True): + """ + Load an color or gray image from bytes array. + + Example usage: + + .. code-block:: python + with open('cat.jpg') as f: + im = load_image_bytes(f.read()) + + :param bytes: the input image bytes array. + :type file: str + :param is_color: If set is_color True, it will load and + return a color image. Otherwise, it will + load and return a gray image. + """ + flag = 1 if is_color else 0 + file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8) + img = cv2.imdecode(file_bytes, flag) + return img + + def load_image(file, is_color=True): """ Load an color or gray image from the file path. diff --git a/python/paddle/v2/layer.py b/python/paddle/v2/layer.py index da2abdd2d1e14bb80aea04c98dfca6b5677c628c..aeed9ebd7d4d64efa5d0bf1638742a485c0fa44a 100644 --- a/python/paddle/v2/layer.py +++ b/python/paddle/v2/layer.py @@ -13,7 +13,7 @@ # limitations under the License. """ `paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2, -we want to make Paddle a plain Python package. The model config package defined +we want to make Paddle a plain Python package. The model config package defines the way how to configure a neural network topology in Paddle Python code. The primary usage shows below. @@ -30,7 +30,6 @@ The primary usage shows below. # use prediction instance where needed. parameters = paddle.parameters.create(cost) """ - import collections import copy import re @@ -44,9 +43,10 @@ __all__ = ['data', 'parse_network'] def __need_to_keep__(name): - if name in ['StaticInput', 'LayerType', 'layer_support']: - return False - return True + return name in [ + 'StaticInput', 'SubsequenceInput', 'GeneratedInput', 'LayerType', + 'layer_support' + ] def __need_to_wrap__(name): @@ -54,6 +54,8 @@ def __need_to_wrap__(name): def __convert_name__(inname): + if __need_to_keep__(inname): + return inname if inname == 'maxid_layer': return 'max_id' elif inname.endswith('memory') or inname.endswith( @@ -74,8 +76,6 @@ def __convert_name__(inname): for name in v1_layers.__all__: obj = getattr(v1_layers, name) - if not __need_to_keep__(name): - continue new_name = __convert_name__(name) if callable(obj) and __need_to_wrap__(name): globals()[new_name] = __convert_to_v2__(obj, new_name, __name__) @@ -107,7 +107,7 @@ __data_layer__.__doc__ = __map_data_docstr__(v1_layers.data_layer.__doc__) data = __convert_to_v2__(__data_layer__, 'name', __name__) -def __get_used_layers__(output_layers, extra_layers=None): +def __get_used_layers__(output_layers): layer_names = set() parents = {} @@ -132,6 +132,13 @@ def __get_used_layers__(output_layers, extra_layers=None): add_parent(mem.layer_name, mem.boot_layer_name) add_parent(mem.link_name, mem.layer_name) + if sub_model.HasField('generator'): + # according to the implementation of text generation + # in recurrent layer group, the generated word must be + # the first out link + add_parent(sub_model.out_links[0].layer_name, + sub_model.generator.eos_layer_name) + def dfs_travel(layer_name): if layer_name in layer_names: return @@ -149,6 +156,20 @@ def __get_used_layers__(output_layers, extra_layers=None): for layer in output_layers: dfs_travel(layer.full_name) + # print layer needs to be specially handled because no other + # layer depends on it. It is used to print the result of some + # layers when running the model for debug purpose. So we explicitly + # add a print layer to the topolty if its input is in the toplogy. + for layer in cp.g_config.model_config.layers: + if layer.type == 'print': + used = True + for inp in layer.inputs: + if inp.input_layer_name not in layer_names: + used = False + break + if used: + layer_names.add(layer.name) + return layer_names @@ -233,9 +254,9 @@ def __trim_submodel__(old_submodel, layer_names, input_layer_names, def parse_network(output_layers, extra_layers=None): if not isinstance(output_layers, collections.Sequence): output_layers = [output_layers] - if extra_layers is not None and not isinstance(extra_layers, - collections.Sequence): - extra_layers = [extra_layers] + if extra_layers is not None: + if not isinstance(extra_layers, collections.Sequence): + extra_layers = [extra_layers] else: extra_layers = [] @@ -248,18 +269,29 @@ def parse_network(output_layers, extra_layers=None): model_config = ModelConfig() model_config.type = cp.g_config.model_config.type + + for layer in output_layers: + model_config.output_layer_names.append(layer.full_name) + output_layer_names.add(layer.full_name) + for l in cp.g_config.model_config.layers: if l.name not in layer_names: continue model_config.layers.extend([l]) if l.type == 'data': + if l.name in model_config.output_layer_names: + """ + In text generation, the outlink to save the generated word + indices is a data_layer defined in recurrent_group. This + data_layer is sure to be the output of the network in text + generation task, so this statement excludes such a special + data_layer from being inputs of the network, otherwise an error + will occur during data feeding. + """ + continue model_config.input_layer_names.append(l.name) input_layer_names.add(l.name) - for layer in output_layers: - model_config.output_layer_names.append(layer.full_name) - output_layer_names.add(layer.full_name) - for e in cp.g_config.model_config.evaluators: if e.name in evaluator_names: model_config.evaluators.extend([e]) diff --git a/python/paddle/v2/master/.gitignore b/python/paddle/v2/master/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..a3ac6e1a33e74631136fc95574532284db7cd7cd --- /dev/null +++ b/python/paddle/v2/master/.gitignore @@ -0,0 +1,3 @@ +*.whl +*.so +*.pyc diff --git a/python/paddle/v2/master/__init__.py b/python/paddle/v2/master/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c8975b5d4a33cbecb4fa5a144bc610c36591d629 --- /dev/null +++ b/python/paddle/v2/master/__init__.py @@ -0,0 +1,3 @@ +from client import * + +__all__ = ['client'] diff --git a/python/paddle/v2/master/client.py b/python/paddle/v2/master/client.py new file mode 100644 index 0000000000000000000000000000000000000000..de8e9bb88e1064e41a80e0ef7838e307089a1331 --- /dev/null +++ b/python/paddle/v2/master/client.py @@ -0,0 +1,39 @@ +import ctypes +import os + +path = os.path.join(os.path.dirname(__file__), "libpaddle_master.so") +lib = ctypes.cdll.LoadLibrary(path) + + +class client(object): + """ + client is a client to the master server. + """ + + def __init__(self, addr, buf_size): + self.c = lib.paddle_new_master_client(addr, buf_size) + + def close(self): + lib.paddle_release_master_client(self.c) + self.c = None + + def set_dataset(self, paths): + holder_type = ctypes.c_char_p * len(paths) + holder = holder_type() + print paths + for idx, path in enumerate(paths): + c_ptr = ctypes.c_char_p(path) + holder[idx] = c_ptr + lib.paddle_set_dataset(self.c, holder, len(paths)) + + def next_record(self): + p = ctypes.c_char_p() + ret = ctypes.pointer(p) + size = lib.paddle_next_record(self.c, ret) + if size == 0: + # Empty record + return "" + record = ret.contents.value[:size] + # Memory created from C should be freed. + lib.mem_free(ret.contents) + return record diff --git a/python/paddle/v2/optimizer.py b/python/paddle/v2/optimizer.py index 5e99d4a241b7fe2b0f9ff4ba191db4b341c4d30e..1ef2dceca910e806bddf17c95d1c345a144d9e31 100644 --- a/python/paddle/v2/optimizer.py +++ b/python/paddle/v2/optimizer.py @@ -45,7 +45,12 @@ class Optimizer(object): return swig_api.ParameterUpdater.createRemoteUpdater( self.__opt_conf__, pass_num, use_sparse_updater) - def create_updater(self, is_local, num_passes, use_sparse_updater): + def __create_new_remote_updater__(self, pserver_spec): + return swig_api.ParameterUpdater.createNewRemoteUpdater( + self.__opt_conf__, pserver_spec) + + def create_updater(self, is_local, num_passes, use_sparse_updater, + pserver_spec): """ create proper parameter_updater by configuration. :param is_local: create local or remote parameter updater @@ -64,8 +69,12 @@ class Optimizer(object): if is_local: parameter_updater = self.__create_local_updater__() else: - parameter_updater = self.__create_remote_updater__( - num_passes, use_sparse_updater) + if pserver_spec is None: + parameter_updater = self.__create_remote_updater__( + num_passes, use_sparse_updater) + else: + parameter_updater = self.__create_new_remote_updater__( + pserver_spec) return parameter_updater diff --git a/python/paddle/v2/parameters.py b/python/paddle/v2/parameters.py index 64805d0c504b876f4d1f6657fe94457534a0b278..ad20241b98302f136326ae491c6723a6c12ae284 100644 --- a/python/paddle/v2/parameters.py +++ b/python/paddle/v2/parameters.py @@ -1,6 +1,7 @@ import numpy as np import py_paddle.swig_paddle as api from paddle.proto.ParameterConfig_pb2 import ParameterConfig +import paddle.trainer.config_parser as cp import struct import tarfile import cStringIO @@ -18,8 +19,11 @@ def create(layers): """ topology = Topology(layers) pool = Parameters() + initializers = cp.g_parameter_initializer_map for param in topology.proto().parameters: pool.__append_config__(param) + if param.name in initializers: + pool[param.name] = initializers[param.name](param.name) return pool diff --git a/python/paddle/v2/reader/decorator.py b/python/paddle/v2/reader/decorator.py index 104ce9a0411413bb8fc65eedf5821f98d6acdba3..c76faa596c9fb9079cab3456b721c18ef9768e95 100644 --- a/python/paddle/v2/reader/decorator.py +++ b/python/paddle/v2/reader/decorator.py @@ -14,7 +14,7 @@ __all__ = [ 'map_readers', 'buffered', 'compose', 'chain', 'shuffle', - 'ComposeNotAligned', 'firstn' + 'ComposeNotAligned', 'firstn', 'xmap_readers' ] import itertools @@ -224,3 +224,74 @@ def firstn(reader, n): yield item return firstn_reader + + +class XmapEndSignal(): + pass + + +def xmap_readers(mapper, reader, process_num, buffer_size): + """ + Use multiprocess to map samples from reader by a mapper defined by user. + And this function contains a buffered decorator. + :param mapper: a function to map sample. + :type mapper: callable + :param reader: the data reader to read from + :type reader: callable + :param process_num: process number to handle original sample + :type process_num: int + :param buffer_size: max buffer size + :type buffer_size: int + :return: the decarated reader + :rtype: callable + """ + end = XmapEndSignal() + in_queue = Queue(buffer_size) + out_queue = Queue(buffer_size) + + # define a worker to read samples from reader to in_queue + def read_worker(reader, in_queue): + for i in reader(): + in_queue.put(i) + in_queue.put(end) + + # start a read worker in a thread + t = Thread(target=read_worker, args=(reader, in_queue)) + t.daemon = True + t.start() + + # define a worker to handle samples from in_queue by mapper + # and put mapped samples into out_queue + def handle_worker(in_queue, out_queue, mapper): + sample = in_queue.get() + while not isinstance(sample, XmapEndSignal): + r = mapper(sample) + out_queue.put(r) + sample = in_queue.get() + in_queue.put(end) + out_queue.put(end) + + # start several handle_workers + workers = [] + for i in xrange(process_num): + worker = Thread( + target=handle_worker, args=(in_queue, out_queue, mapper)) + worker.daemon = True + workers.append(worker) + for w in workers: + w.start() + + def xreader(): + sample = out_queue.get() + while not isinstance(sample, XmapEndSignal): + yield sample + sample = out_queue.get() + finish = 1 + while finish < process_num: + sample = out_queue.get() + if isinstance(sample, XmapEndSignal): + finish += 1 + else: + yield sample + + return xreader diff --git a/python/paddle/v2/tests/test_layer.py b/python/paddle/v2/tests/test_layer.py index 2d25b1a9dcaa12a7dfffe962ffab34edc0a95f1a..f2097e195f41637977e71f65f36dad005d3e7941 100644 --- a/python/paddle/v2/tests/test_layer.py +++ b/python/paddle/v2/tests/test_layer.py @@ -164,6 +164,7 @@ class OtherLayerTest(unittest.TestCase): maxid = layer.max_id(input=inference) sampling_id = layer.sampling_id(input=inference) eos = layer.eos(input=maxid, eos_id=5) + layer.printer(maxid) print layer.parse_network([maxid, sampling_id, eos]) def test_slicing_joining_layer(self): diff --git a/python/paddle/v2/tests/test_parameters.py b/python/paddle/v2/tests/test_parameters.py index ebb182caab6430862a8e4da2ae4ea6b1e72f726c..45372e7dd0ec7cbdd6a2eb5c0397ef7e74284cd0 100644 --- a/python/paddle/v2/tests/test_parameters.py +++ b/python/paddle/v2/tests/test_parameters.py @@ -11,6 +11,9 @@ except ImportError: sys.exit(0) import paddle.v2.parameters as parameters +import paddle.v2.data_type as data_type +import paddle.v2.layer as layer +from paddle.v2.attr import ParamAttr from paddle.proto.ParameterConfig_pb2 import ParameterConfig import random import cStringIO @@ -55,6 +58,25 @@ class TestParameters(unittest.TestCase): p1 = params_dup.get(name) self.assertTrue(numpy.isclose(p0, p1).all()) + def test_initializer(self): + def initializer(name): + assert name == "fc.w" + mat = numpy.ones((3, 2), dtype=numpy.float32) + mat[1, 1] = 2 + return mat + + x = layer.data(name="x", type=data_type.dense_vector(3)) + y = layer.fc(x, + size=2, + bias_attr=False, + param_attr=ParamAttr( + name="fc.w", initializer=initializer)) + params = parameters.create(y) + val = params["fc.w"] + assert val.shape == (3, 2) + expected = numpy.array([[1, 1], [1, 2], [1, 1]], numpy.float32) + assert numpy.logical_and.reduce(numpy.reshape(val == expected, 6)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/topology.py b/python/paddle/v2/topology.py index f3bb4d5f10dd6c5b220161e32dfc3a94642ac7a2..a20e878d0817d0a75e9c47a44f8765deca99225c 100644 --- a/python/paddle/v2/topology.py +++ b/python/paddle/v2/topology.py @@ -31,7 +31,6 @@ class Topology(object): def __init__(self, layers, extra_layers=None): def __check__(layers): if not isinstance(layers, collections.Sequence): - __check_layer_type__(layers) layers = [layers] for layer in layers: __check_layer_type__(layer) @@ -91,6 +90,7 @@ class Topology(object): [('image', dense_vector(768)), ('label', integer_value(10))] """ data_layers = self.data_layers() + return [(nm, data_layers[nm].data_type) for nm in self.proto().input_layer_names] diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py index 8fdb67cc2688a67ed815af396b214e339195c73f..f9658a8c5df9562073c8a187074a6cb3459ac5d9 100644 --- a/python/paddle/v2/trainer.py +++ b/python/paddle/v2/trainer.py @@ -49,7 +49,8 @@ class SGD(object): parameters, update_equation, extra_layers=None, - is_local=True): + is_local=True, + pserver_spec=None): if not isinstance(parameters, v2_parameters.Parameters): raise TypeError('parameters should be parameters') @@ -63,6 +64,7 @@ class SGD(object): self.__parameters__ = parameters self.__topology_in_proto__ = topology.proto() self.__is_local__ = is_local + self.__pserver_spec__ = pserver_spec self.__use_sparse_updater__ = self.__topology__.use_sparse_updater() # # In local mode, disable sparse_remote_update. @@ -126,7 +128,8 @@ class SGD(object): __check_train_args__(**locals()) self.__parameter_updater__ = self.__optimizer__.create_updater( - self.__is_local__, num_passes, self.__use_sparse_updater__) + self.__is_local__, num_passes, self.__use_sparse_updater__, + self.__pserver_spec__) self.__parameter_updater__.init(self.__gradient_machine__) self.__gradient_machine__.start() diff --git a/python/setup.py.in b/python/setup.py.in index d1c38823080fb3a5c879d8b59cb5371c07902e57..8fe1cfd8b338b9b2e47edcec6d66bbcdd38b5198 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -1,6 +1,5 @@ from setuptools import setup - packages=['paddle', 'paddle.proto', 'paddle.trainer', @@ -9,21 +8,25 @@ packages=['paddle', 'paddle.v2', 'paddle.v2.dataset', 'paddle.v2.reader', - 'paddle.v2.plot'] + 'paddle.v2.plot', + 'paddle.v2.master'] + +setup_requires=["requests", + "numpy", + "protobuf==3.1", + "matplotlib", + "rarfile"] + +if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: + setup_requires+=["opencv-python"] setup(name='paddle', version='${PADDLE_VERSION}', description='Parallel Distributed Deep Learning', - install_requires=[ - "requests", - "numpy", - "protobuf==${PROTOBUF_VERSION}", - "matplotlib", - "opencv-python", - "rarfile" - ], + install_requires=setup_requires, packages=packages, + package_data={'paddle.v2.master': ['libpaddle_master.so'], }, package_dir={ '': '${CMAKE_CURRENT_SOURCE_DIR}' - } + }, ) diff --git a/v1_api_demo/README.md b/v1_api_demo/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9442f76941287a710220f07cf7dbb29ebcadabdc --- /dev/null +++ b/v1_api_demo/README.md @@ -0,0 +1,5 @@ +The examples in v1_api_demo are using v1_api now, and will be upgraded into v2_api later. +Thus, v1_api_demo is a temporary directory. We decide not to maintain it and will delete it in future. + +Please go to [PaddlePaddle/book](https://github.com/PaddlePaddle/book) and +[PaddlePaddle/models](https://github.com/PaddlePaddle/models) to learn PaddlePaddle. diff --git a/demo/gan/.gitignore b/v1_api_demo/gan/.gitignore similarity index 100% rename from demo/gan/.gitignore rename to v1_api_demo/gan/.gitignore diff --git a/demo/gan/README.md b/v1_api_demo/gan/README.md similarity index 100% rename from demo/gan/README.md rename to v1_api_demo/gan/README.md diff --git a/demo/gan/data/download_cifar.sh b/v1_api_demo/gan/data/download_cifar.sh similarity index 100% rename from demo/gan/data/download_cifar.sh rename to v1_api_demo/gan/data/download_cifar.sh diff --git a/demo/gan/data/get_mnist_data.sh b/v1_api_demo/gan/data/get_mnist_data.sh similarity index 100% rename from demo/gan/data/get_mnist_data.sh rename to v1_api_demo/gan/data/get_mnist_data.sh diff --git a/demo/gan/gan_conf.py b/v1_api_demo/gan/gan_conf.py similarity index 100% rename from demo/gan/gan_conf.py rename to v1_api_demo/gan/gan_conf.py diff --git a/demo/gan/gan_conf_image.py b/v1_api_demo/gan/gan_conf_image.py similarity index 100% rename from demo/gan/gan_conf_image.py rename to v1_api_demo/gan/gan_conf_image.py diff --git a/demo/gan/gan_trainer.py b/v1_api_demo/gan/gan_trainer.py similarity index 100% rename from demo/gan/gan_trainer.py rename to v1_api_demo/gan/gan_trainer.py diff --git a/demo/mnist/.gitignore b/v1_api_demo/mnist/.gitignore similarity index 100% rename from demo/mnist/.gitignore rename to v1_api_demo/mnist/.gitignore diff --git a/demo/mnist/api_train.py b/v1_api_demo/mnist/api_train.py similarity index 100% rename from demo/mnist/api_train.py rename to v1_api_demo/mnist/api_train.py diff --git a/demo/mnist/data/generate_list.py b/v1_api_demo/mnist/data/generate_list.py similarity index 100% rename from demo/mnist/data/generate_list.py rename to v1_api_demo/mnist/data/generate_list.py diff --git a/demo/mnist/data/get_mnist_data.sh b/v1_api_demo/mnist/data/get_mnist_data.sh similarity index 100% rename from demo/mnist/data/get_mnist_data.sh rename to v1_api_demo/mnist/data/get_mnist_data.sh diff --git a/demo/mnist/light_mnist.py b/v1_api_demo/mnist/light_mnist.py similarity index 100% rename from demo/mnist/light_mnist.py rename to v1_api_demo/mnist/light_mnist.py diff --git a/demo/mnist/mnist_provider.py b/v1_api_demo/mnist/mnist_provider.py similarity index 100% rename from demo/mnist/mnist_provider.py rename to v1_api_demo/mnist/mnist_provider.py diff --git a/demo/mnist/mnist_util.py b/v1_api_demo/mnist/mnist_util.py similarity index 100% rename from demo/mnist/mnist_util.py rename to v1_api_demo/mnist/mnist_util.py diff --git a/demo/mnist/train.sh b/v1_api_demo/mnist/train.sh similarity index 100% rename from demo/mnist/train.sh rename to v1_api_demo/mnist/train.sh diff --git a/demo/mnist/vgg_16_mnist.py b/v1_api_demo/mnist/vgg_16_mnist.py similarity index 100% rename from demo/mnist/vgg_16_mnist.py rename to v1_api_demo/mnist/vgg_16_mnist.py diff --git a/demo/model_zoo/embedding/.gitignore b/v1_api_demo/model_zoo/embedding/.gitignore similarity index 100% rename from demo/model_zoo/embedding/.gitignore rename to v1_api_demo/model_zoo/embedding/.gitignore diff --git a/demo/model_zoo/embedding/extract_para.py b/v1_api_demo/model_zoo/embedding/extract_para.py similarity index 100% rename from demo/model_zoo/embedding/extract_para.py rename to v1_api_demo/model_zoo/embedding/extract_para.py diff --git a/demo/model_zoo/embedding/paraconvert.py b/v1_api_demo/model_zoo/embedding/paraconvert.py similarity index 100% rename from demo/model_zoo/embedding/paraconvert.py rename to v1_api_demo/model_zoo/embedding/paraconvert.py diff --git a/demo/model_zoo/embedding/pre_DictAndModel.sh b/v1_api_demo/model_zoo/embedding/pre_DictAndModel.sh similarity index 100% rename from demo/model_zoo/embedding/pre_DictAndModel.sh rename to v1_api_demo/model_zoo/embedding/pre_DictAndModel.sh diff --git a/demo/model_zoo/resnet/.gitignore b/v1_api_demo/model_zoo/resnet/.gitignore similarity index 100% rename from demo/model_zoo/resnet/.gitignore rename to v1_api_demo/model_zoo/resnet/.gitignore diff --git a/demo/model_zoo/resnet/classify.py b/v1_api_demo/model_zoo/resnet/classify.py similarity index 100% rename from demo/model_zoo/resnet/classify.py rename to v1_api_demo/model_zoo/resnet/classify.py diff --git a/demo/model_zoo/resnet/example/.gitignore b/v1_api_demo/model_zoo/resnet/example/.gitignore similarity index 100% rename from demo/model_zoo/resnet/example/.gitignore rename to v1_api_demo/model_zoo/resnet/example/.gitignore diff --git a/demo/model_zoo/resnet/example/__init__.py b/v1_api_demo/model_zoo/resnet/example/__init__.py similarity index 100% rename from demo/model_zoo/resnet/example/__init__.py rename to v1_api_demo/model_zoo/resnet/example/__init__.py diff --git a/demo/model_zoo/resnet/example/cat.jpg b/v1_api_demo/model_zoo/resnet/example/cat.jpg similarity index 100% rename from demo/model_zoo/resnet/example/cat.jpg rename to v1_api_demo/model_zoo/resnet/example/cat.jpg diff --git a/demo/model_zoo/resnet/example/dog.jpg b/v1_api_demo/model_zoo/resnet/example/dog.jpg similarity index 100% rename from demo/model_zoo/resnet/example/dog.jpg rename to v1_api_demo/model_zoo/resnet/example/dog.jpg diff --git a/demo/model_zoo/resnet/example/image_list_provider.py b/v1_api_demo/model_zoo/resnet/example/image_list_provider.py similarity index 100% rename from demo/model_zoo/resnet/example/image_list_provider.py rename to v1_api_demo/model_zoo/resnet/example/image_list_provider.py diff --git a/demo/model_zoo/resnet/example/test.list b/v1_api_demo/model_zoo/resnet/example/test.list similarity index 100% rename from demo/model_zoo/resnet/example/test.list rename to v1_api_demo/model_zoo/resnet/example/test.list diff --git a/demo/model_zoo/resnet/extract_fea_c++.sh b/v1_api_demo/model_zoo/resnet/extract_fea_c++.sh similarity index 100% rename from demo/model_zoo/resnet/extract_fea_c++.sh rename to v1_api_demo/model_zoo/resnet/extract_fea_c++.sh diff --git a/demo/model_zoo/resnet/extract_fea_py.sh b/v1_api_demo/model_zoo/resnet/extract_fea_py.sh similarity index 100% rename from demo/model_zoo/resnet/extract_fea_py.sh rename to v1_api_demo/model_zoo/resnet/extract_fea_py.sh diff --git a/demo/model_zoo/resnet/get_model.sh b/v1_api_demo/model_zoo/resnet/get_model.sh similarity index 100% rename from demo/model_zoo/resnet/get_model.sh rename to v1_api_demo/model_zoo/resnet/get_model.sh diff --git a/demo/model_zoo/resnet/load_feature.py b/v1_api_demo/model_zoo/resnet/load_feature.py similarity index 100% rename from demo/model_zoo/resnet/load_feature.py rename to v1_api_demo/model_zoo/resnet/load_feature.py diff --git a/demo/model_zoo/resnet/net_diagram.sh b/v1_api_demo/model_zoo/resnet/net_diagram.sh similarity index 100% rename from demo/model_zoo/resnet/net_diagram.sh rename to v1_api_demo/model_zoo/resnet/net_diagram.sh diff --git a/demo/model_zoo/resnet/predict.sh b/v1_api_demo/model_zoo/resnet/predict.sh similarity index 100% rename from demo/model_zoo/resnet/predict.sh rename to v1_api_demo/model_zoo/resnet/predict.sh diff --git a/demo/model_zoo/resnet/resnet.py b/v1_api_demo/model_zoo/resnet/resnet.py similarity index 100% rename from demo/model_zoo/resnet/resnet.py rename to v1_api_demo/model_zoo/resnet/resnet.py diff --git a/demo/quick_start/.gitignore b/v1_api_demo/quick_start/.gitignore similarity index 100% rename from demo/quick_start/.gitignore rename to v1_api_demo/quick_start/.gitignore diff --git a/demo/quick_start/api_predict.py b/v1_api_demo/quick_start/api_predict.py similarity index 100% rename from demo/quick_start/api_predict.py rename to v1_api_demo/quick_start/api_predict.py diff --git a/demo/quick_start/api_predict.sh b/v1_api_demo/quick_start/api_predict.sh similarity index 100% rename from demo/quick_start/api_predict.sh rename to v1_api_demo/quick_start/api_predict.sh diff --git a/demo/quick_start/api_train.py b/v1_api_demo/quick_start/api_train.py similarity index 100% rename from demo/quick_start/api_train.py rename to v1_api_demo/quick_start/api_train.py diff --git a/demo/quick_start/api_train.sh b/v1_api_demo/quick_start/api_train.sh similarity index 100% rename from demo/quick_start/api_train.sh rename to v1_api_demo/quick_start/api_train.sh diff --git a/demo/quick_start/cluster/cluster_train.sh b/v1_api_demo/quick_start/cluster/cluster_train.sh similarity index 100% rename from demo/quick_start/cluster/cluster_train.sh rename to v1_api_demo/quick_start/cluster/cluster_train.sh diff --git a/demo/quick_start/cluster/env.sh b/v1_api_demo/quick_start/cluster/env.sh similarity index 100% rename from demo/quick_start/cluster/env.sh rename to v1_api_demo/quick_start/cluster/env.sh diff --git a/demo/quick_start/cluster/pserver.sh b/v1_api_demo/quick_start/cluster/pserver.sh similarity index 100% rename from demo/quick_start/cluster/pserver.sh rename to v1_api_demo/quick_start/cluster/pserver.sh diff --git a/demo/quick_start/data/README.md b/v1_api_demo/quick_start/data/README.md similarity index 100% rename from demo/quick_start/data/README.md rename to v1_api_demo/quick_start/data/README.md diff --git a/demo/quick_start/data/get_data.sh b/v1_api_demo/quick_start/data/get_data.sh similarity index 100% rename from demo/quick_start/data/get_data.sh rename to v1_api_demo/quick_start/data/get_data.sh diff --git a/demo/quick_start/data/proc_from_raw_data/get_data.sh b/v1_api_demo/quick_start/data/proc_from_raw_data/get_data.sh similarity index 100% rename from demo/quick_start/data/proc_from_raw_data/get_data.sh rename to v1_api_demo/quick_start/data/proc_from_raw_data/get_data.sh diff --git a/demo/quick_start/data/proc_from_raw_data/preprocess.py b/v1_api_demo/quick_start/data/proc_from_raw_data/preprocess.py similarity index 100% rename from demo/quick_start/data/proc_from_raw_data/preprocess.py rename to v1_api_demo/quick_start/data/proc_from_raw_data/preprocess.py diff --git a/demo/quick_start/dataprovider_bow.py b/v1_api_demo/quick_start/dataprovider_bow.py similarity index 100% rename from demo/quick_start/dataprovider_bow.py rename to v1_api_demo/quick_start/dataprovider_bow.py diff --git a/demo/quick_start/dataprovider_emb.py b/v1_api_demo/quick_start/dataprovider_emb.py similarity index 100% rename from demo/quick_start/dataprovider_emb.py rename to v1_api_demo/quick_start/dataprovider_emb.py diff --git a/demo/quick_start/predict.sh b/v1_api_demo/quick_start/predict.sh similarity index 100% rename from demo/quick_start/predict.sh rename to v1_api_demo/quick_start/predict.sh diff --git a/demo/quick_start/train.sh b/v1_api_demo/quick_start/train.sh similarity index 100% rename from demo/quick_start/train.sh rename to v1_api_demo/quick_start/train.sh diff --git a/demo/quick_start/trainer_config.bidi-lstm.py b/v1_api_demo/quick_start/trainer_config.bidi-lstm.py similarity index 100% rename from demo/quick_start/trainer_config.bidi-lstm.py rename to v1_api_demo/quick_start/trainer_config.bidi-lstm.py diff --git a/demo/quick_start/trainer_config.cnn.py b/v1_api_demo/quick_start/trainer_config.cnn.py similarity index 100% rename from demo/quick_start/trainer_config.cnn.py rename to v1_api_demo/quick_start/trainer_config.cnn.py diff --git a/demo/quick_start/trainer_config.db-lstm.py b/v1_api_demo/quick_start/trainer_config.db-lstm.py similarity index 100% rename from demo/quick_start/trainer_config.db-lstm.py rename to v1_api_demo/quick_start/trainer_config.db-lstm.py diff --git a/demo/quick_start/trainer_config.emb.py b/v1_api_demo/quick_start/trainer_config.emb.py similarity index 100% rename from demo/quick_start/trainer_config.emb.py rename to v1_api_demo/quick_start/trainer_config.emb.py diff --git a/demo/quick_start/trainer_config.lr.py b/v1_api_demo/quick_start/trainer_config.lr.py similarity index 100% rename from demo/quick_start/trainer_config.lr.py rename to v1_api_demo/quick_start/trainer_config.lr.py diff --git a/demo/quick_start/trainer_config.lstm.py b/v1_api_demo/quick_start/trainer_config.lstm.py similarity index 100% rename from demo/quick_start/trainer_config.lstm.py rename to v1_api_demo/quick_start/trainer_config.lstm.py diff --git a/demo/quick_start/trainer_config.resnet-lstm.py b/v1_api_demo/quick_start/trainer_config.resnet-lstm.py similarity index 100% rename from demo/quick_start/trainer_config.resnet-lstm.py rename to v1_api_demo/quick_start/trainer_config.resnet-lstm.py diff --git a/demo/sequence_tagging/data/get_data.sh b/v1_api_demo/sequence_tagging/data/get_data.sh similarity index 100% rename from demo/sequence_tagging/data/get_data.sh rename to v1_api_demo/sequence_tagging/data/get_data.sh diff --git a/demo/sequence_tagging/data/test.list b/v1_api_demo/sequence_tagging/data/test.list similarity index 100% rename from demo/sequence_tagging/data/test.list rename to v1_api_demo/sequence_tagging/data/test.list diff --git a/demo/sequence_tagging/data/train.list b/v1_api_demo/sequence_tagging/data/train.list similarity index 100% rename from demo/sequence_tagging/data/train.list rename to v1_api_demo/sequence_tagging/data/train.list diff --git a/demo/sequence_tagging/dataprovider.py b/v1_api_demo/sequence_tagging/dataprovider.py similarity index 100% rename from demo/sequence_tagging/dataprovider.py rename to v1_api_demo/sequence_tagging/dataprovider.py diff --git a/demo/sequence_tagging/linear_crf.py b/v1_api_demo/sequence_tagging/linear_crf.py similarity index 100% rename from demo/sequence_tagging/linear_crf.py rename to v1_api_demo/sequence_tagging/linear_crf.py diff --git a/demo/sequence_tagging/readme.md b/v1_api_demo/sequence_tagging/readme.md similarity index 100% rename from demo/sequence_tagging/readme.md rename to v1_api_demo/sequence_tagging/readme.md diff --git a/demo/sequence_tagging/rnn_crf.py b/v1_api_demo/sequence_tagging/rnn_crf.py similarity index 100% rename from demo/sequence_tagging/rnn_crf.py rename to v1_api_demo/sequence_tagging/rnn_crf.py diff --git a/demo/sequence_tagging/train.sh b/v1_api_demo/sequence_tagging/train.sh similarity index 100% rename from demo/sequence_tagging/train.sh rename to v1_api_demo/sequence_tagging/train.sh diff --git a/demo/sequence_tagging/train_linear.sh b/v1_api_demo/sequence_tagging/train_linear.sh similarity index 100% rename from demo/sequence_tagging/train_linear.sh rename to v1_api_demo/sequence_tagging/train_linear.sh diff --git a/demo/traffic_prediction/README b/v1_api_demo/traffic_prediction/README similarity index 100% rename from demo/traffic_prediction/README rename to v1_api_demo/traffic_prediction/README diff --git a/demo/traffic_prediction/data/get_data.sh b/v1_api_demo/traffic_prediction/data/get_data.sh similarity index 100% rename from demo/traffic_prediction/data/get_data.sh rename to v1_api_demo/traffic_prediction/data/get_data.sh diff --git a/demo/traffic_prediction/dataprovider.py b/v1_api_demo/traffic_prediction/dataprovider.py similarity index 100% rename from demo/traffic_prediction/dataprovider.py rename to v1_api_demo/traffic_prediction/dataprovider.py diff --git a/demo/traffic_prediction/gen_result.py b/v1_api_demo/traffic_prediction/gen_result.py similarity index 100% rename from demo/traffic_prediction/gen_result.py rename to v1_api_demo/traffic_prediction/gen_result.py diff --git a/demo/traffic_prediction/predict.sh b/v1_api_demo/traffic_prediction/predict.sh similarity index 100% rename from demo/traffic_prediction/predict.sh rename to v1_api_demo/traffic_prediction/predict.sh diff --git a/demo/traffic_prediction/train.sh b/v1_api_demo/traffic_prediction/train.sh similarity index 100% rename from demo/traffic_prediction/train.sh rename to v1_api_demo/traffic_prediction/train.sh diff --git a/demo/traffic_prediction/trainer_config.py b/v1_api_demo/traffic_prediction/trainer_config.py similarity index 100% rename from demo/traffic_prediction/trainer_config.py rename to v1_api_demo/traffic_prediction/trainer_config.py diff --git a/v1_api_demo/vae/README.md b/v1_api_demo/vae/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e55d483b023773900729622a6cac44116fc79c76 --- /dev/null +++ b/v1_api_demo/vae/README.md @@ -0,0 +1,13 @@ +#Variational Autoencoder (VAE) + +This demo implements VAE training described in the original paper (https://arxiv.org/abs/1312.6114). + + +In order to run the model, first download the MNIST dataset by running the shell script in ./data. + +Then you can run the command below. The flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu). + +$python vae_train.py [--use_gpu 1] + +The generated images will be stored in ./samples/ +The corresponding models will be stored in ./params/ diff --git a/v1_api_demo/vae/data/get_mnist_data.sh b/v1_api_demo/vae/data/get_mnist_data.sh new file mode 100755 index 0000000000000000000000000000000000000000..a77c81bf5af9ddb6634ff89460797ca543c5e517 --- /dev/null +++ b/v1_api_demo/vae/data/get_mnist_data.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env sh +# This script downloads the mnist data and unzips it. +set -e +DIR="$( cd "$(dirname "$0")" ; pwd -P )" +rm -rf "$DIR/mnist_data" +mkdir "$DIR/mnist_data" +cd "$DIR/mnist_data" + +echo "Downloading..." + +for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte +do + if [ ! -e $fname ]; then + wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz + gunzip ${fname}.gz + fi +done diff --git a/v1_api_demo/vae/dataloader.py b/v1_api_demo/vae/dataloader.py new file mode 100644 index 0000000000000000000000000000000000000000..e9ff95d44f825cd941b5687f754618e66d491e7f --- /dev/null +++ b/v1_api_demo/vae/dataloader.py @@ -0,0 +1,60 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np + + +class MNISTloader(): + def __init__(self, + data_path="./data/mnist_data/", + batch_size=60, + process='train'): + self.batch_size = batch_size + self.data_path = data_path + self._pointer = 0 + self.image_batches = np.array([]) + self.process = process + + def _extract_images(self, filename, n): + f = open(filename, 'rb') + f.read(16) + data = np.fromfile(f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)) + #Mapping data into [-1, 1] + data = data / 255. * 2. - 1 + data_batches = np.split(data, 60000 / self.batch_size, 0) + + f.close() + + return data_batches + + @property + def pointer(self): + return self._pointer + + def load_data(self): + TRAIN_IMAGES = '%s/train-images-idx3-ubyte' % self.data_path + TEST_IMAGES = '%s/t10k-images-idx3-ubyte' % self.data_path + + if self.process == 'train': + self.image_batches = self._extract_images(TRAIN_IMAGES, 60000) + else: + self.image_batches = self._extract_images(TEST_IMAGES, 10000) + + def next_batch(self): + batch = self.image_batches[self._pointer] + self._pointer = (self._pointer + 1) % (60000 / self.batch_size) + return np.array(batch) + + def reset_pointer(self): + self._pointer = 0 diff --git a/v1_api_demo/vae/vae_conf.py b/v1_api_demo/vae/vae_conf.py new file mode 100644 index 0000000000000000000000000000000000000000..301dd23793d19ec5946cc7bb07e32c53c04a972b --- /dev/null +++ b/v1_api_demo/vae/vae_conf.py @@ -0,0 +1,116 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * +import numpy as np + +is_generating = get_config_arg("is_generating", bool, False) + +settings(batch_size=32, learning_rate=1e-3, learning_method=AdamOptimizer()) + +X_dim = 28 * 28 +h_dim = 128 +z_dim = 100 + + +def reparameterization(mu, logvar): + eps = ParamAttr(initial_mean=0., initial_std=1) + with mixed_layer() as sigma: + sigma += dotmul_projection(layer_math.exp(logvar) * 0.5, param_attr=eps) + return mu + sigma + + +def q_func(X): + """ + xavier initialization + """ + param_attr = ParamAttr( + name='share.w', initial_mean=0., initial_std=1. / np.sqrt(X_dim / 2.)) + mu_param = ParamAttr( + name='mu.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.)) + logvar_param = ParamAttr( + name='logvar.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.)) + + bias_attr = ParamAttr(name='share.bias', initial_mean=0., initial_std=0.) + mu_bias = ParamAttr(name='mu.bias', initial_mean=0., initial_std=0.) + logvar_bias = ParamAttr(name='logvar.bias', initial_mean=0., initial_std=0.) + + share_layer = fc_layer( + X, + size=h_dim, + param_attr=param_attr, + bias_attr=bias_attr, + act=ReluActivation()) + + return (fc_layer( + share_layer, + size=z_dim, + param_attr=mu_param, + bias_attr=mu_bias, + act=LinearActivation()), fc_layer( + share_layer, + size=z_dim, + param_attr=logvar_param, + bias_attr=logvar_bias, + act=LinearActivation())) + + +def generator(z): + + hidden_param = ParamAttr( + name='hidden.w', initial_mean=0., initial_std=1. / np.sqrt(z_dim / 2.)) + hidden_bias = ParamAttr(name='hidden.bias', initial_mean=0., initial_std=0.) + prob_param = ParamAttr( + name='prob.w', initial_mean=0., initial_std=1. / np.sqrt(h_dim / 2.)) + prob_bias = ParamAttr(name='prob.bias', initial_mean=0., initial_std=0.) + + hidden_layer = fc_layer( + z, + size=h_dim, + act=ReluActivation(), + param_attr=hidden_param, + bias_attr=hidden_bias) + prob = fc_layer( + hidden_layer, + size=X_dim, + act=SigmoidActivation(), + param_attr=prob_param, + bias_attr=prob_bias) + + return prob + + +def reconstruct_error(prob, X): + cost = multi_binary_label_cross_entropy(input=prob, label=X) + return cost + + +def KL_loss(mu, logvar): + with mixed_layer() as mu_square: + mu_square += dotmul_operator(mu, mu, scale=1.) + + cost = 0.5 * sum_cost(layer_math.exp(logvar) + mu_square - 1. - logvar) + + return cost + + +if not is_generating: + x_batch = data_layer(name='x_batch', size=X_dim) + mu, logvar = q_func(x_batch) + z_samples = reparameterization(mu, logvar) + prob = generator(z_samples) + outputs(reconstruct_error(prob, x_batch) + KL_loss(mu, logvar)) +else: + z_samples = data_layer(name='noise', size=z_dim) + outputs(generator(z_samples)) diff --git a/v1_api_demo/vae/vae_train.py b/v1_api_demo/vae/vae_train.py new file mode 100644 index 0000000000000000000000000000000000000000..1babb011c77b92861cc680a2e1aaa8c9ae5d97b5 --- /dev/null +++ b/v1_api_demo/vae/vae_train.py @@ -0,0 +1,175 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import random +import numpy as np +import cPickle +import sys, os +from PIL import Image + +from paddle.trainer.config_parser import parse_config +from paddle.trainer.config_parser import logger +import py_paddle.swig_paddle as api +import dataloader +import matplotlib.pyplot as plt + + +def plot_samples(samples): + fig = plt.figure(figsize=(4, 4)) + gs = gridspec.GridSpec(4, 4) + gs.update(wspace=0.05, hspace=0.05) + for i, sample in enumerate(samples): + plt.subplot(gs[i]) + plt.axis('off') + plt.imshow(sample.reshape(28, 28), cmap='Greys_r') + + return fig + + +def CHECK_EQ(a, b): + assert a == b, "a=%s, b=%s" % (a, b) + + +def get_fake_samples(generator_machine, batch_size, noise): + gen_inputs = api.Arguments.createArguments(1) + gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) + gen_outputs = api.Arguments.createArguments(0) + generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST) + fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() + return fake_samples + + +def copy_shared_parameters(src, dst): + ''' + copy the parameters from src to dst + :param src: the source of the parameters + :type src: GradientMachine + :param dst: the destination of the parameters + :type dst: GradientMachine + ''' + src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] + src_params = dict([(p.getName(), p) for p in src_params]) + + for i in xrange(dst.getParameterSize()): + dst_param = dst.getParameter(i) + src_param = src_params.get(dst_param.getName(), None) + if src_param is None: + continue + src_value = src_param.getBuf(api.PARAMETER_VALUE) + dst_value = dst_param.getBuf(api.PARAMETER_VALUE) + CHECK_EQ(len(src_value), len(dst_value)) + dst_value.copyFrom(src_value) + dst_param.setValueUpdated() + + +def find(iterable, cond): + for item in iterable: + if cond(item): + return item + return None + + +def get_layer_size(model_conf, layer_name): + layer_conf = find(model_conf.layers, lambda x: x.name == layer_name) + assert layer_conf is not None, "Cannot find '%s' layer" % layer_name + return layer_conf.size + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--use_gpu", default="1", help="1 means use gpu for training") + parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter") + args = parser.parse_args() + use_gpu = args.use_gpu + assert use_gpu in ["0", "1"] + + if not os.path.exists("./samples/"): + os.makedirs("./samples/") + + if not os.path.exists("./params/"): + os.makedirs("./params/") + + api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', + '--log_period=1000', '--gpu_id=' + args.gpu_id, + '--save_dir=' + "./params/") + + conf = "vae_conf.py" + + trainer_conf = parse_config(conf, "is_generating=False") + gener_conf = parse_config(conf, "is_generating=True") + + batch_size = trainer_conf.opt_config.batch_size + + noise_dim = get_layer_size(gener_conf.model_config, "noise") + + mnist = dataloader.MNISTloader(batch_size=batch_size) + mnist.load_data() + + training_machine = api.GradientMachine.createFromConfigProto( + trainer_conf.model_config) + + generator_machine = api.GradientMachine.createFromConfigProto( + gener_conf.model_config) + + trainer = api.Trainer.create(trainer_conf, training_machine) + + trainer.startTrain() + + for train_pass in xrange(100): + trainer.startTrainPass() + mnist.reset_pointer() + i = 0 + it = 0 + while mnist.pointer != 0 or i == 0: + X = mnist.next_batch().astype('float32') + + inputs = api.Arguments.createArguments(1) + inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(X)) + + trainer.trainOneDataBatch(batch_size, inputs) + + if it % 1000 == 0: + + outputs = api.Arguments.createArguments(0) + training_machine.forward(inputs, outputs, api.PASS_TEST) + loss = np.mean(outputs.getSlotValue(0).copyToNumpyMat()) + print "\niter: {}".format(str(it).zfill(3)) + print "VAE loss: {}".format(str(loss).zfill(3)) + + #Sync parameters between networks (GradientMachine) at the beginning + copy_shared_parameters(training_machine, generator_machine) + + z_samples = np.random.randn(batch_size, + noise_dim).astype('float32') + samples = get_fake_samples(generator_machine, batch_size, + z_samples) + + #Generating the first 16 images for a picture. + figure = plot_samples(samples[:16]) + plt.savefig( + "./samples/{}_{}.png".format( + str(train_pass).zfill(3), str(i).zfill(3)), + bbox_inches='tight') + plt.close(figure) + i += 1 + it += 1 + + trainer.finishTrainPass() + trainer.finishTrain() + + +if __name__ == '__main__': + main()