Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
bad3d4b6
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bad3d4b6
编写于
12月 25, 2017
作者:
Y
Yang Yu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Grad Check For RNN
上级
ea5d6eae
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
240 addition
and
1 deletion
+240
-1
paddle/operators/tensor_array_read_write_op.cc
paddle/operators/tensor_array_read_write_op.cc
+11
-0
paddle/operators/while_op.cc
paddle/operators/while_op.cc
+14
-1
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
+215
-0
未找到文件。
paddle/operators/tensor_array_read_write_op.cc
浏览文件 @
bad3d4b6
...
...
@@ -136,6 +136,17 @@ class ReadFromArrayOp : public ArrayOp {
auto
&
dev_ctx
=
*
pool
.
Borrow
(
place
);
framework
::
CopyFrom
(
x_array
[
offset
],
place
,
dev_ctx
,
out_tensor
);
out_tensor
->
set_lod
(
x_array
[
offset
].
lod
());
if
(
Input
(
"X"
)
==
"dynamic_rnn_0_output_array_fc_0.tmp_0_0@GRAD"
)
{
VLOG
(
10
)
<<
"Offset = "
<<
offset
;
if
(
x_array
[
offset
].
numel
()
!=
0
)
{
auto
d
=
x_array
[
offset
].
dims
();
std
::
ostringstream
sout
;
for
(
int64_t
i
=
0
;
i
<
d
[
0
];
++
i
)
{
sout
<<
x_array
[
offset
].
data
<
float
>
()[
0
*
d
[
1
]]
<<
", "
;
}
VLOG
(
10
)
<<
"Grad = "
<<
sout
.
str
();
}
}
}
else
{
VLOG
(
10
)
<<
"offset "
<<
offset
<<
" >= "
<<
x_array
.
size
();
}
...
...
paddle/operators/while_op.cc
浏览文件 @
bad3d4b6
...
...
@@ -129,6 +129,9 @@ class WhileGradOp : public framework::OperatorBase {
auto
&
og_inside
=
detail
::
Ref
(
cur_scope
.
Var
(
inside_og_name
),
"Cannot find inside gradient %s"
,
inside_og_name
);
VLOG
(
10
)
<<
"OG "
<<
outside_og_name
<<
" Type is "
<<
og_outside
.
Type
().
name
();
if
(
og_outside
.
Type
().
hash_code
()
==
typeid
(
framework
::
LoDTensor
).
hash_code
())
{
auto
&
outside_tensor
=
og_outside
.
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -145,7 +148,6 @@ class WhileGradOp : public framework::OperatorBase {
inside_array
.
resize
(
outside_array
.
size
());
for
(
size_t
j
=
0
;
j
<
inside_array
.
size
();
++
j
)
{
VLOG
(
10
)
<<
j
<<
" "
<<
outside_array
[
j
].
numel
();
if
(
outside_array
[
j
].
numel
()
!=
0
)
{
inside_array
[
j
].
set_lod
(
outside_array
[
j
].
lod
());
inside_array
[
j
].
ShareDataWith
(
outside_array
[
j
]);
...
...
@@ -198,6 +200,17 @@ class WhileGradOp : public framework::OperatorBase {
auto
sum_op
=
framework
::
OpRegistry
::
CreateOp
(
"sum"
,
{{
"X"
,
{
pg_names
[
param_id
],
new_inside_name
}}},
{{
"Out"
,
{
pg_names
[
param_id
]}}},
framework
::
AttributeMap
{});
VLOG
(
10
)
<<
"Accumulate the gradient of "
<<
pg_names
[
param_id
];
if
(
pg_names
[
param_id
]
==
"W@GRAD"
)
{
auto
&
w_g
=
detail
::
Ref
(
cur_scope
.
FindVar
(
new_inside_name
))
.
Get
<
framework
::
LoDTensor
>
();
VLOG
(
10
)
<<
"W_G is"
<<
w_g
.
data
<
float
>
()[
0
];
}
else
{
VLOG
(
10
)
<<
pg_names
[
param_id
];
}
sum_op
->
Run
(
cur_scope
,
dev_place
);
cur_scope
.
Rename
(
new_inside_name
,
inside_grad_name
);
}
...
...
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
0 → 100644
浏览文件 @
bad3d4b6
import
numpy
import
random
import
collections
import
paddle.v2.fluid
as
fluid
import
unittest
import
copy
class
Memory
(
object
):
def
__init__
(
self
,
shape
,
dtype
=
'float32'
):
self
.
ex
=
numpy
.
zeros
(
shape
=
shape
,
dtype
=
dtype
)
self
.
cur
=
None
def
update
(
self
,
val
):
assert
val
.
shape
==
self
.
ex
.
shape
assert
val
.
dtype
==
self
.
ex
.
dtype
self
.
cur
=
val
def
ex
(
self
):
return
self
.
ex
def
next
(
self
):
self
.
ex
=
self
.
cur
self
.
cur
=
None
def
__next__
(
self
):
self
.
next
()
def
reset
(
self
):
self
.
ex
=
numpy
.
zeros
(
shape
=
self
.
ex
.
shape
,
dtype
=
self
.
ex
.
dtype
)
self
.
cur
=
None
class
Output
(
object
):
def
__init__
(
self
):
self
.
outs
=
[]
def
next_sequence
(
self
):
self
.
outs
.
append
([])
def
out
(
self
,
val
):
self
.
outs
[
-
1
].
append
(
val
)
def
last
(
self
):
return
self
.
outs
[
-
1
][
-
1
]
class
BaseRNN
(
object
):
def
__init__
(
self
,
ins
,
mems
,
params
,
outs
,
num_seq
=
5
,
max_seq_len
=
15
):
self
.
num_seq
=
num_seq
self
.
inputs
=
collections
.
defaultdict
(
list
)
for
_
in
xrange
(
num_seq
):
seq_len
=
random
.
randint
(
1
,
max_seq_len
-
1
)
for
iname
in
ins
:
ishape
=
ins
[
iname
].
get
(
'shape'
,
None
)
idtype
=
ins
[
iname
].
get
(
'dtype'
,
'float32'
)
lst
=
[]
for
_
in
xrange
(
seq_len
):
lst
.
append
(
numpy
.
random
.
random
(
size
=
ishape
).
astype
(
idtype
))
self
.
inputs
[
iname
].
append
(
lst
)
self
.
mems
=
dict
()
for
mname
in
mems
:
mshape
=
mems
[
mname
].
get
(
'shape'
,
None
)
mdtype
=
mems
[
mname
].
get
(
'dtype'
,
'float32'
)
self
.
mems
[
mname
]
=
Memory
(
shape
=
mshape
,
dtype
=
mdtype
)
self
.
params
=
dict
()
for
pname
in
params
:
pshape
=
params
[
pname
].
get
(
'shape'
,
None
)
pdtype
=
params
[
pname
].
get
(
'dtype'
,
'float32'
)
self
.
params
[
pname
]
=
numpy
.
random
.
random
(
size
=
pshape
).
astype
(
pdtype
)
self
.
outputs
=
dict
()
for
oname
in
outs
:
self
.
outputs
[
oname
]
=
Output
()
def
step
(
self
,
**
kwargs
):
pass
def
exe
(
self
):
retv
=
dict
()
for
out
in
self
.
outputs
:
retv
[
out
]
=
[]
for
seq_id
in
xrange
(
self
.
num_seq
):
for
mname
in
self
.
mems
:
self
.
mems
[
mname
].
reset
()
for
out
in
self
.
outputs
:
self
.
outputs
[
out
].
next_sequence
()
iname0
=
self
.
inputs
.
keys
()[
0
]
seq_len
=
len
(
self
.
inputs
[
iname0
][
seq_id
])
for
step_id
in
xrange
(
seq_len
):
xargs
=
dict
()
for
iname
in
self
.
inputs
:
xargs
[
iname
]
=
self
.
inputs
[
iname
][
seq_id
][
step_id
]
for
mname
in
self
.
mems
:
xargs
[
mname
]
=
self
.
mems
[
mname
]
for
pname
in
self
.
params
:
xargs
[
pname
]
=
self
.
params
[
pname
]
for
out
in
self
.
outputs
:
xargs
[
out
]
=
self
.
outputs
[
out
]
self
.
step
(
**
xargs
)
for
mname
in
self
.
mems
:
next
(
self
.
mems
[
mname
])
for
out
in
self
.
outputs
:
retv
[
out
].
append
(
self
.
outputs
[
out
].
last
())
for
out
in
retv
:
retv
[
out
]
=
numpy
.
array
(
retv
[
out
])
return
retv
def
to_feed
(
self
,
place
):
feed_dict
=
dict
()
for
iname
in
self
.
inputs
:
lod
=
[
0
]
np_flatten
=
[]
for
seq_id
in
xrange
(
len
(
self
.
inputs
[
iname
])):
seq_len
=
len
(
self
.
inputs
[
iname
][
seq_id
])
lod
.
append
(
lod
[
-
1
]
+
seq_len
)
np_flatten
.
extend
(
self
.
inputs
[
iname
][
seq_id
])
t
=
fluid
.
Tensor
()
t
.
set
(
numpy
.
array
(
np_flatten
),
place
)
t
.
set_lod
([
lod
])
feed_dict
[
iname
]
=
t
for
pname
in
self
.
params
:
feed_dict
[
pname
]
=
self
.
params
[
pname
]
return
feed_dict
def
get_numeric_gradient_of_param
(
self
,
param_name
,
delta
=
0.01
):
p
=
self
.
params
[
param_name
]
g
=
numpy
.
zeros
(
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p_it
,
g_it
in
numpy
.
nditer
([
p
,
g
],
op_flags
=
[
'readwrite'
]):
o
=
float
(
p_it
)
p_it
[...]
=
o
+
delta
pos
=
self
.
_exe_mean_out_
()
p_it
[...]
=
o
-
delta
neg
=
self
.
_exe_mean_out_
()
p_it
[...]
=
o
g
[:]
=
(
pos
-
neg
)
/
(
delta
*
2
)
return
g
def
_exe_mean_out_
(
self
):
outs
=
self
.
exe
()
return
numpy
.
array
([
o
.
mean
()
for
o
in
outs
.
itervalues
()]).
mean
()
class
SimpleMul
(
BaseRNN
):
def
__init__
(
self
):
super
(
SimpleMul
,
self
).
__init__
({
'X'
:
{
'shape'
:
[
32
]
}
},
{},
{
'W'
:
{
'shape'
:
[
32
,
10
]
}},
[
'Out'
])
def
step
(
self
,
X
,
W
,
Out
):
Out
.
out
(
numpy
.
matmul
(
X
,
W
))
class
TestSimpleMul
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
python_impl
=
SimpleMul
()
def
test_forward
(
self
):
program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
,
startup_program
):
dat
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
[
32
],
lod_level
=
1
)
rnn
=
fluid
.
layers
.
DynamicRNN
()
with
rnn
.
block
():
d
=
rnn
.
step_input
(
dat
)
o
=
fluid
.
layers
.
fc
(
input
=
d
,
param_attr
=
'W'
,
bias_attr
=
False
,
size
=
10
,
act
=
None
)
rnn
.
output
(
o
)
out
=
rnn
()
out
=
fluid
.
layers
.
sequence_pool
(
out
,
pool_type
=
'last'
)
loss
=
fluid
.
layers
.
mean
(
x
=
out
)
fluid
.
backward
.
append_backward_ops
(
loss
)
cpu
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
cpu
)
out
,
w_g
=
exe
.
run
(
program
,
feed
=
self
.
python_impl
.
to_feed
(
cpu
),
fetch_list
=
[
out
,
"W@GRAD"
])
out_by_python
=
self
.
python_impl
.
exe
()[
'Out'
]
self
.
assertTrue
(
numpy
.
allclose
(
out
,
out_by_python
))
w_g_num
=
self
.
python_impl
.
get_numeric_gradient_of_param
(
"W"
)
print
w_g_num
[
0
][
0
]
print
w_g_num
-
w_g
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录