未验证 提交 b94f7848 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #11531 from reyoung/feature/non_layer_api_doc

Polish Non-Layer API
...@@ -44,7 +44,7 @@ import metrics ...@@ -44,7 +44,7 @@ import metrics
import transpiler import transpiler
from param_attr import ParamAttr, WeightNormParamAttr from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope
from transpiler import DistributeTranspiler, InferenceTranspiler, \ from transpiler import DistributeTranspiler, InferenceTranspiler, \
memory_optimize, release_memory memory_optimize, release_memory
from concurrency import (Go, make_channel, channel_send, channel_recv, from concurrency import (Go, make_channel, channel_send, channel_recv,
...@@ -83,6 +83,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + \ ...@@ -83,6 +83,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + \
'profiler', 'profiler',
'unique_name', 'unique_name',
'recordio_writer', 'recordio_writer',
'Scope',
] ]
......
...@@ -25,6 +25,13 @@ g_scope = core.Scope() ...@@ -25,6 +25,13 @@ g_scope = core.Scope()
def global_scope(): def global_scope():
"""
Get the global/default scope instance. There are a lot of APIs use
:code:`global_scope` as its default value, e.g., :code:`Executor.run`
Returns:
Scope: The global/default scope instance.
"""
return g_scope return g_scope
...@@ -37,6 +44,19 @@ def switch_scope(scope): ...@@ -37,6 +44,19 @@ def switch_scope(scope):
@contextlib.contextmanager @contextlib.contextmanager
def scope_guard(scope): def scope_guard(scope):
"""
Change the global/default scope instance by Python `with` statement. All
variable in runtime will assigned to the new scope.
Examples:
>>> import paddle.fluid as fluid
>>> new_scope = fluid.Scope()
>>> with fluid.scope_guard(new_scope):
>>> ...
Args:
scope: The new global/default scope.
"""
ex = switch_scope(scope) ex = switch_scope(scope)
yield yield
switch_scope(ex) switch_scope(ex)
......
...@@ -30,8 +30,6 @@ __all__ = [ ...@@ -30,8 +30,6 @@ __all__ = [
'default_startup_program', 'default_startup_program',
'default_main_program', 'default_main_program',
'program_guard', 'program_guard',
'switch_startup_program',
'switch_main_program',
'get_var', 'get_var',
] ]
...@@ -1238,23 +1236,18 @@ class Program(object): ...@@ -1238,23 +1236,18 @@ class Program(object):
Notes: we have default_startup_program and default_main_program Notes: we have default_startup_program and default_main_program
by default, a pair of them will shared the parameters. by default, a pair of them will shared the parameters.
The default_startup_program only run once to initialize parameters, The default_startup_program only run once to initialize parameters,
default_main_program run in every minibatch and adjust the weights. default_main_program run in every mini batch and adjust the weights.
Args:
None
Returns: Returns:
Python Program A empty program.
Examples: Examples:
.. code-block:: python >>> main_program = fluid.Program()
>>> startup_program = fluid.Program()
main_program = Program() >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
startup_program = Program() >>> fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
with fluid.program_guard(main_program=main_program, startup_program=startup_program): >>> fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
fluid.layers.data(name="x", shape=[-1, 784], dtype='float32') >>> fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
""" """
...@@ -1268,6 +1261,19 @@ class Program(object): ...@@ -1268,6 +1261,19 @@ class Program(object):
@property @property
def op_role(self): def op_role(self):
"""
The operator role. In a enum {Forward, Backward, Optimize}.
Notes: this is a low level API. It is used only for ParallelExecutor to
duplicate or schedule operator to devices.
For example, the forward operator should be executed on every device.
The backward operator should be executed on every device and the
parameter gradient of backward (use :code:`op_role_var` to get this
variable) operator should be merged to one device. The optimization
operators should be executed on only one device and broadcast the
optimization result, i.e., the new parameter, to every other device.
"""
return self._current_role return self._current_role
@op_role.setter @op_role.setter
...@@ -1276,6 +1282,13 @@ class Program(object): ...@@ -1276,6 +1282,13 @@ class Program(object):
@property @property
def op_role_var(self): def op_role_var(self):
"""
The auxiliary variables for :code:`op_role` property.
See Also: :code:`Program.op_role`'s documentation for details.
Notes: This is a very low-level API. Users should not use it directly.
"""
return self._op_role_var return self._op_role_var
@op_role_var.setter @op_role_var.setter
...@@ -1284,6 +1297,21 @@ class Program(object): ...@@ -1284,6 +1297,21 @@ class Program(object):
@contextlib.contextmanager @contextlib.contextmanager
def optimized_guard(self, var): def optimized_guard(self, var):
"""
A with guard to set :code:`Optimization` :code:`OpRole` and
:code:`OpRoleVar` automatically.
Notes: This is a very low level API. Users should not use it directly.
Args:
var(Variable|str): The variable (name) to be optimized.
Examples:
>>> p, g = backward(...)
>>> with program.optimized_guard(p):
>>> p = p - 0.001 * g
"""
OpRole = core.op_proto_and_checker_maker.OpRole OpRole = core.op_proto_and_checker_maker.OpRole
self._current_role = OpRole.Optimize self._current_role = OpRole.Optimize
self._op_role_var = [var.name if isinstance(var, Variable) else var] self._op_role_var = [var.name if isinstance(var, Variable) else var]
...@@ -1292,18 +1320,35 @@ class Program(object): ...@@ -1292,18 +1320,35 @@ class Program(object):
self._current_role = OpRole.Forward self._current_role = OpRole.Forward
def __str__(self): def __str__(self):
"""
Get the protobuf debug string of this Program.
Returns:
(str): The protobuf debug string.
Raises:
ValueError: If any of required fields is not set.
"""
return self.to_string(True) return self.to_string(True)
def to_string(self, throw_on_error, with_details=False): def to_string(self, throw_on_error, with_details=False):
""" """
To debug string. To debug string.
Args: Args:
throw_on_error(bool): raise exception when self is not initialized throw_on_error(bool): raise Value error when any of required fields
when throw_on_error is True is not set.
with_details(bool): more details about variables and parameters
(e.g. trainable, optimize_attr, ...) will be printed when with_details is True
Returns(str): The debug string. with_details(bool): True if more details about variables and
parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
to print.
Returns
(str): The debug string.
Raises:
ValueError: If any of required fields is not set and throw_on_error is
True.
""" """
assert isinstance(throw_on_error, bool) and isinstance(with_details, assert isinstance(throw_on_error, bool) and isinstance(with_details,
...@@ -1319,25 +1364,89 @@ class Program(object): ...@@ -1319,25 +1364,89 @@ class Program(object):
return res_str return res_str
def get_desc(self): def get_desc(self):
"""
Get the C++ side of `ProgramDesc` object pointer. The C++ object is
exposed by :code:`pybind`.
Notes: This is a very low level API. Users should not use this API
directly.
"""
return self.desc return self.desc
def clone(self, for_test=False): def clone(self, for_test=False):
"""Clone the Program object """
Args: Create a new, duplicated program.
for_test(bool): indicate whether clone for test.
Some operators, e.g., :code:`batch_norm`, behave differently between
training and testing. They have an attribute, :code:`is_test`, to
control this behaviour. This method will change the :code:`is_test`
attribute of them to :code:`True` when :code:`for_test=True`.
* Set for_test to False when we want to clone the program for training.
* Set for_test to True when we want to clone the program for testing.
Set for_test to False when we want to clone the program for training. Notes: This API DOES NOT prune any operator. Use
Set for_test to True when we want to clone the program for testing. :code:`clone(for_test=True)` before backward and optimization please.
Args: Args:
for_test(bool): Some operators, such as batch_norm and drop_out ops, for_test(bool): True if change the :code:`is_test` attribute of
behave differently in training and testing. If for_test is True, operators to :code:`True`.
the is_test attributes in these operators will be set to True for
testing purposes, otherwise, they remain unchanged.
Returns: Returns:
Program: The cloned Program object. Program: The new, duplicated Program object.
Examples:
1. To clone a test program, the sample code is:
>>> import paddle.fluid as fluid
>>> train_program = fluid.Program()
>>> startup_program = fluid.Program()
>>> with fluid.program_guard(train_program, startup_program):
>>> img = fluid.layers.data(name='image', shape=[784])
>>> hidden = fluid.layers.fc(input=img, size=200, act='relu')
>>> hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
>>> loss = fluid.layers.cross_entropy(
>>> input=fluid.layers.fc(hidden, size=10, act='softmax'),
>>> label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
>>>
>>> test_program = train_program.clone(for_test=True)
>>>
>>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
>>> with fluid.program_guard(train_program, startup_program):
>>> sgd.minimize(loss)
2. The :code:`clone` method can be avoid if you create program for
training and program for testing individually.
>>> import paddle.fluid as fluid
>>>
>>> def network(is_test):
>>> img = fluid.layers.data(name='image', shape=[784])
>>> hidden = fluid.layers.fc(input=img, size=200, act='relu')
>>> hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
>>> loss = fluid.layers.cross_entropy(
>>> input=fluid.layers.fc(hidden, size=10, act='softmax'),
>>> label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
>>> return loss
>>>
>>> train_program = fluid.Program()
>>> startup_program = fluid.Program()
>>> test_program = fluid.Program()
>>>
>>> with fluid.program_guard(train_program, startup_program):
>>> with fluid.unique_name.guard():
>>> loss = network(is_test=False)
>>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
>>> sgd.minimize(loss)
>>>
>>> # the test startup program is not used.
>>> with fluid.program_guard(test_program, fluid.Program()):
>>> with fluid.unique_name.guard():
>>> loss = network(is_test=True)
The two code snippets above will generate same programs.
""" """
if for_test: if for_test:
p = self.inference_optimize() p = self.inference_optimize()
...@@ -1352,6 +1461,21 @@ class Program(object): ...@@ -1352,6 +1461,21 @@ class Program(object):
return p return p
def prune(self, targets): def prune(self, targets):
"""
Prune operators and variables which are not needed to generate
:code:`targets`.
Notes: This is a very low level API. Users should not use this API
directly. This API is in flux and not stable.
Args:
targets(list|Variable|Operator): A list of variables or operators
need to be pruned
Returns:
Program: A new, pruned program.
"""
if not isinstance(targets, list): if not isinstance(targets, list):
targets = [targets] targets = [targets]
targets_idx = [] targets_idx = []
...@@ -1386,6 +1510,17 @@ class Program(object): ...@@ -1386,6 +1510,17 @@ class Program(object):
return res return res
def inference_optimize(self): def inference_optimize(self):
"""
This method will create a new program and change the :code:`is_test`
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
Notes: This API is a very low level API. Use
:code:`Program.clone(for_test=True)` instead.
Returns:
Program: The new program.
"""
# this is an alternative implement before # this is an alternative implement before
# core.inference_optimize being fixed. # core.inference_optimize being fixed.
res = Program() res = Program()
...@@ -1402,6 +1537,18 @@ class Program(object): ...@@ -1402,6 +1537,18 @@ class Program(object):
@staticmethod @staticmethod
def parse_from_string(binary_str): def parse_from_string(binary_str):
"""
Deserialize a program desc from protobuf binary string.
Notes: All information about parameters will be lost after serialization
and deserialization.
Args:
binary_str(str): The binary prootbuf string.
Returns:
Program: A deserialized program desc.
"""
p = Program() p = Program()
p.desc = core.ProgramDesc(binary_str) p.desc = core.ProgramDesc(binary_str)
p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())] p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
...@@ -1410,10 +1557,19 @@ class Program(object): ...@@ -1410,10 +1557,19 @@ class Program(object):
@property @property
def random_seed(self): def random_seed(self):
"""
The default random seed for random operators in Program. Zero means get
the random seed from random device.
Notes: It must be set before the operators have been added.
"""
return self._seed return self._seed
@property @property
def num_blocks(self): def num_blocks(self):
"""
The number of blocks in this program.
"""
return self.desc.num_blocks() return self.desc.num_blocks()
@random_seed.setter @random_seed.setter
...@@ -1426,15 +1582,40 @@ class Program(object): ...@@ -1426,15 +1582,40 @@ class Program(object):
return str(self) return str(self)
def global_block(self): def global_block(self):
"""
Get the first block of this program.
"""
return self.blocks[0] return self.blocks[0]
def block(self, index): def block(self, index):
"""
Get the :code:`index` block of this program
Args:
index(int): The index of block to get
Returns:
Block: The :code:`index` block
"""
return self.blocks[index] return self.blocks[index]
def current_block(self): def current_block(self):
"""
Get the current block. The :code:`current` block is the block to append
operators.
"""
return self.blocks[self.current_block_idx] return self.blocks[self.current_block_idx]
def create_block(self, parent_idx=None): def create_block(self, parent_idx=None):
"""
Create a new block with the :code:`parent_idx` and change the current block
to new block.
Args:
parent_idx(int): The parent block index.
Returns:
Block: The new block.
"""
new_block_idx = len(self.blocks) new_block_idx = len(self.blocks)
parent = self.current_block() if parent_idx is None else self.block( parent = self.current_block() if parent_idx is None else self.block(
parent_idx) parent_idx)
...@@ -1444,9 +1625,24 @@ class Program(object): ...@@ -1444,9 +1625,24 @@ class Program(object):
return self.current_block() return self.current_block()
def rollback(self): def rollback(self):
"""
Exit a code block, i.e., roll back to the parent block.
Returns:
None
"""
self.current_block_idx = self.current_block().parent_idx self.current_block_idx = self.current_block().parent_idx
def sync_with_cpp(self): def sync_with_cpp(self):
"""
Synchronize Python instance to its binding C++ object instance.
If the program is modified in C++ space, this method should be invoked.
Notes: This is a very low level API. Users should not invoke it
directly.
Returns:
None
"""
for block_idx in range(len(self.blocks), self.desc.num_blocks()): for block_idx in range(len(self.blocks), self.desc.num_blocks()):
self.blocks.append(Block(self, block_idx)) self.blocks.append(Block(self, block_idx))
for block in self.blocks: for block in self.blocks:
...@@ -1456,6 +1652,9 @@ class Program(object): ...@@ -1456,6 +1652,9 @@ class Program(object):
""" """
Copy the information of parameters from other program. Copy the information of parameters from other program.
Notes: This is a very low level API. Users should not invoke it
directly.
Args: Args:
other(Program): Other program other(Program): Other program
...@@ -1475,6 +1674,9 @@ class Program(object): ...@@ -1475,6 +1674,9 @@ class Program(object):
""" """
Copy the information of data variables from other program. Copy the information of data variables from other program.
Notes: This is a very low level API. Users should not invoke it
directly.
Args: Args:
other(Program): Other program other(Program): Other program
...@@ -1493,6 +1695,12 @@ class Program(object): ...@@ -1493,6 +1695,12 @@ class Program(object):
self.global_block().var(var.name).is_data = True self.global_block().var(var.name).is_data = True
def list_vars(self): def list_vars(self):
"""
Get all variables from this Program. A iterable object is returned.
Returns:
iterable: The generator will yield every variable in this program.
"""
for each_block in self.blocks: for each_block in self.blocks:
for each_var in each_block.vars.itervalues(): for each_var in each_block.vars.itervalues():
yield each_var yield each_var
...@@ -1584,8 +1792,15 @@ _startup_program_ = Program() ...@@ -1584,8 +1792,15 @@ _startup_program_ = Program()
def default_startup_program(): def default_startup_program():
""" """
Get default startup program. In startup program, Paddle will initialize Get default/global startup program.
parameters, initialize nccl handle, etc.
The layer function in :code:`fluid.layers` will create parameters, readers,
NCCL handles as global variables. The :code:`startup_program` will
initialize them by the operators in startup program. The layer function will
append these initialization operators into startup program.
This method will return the :code:`default` or the :code:`current` startup
program. Users can use :code:`fluid.program_guard` to switch program.
Returns: Returns:
Program: startup program Program: startup program
...@@ -1595,7 +1810,15 @@ def default_startup_program(): ...@@ -1595,7 +1810,15 @@ def default_startup_program():
def default_main_program(): def default_main_program():
""" """
Get default main program. The main program is used for training or testing. Get default/global main program. The main program is used for training or
testing.
All layer function in :code:`fluid.layers` will append operators and
variables to the :code:`default_main_program`.
The :code:`default_main_program` is the default program in a lot of APIs.
For example, the :code:`Executor.run()` will execute the
:code:`default_main_program` when the program is not specified.
Returns: Returns:
Program: main program Program: main program
...@@ -1637,20 +1860,34 @@ def switch_startup_program(program): ...@@ -1637,20 +1860,34 @@ def switch_startup_program(program):
@contextlib.contextmanager @contextlib.contextmanager
def program_guard(main_program, startup_program=None): def program_guard(main_program, startup_program=None):
""" """
Switch program with `with` statement Change the global main program and startup program with `with` statement.
Layer functions in the Python `with` block will append operators and
variables to the new main programs.
Examples: Examples:
>>> with program_guard(Program()):
>>> import paddle.fluid as fluid
>>> main_program = fluid.Program()
>>> startup_program = fluid.Program()
>>> with fluid.program_guard(main_program, startup_program):
>>> data = fluid.layers.data(...) >>> data = fluid.layers.data(...)
>>> hidden = fluid.layers.fc(...) >>> hidden = fluid.layers.fc(...)
Notes: The temporary :code:`Program` can be used if the user does not need
to construct either of startup program or main program.
Examples:
>>> import paddle.fluid as fluid
>>> main_program = fluid.Program()
>>> # does not care about startup program. Just pass a temporary value.
>>> with fluid.program_guard(main_program, fluid.Program()):
>>> data = ...
Args: Args:
main_program(Program): New main program inside `with` statement main_program(Program): New main program inside `with` statement.
startup_program(Program): New startup program inside `with` statement. startup_program(Program): New startup program inside `with` statement.
None means do not change startup program. None means do not change startup program.
Returns:
None
""" """
if not isinstance(main_program, Program): if not isinstance(main_program, Program):
raise TypeError("main_program should be Program") raise TypeError("main_program should be Program")
...@@ -1667,7 +1904,8 @@ def program_guard(main_program, startup_program=None): ...@@ -1667,7 +1904,8 @@ def program_guard(main_program, startup_program=None):
def get_var(name, program=None): def get_var(name, program=None):
""" """
Get a variable by name from the global block of a program Get a variable by name from the global block of a program.
Args: Args:
name(str): name of the variable name(str): name of the variable
program(Program|None): program object. program(Program|None): program object.
......
...@@ -19,33 +19,41 @@ __all__ = ['create_lod_tensor', 'create_random_int_lodtensor'] ...@@ -19,33 +19,41 @@ __all__ = ['create_lod_tensor', 'create_random_int_lodtensor']
def create_lod_tensor(data, lod, place): def create_lod_tensor(data, lod, place):
"""Create a lod tensor from a numpy array, a list, or an existing lod tensor. """
Create a lod tensor from a numpy array, a list, or an existing lod tensor.
Create a lod tensor by doing the following: Create a lod tensor by doing the following:
1. Check that the length-based input lod is valid. 1. Check that the length-based input lod is valid.
2. Convert the length-based lod to a offset-based LoD. 2. Convert the length-based lod to a offset-based LoD.
3. Copy the data from a numpy array, a list or a existing lod tensor to 3. Copy the data from a numpy array, a list or a existing lod tensor to
CPU or GPU device (based on input place). CPU or GPU device (based on input place).
4. Set the level of detail (LoD) using the offset-based LoD. 4. Set the level of detail (LoD) using the offset-based LoD.
Use example: Examples:
Suppose we want LoDTensor to hold data for sequences of word, where each word is
represented by an integer. If we want to create a LoDTensor to represent two
sentences, one of 2 words, and one of 3 words.
Then 'data' can be a numpy array of integers with shape (5, 1). Suppose we want LoDTensor to hold data for sequences of word, where each
'lod' will be [[2, 3]], indicating the length(# of words) in each sentence. word is represented by an integer. If we want to create a LoDTensor to
This length-based input lod [[2, 3]] will be converted to offset-based lod [[0, 2, 5]] represent two sentences, one of 2 words, and one of 3 words.
inside the function call.
Please refer to Then :code:`data` can be a numpy array of integers with shape (5, 1).
github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/lod_tensor.md :code:`lod` will be [[2, 3]], indicating the length(# of words) in each
for more details regarding LoD. sentence. This length-based input lod [[2, 3]] will be converted to
offset-based lod [[0, 2, 5]] inside the function call.
Please reference :ref:`api_guide_low_level_lod_tensor` for more details
regarding LoD.
Args: Args:
data: a numpy array or a LoDTensor or a list holding the data to be copied. data(numpy.ndarray|list|LoDTensor): a numpy array or a LoDTensor or a
lod: a list of lists indicating the length-based LoD info specified by the user. list holding the data to be copied.
place: CPU or GPU place indicating where the data in the new LoDTensor will be stored. lod(list): a list of lists indicating the length-based LoD info
specified by the user.
place(Place): CPU or GPU place indicating where the data in the new
LoDTensor will be stored.
Returns: Returns:
A fluid LoDTensor object with tensor data and lod info. A fluid LoDTensor object with tensor data and lod info.
...@@ -77,31 +85,38 @@ def create_lod_tensor(data, lod, place): ...@@ -77,31 +85,38 @@ def create_lod_tensor(data, lod, place):
def create_random_int_lodtensor(lod, base_shape, place, low, high): def create_random_int_lodtensor(lod, base_shape, place, low, high):
"""Create a LoDTensor containing random integers. """
Create a LoDTensor containing random integers.
This function is frequently used in the book examples. So we revised it based on This function is frequently used in the book examples. So we revised it
the new create_lod_tensor API and put it here in the lod_tensor module to simplify based on the new create_lod_tensor API and put it here in the lod_tensor
the code. module to simplify the code.
The function does the following: The function does the following:
1. Calculate the overall shape of the LoDTensor based on the length-based 'lod' input
and the shape of the basic element in 'base_shape'. 1. Calculate the overall shape of the LoDTensor based on the length-based
:code:`lod` input and the shape of the basic element in
:code:`base_shape`.
2. Create a numpy array of this shape. 2. Create a numpy array of this shape.
3. Create the LoDTensor using create_lod_tensor API. 3. Create the LoDTensor using create_lod_tensor API.
Suppose we want LoDTensor to hold data for sequences of word, where each word is Suppose we want LoDTensor to hold data for sequences of word, where each
represented by an integer. If we want to create a LoDTensor to represent two word is represented by an integer. If we want to create a LoDTensor to
sentences, one of 2 words, and one of 3 words. Then 'base_shape' is [1], input represent two sentences, one of 2 words, and one of 3 words. Then
length-based 'lod' is [[2, 3]]. Then the overall shape of the LoDTensor would be 'base_shape' is [1], input length-based 'lod' is [[2, 3]]. Then the overall
[5, 1], holding 5 words for two sentences. shape of the LoDTensor would be [5, 1], holding 5 words for two sentences.
Args: Args:
data: a numpy array or a LoDTensor holding the data to be copied. lod(list): a list of lists indicating the length-based LoD info
lod: a list of lists indicating the length-based LoD info specified by the user. specified by the user.
base_shape: the shape of the basic element to be held by the LoDTensor. base_shape(list): the shape of the basic element to be held by the
place: CPU or GPU place indicating where the data in the new LoDTensor will be stored. LoDTensor.
low: the lower bound of the random integers. place(Place): CPU or GPU place indicating where the data in the new
high: the upper bound of the random integers. LoDTensor will be stored.
low(int): the lower bound of the random integers.
high(int): the upper bound of the random integers.
Returns: Returns:
A fluid LoDTensor object with tensor data and lod info. A fluid LoDTensor object with tensor data and lod info.
......
...@@ -36,6 +36,45 @@ def convert_reader_to_recordio_file( ...@@ -36,6 +36,45 @@ def convert_reader_to_recordio_file(
compressor=core.RecordIOWriter.Compressor.Snappy, compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000, max_num_records=1000,
feed_order=None): feed_order=None):
"""
Convert a Python Reader to a recordio file.
Please see :ref:`api_guide_python_reader` and :ref:`api_guide_reader_op` for
details.
Examples:
>>> import paddle.fluid as fluid
>>> import paddle.dataset.mnist as mnist
>>> import paddle
>>>
>>> tmp_program = fluid.Program()
>>> with fluid.program_guard(tmp_program):
>>> img = fluid.layers.data(name='img', shape=[784])
>>> label = fluid.layers.data(name='label', shape=[1], dtype='int64')
>>> feeder = fluid.DataFeeder(feed_list=[img, label], place=fluid.CPUPlace())
>>> # mnist.recordio will be generated in current directory
>>> fluid.recordio_writer.convert_reader_to_recordio_file(
>>> filename="mnist.recordio",
>>> reader_creator=paddle.batch(mnist.train(), batch_size=32),
>>> feeder=feeder)
Args:
filename(str): The recordio filename.
reader_creator(callable): The Python Reader Creator. See
:ref:`api_guide_python_reader`.
feeder(DataFeeder): The DataFeeder instance. Used to convert
:code:`reader_creator` to :code: `lod_tensor`
compressor: Must in fluid.core.RecordIOWriter.Compressor.Snappy or
fluid.core.RecordIOWriter.Compressor.NoCompress. Use :code:`Snappy`
by default.
max_num_records(int): Maximum number of records in one chuck. Each record
is each return value from reader function
feed_order(list): The order of variable names that the reader returns
Returns:
int: the number of record that saved.
"""
if feed_order is None: if feed_order is None:
feed_order = feeder.feed_names feed_order = feeder.feed_names
counter = 0 counter = 0
...@@ -58,6 +97,17 @@ def convert_reader_to_recordio_files( ...@@ -58,6 +97,17 @@ def convert_reader_to_recordio_files(
compressor=core.RecordIOWriter.Compressor.Snappy, compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000, max_num_records=1000,
feed_order=None): feed_order=None):
"""
convert a python reader to many recordio files.
This API is basically same as :code:`convert_reader_to_recordio_file`,
instead of it will create many recordio files. Each file contains at
most :code:`batch_per_file` records.
Please reference
:ref:`api_fluid_recordio_writer_convert_reader_to_recordio_file` for more
details.
"""
if feed_order is None: if feed_order is None:
feed_order = feeder.feed_names feed_order = feeder.feed_names
f_name, f_ext = os.path.splitext(filename) f_name, f_ext = os.path.splitext(filename)
......
...@@ -33,23 +33,59 @@ __all__ = [ ...@@ -33,23 +33,59 @@ __all__ = [
class BeginEpochEvent(object): class BeginEpochEvent(object):
"""
The begin of a training epoch.
Args:
epoch_id(int): The current epoch ID.
"""
def __init__(self, epoch_id): def __init__(self, epoch_id):
self.epoch = epoch_id self.epoch = epoch_id
class EndEpochEvent(object): class EndEpochEvent(object):
"""
The end of a training epoch.
Args:
epoch_id(int): The current epoch ID.
"""
def __init__(self, epoch_id): def __init__(self, epoch_id):
self.epoch = epoch_id self.epoch = epoch_id
class BeginStepEvent(object): class BeginStepEvent(object):
"""
The begin of a training epoch.
Args:
epoch_id(int): The current epoch ID.
step_id(int): The current step ID.
"""
def __init__(self, epoch_id, step_id): def __init__(self, epoch_id, step_id):
self.epoch = epoch_id self.epoch = epoch_id
self.step = step_id self.step = step_id
self.fetch_metrics = True self.fetch_metrics = True
"""
If fetch_metrics is true, the metrics will be fetched at the
EndStepEvent. Default is True.
"""
class EndStepEvent(object): class EndStepEvent(object):
"""
The end of a training step.
Args:
epoch_id(int): The current epoch ID.
step_id(int): The current step ID.
metrics(list): A list of fetched tensor. The order of this list is same
as the :code:`train_func` returns.
"""
def __init__(self, epoch_id, step_id, metrics): def __init__(self, epoch_id, step_id, metrics):
self.epoch = epoch_id self.epoch = epoch_id
self.step = step_id self.step = step_id
...@@ -57,6 +93,27 @@ class EndStepEvent(object): ...@@ -57,6 +93,27 @@ class EndStepEvent(object):
class CheckpointConfig(object): class CheckpointConfig(object):
"""
Parameter object for :code:`fluid.io.save_checkpoint` and
:code:`fluid.Trainer`. Used to configuration how to save checkpoint.
Args:
checkpoint_dir(str): Directory path to save check point. Default is the
current directory.
max_num_checkpoints(int): The max number of local check points.
epoch_interval(int): Every number of epoch to save check point.
step_interval(int): Every number of step to save check point.
Examples:
>>> config = fluid.CheckpointConfig("./checkpoints")
>>> trainer = fluid.Trainer(train_func=train_program,
>>> place=place,
>>> optimizer_func=optimizer_func,
>>> checkpoint_config=config)
>>> trainer.train(...)
"""
def __init__(self, def __init__(self,
checkpoint_dir=None, checkpoint_dir=None,
max_num_checkpoints=3, max_num_checkpoints=3,
...@@ -113,11 +170,62 @@ def check_and_get_place(place): ...@@ -113,11 +170,62 @@ def check_and_get_place(place):
class Trainer(object): class Trainer(object):
""" """
A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
simple neural network easily.
This API takes a :code:`train_func`. A :code:`train_func` is a function that
return loss as it first return value. The reset value can be fetched by
EndStepEvent.metrics
This API also takes a :code:`optimizer_func` that will return an optimizer
instance.
For example, to train a MLP for MNIST dataset, the sample program is
>>> import paddle.fluid as fluid
>>>
>>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
>>> hidden = image
>>> for layer_size in layer_sizes:
>>> hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
>>> return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
>>>
>>> def train_mnist_mlp():
>>> img = fluid.layers.data(name='image', shape=[784])
>>> label = fluid.layers.data(name='label', shape=[1], dtype='int64')
>>> prediction = mlp(img)
>>> return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
>>>
>>> def optimizer():
>>> return fluid.optimizer.Adam()
>>>
>>> trainer = Trainer(train_func=train_mnist_mlp,
>>> optimizer_func=optimizer,
>>> place=fluid.CUDAPlace(0),
>>> parallel=True)
>>>
>>> def train_callback(event):
>>> if isinstance(event, fluid.EndStepEvent):
>>> print "Epoch ID", event.epoch, "Step ID",\
>>> event.step, "AvgLoss", event.metrics[0]
>>> elif isinstance(event, fluid.EndEpochEvent):
>>> trainer.save_params("./model_{0}".format(event.epoch))
>>>
>>> trainer.train(num_epochs=100, event_handler=train_callback)
For more example, please see :ref:`api_guide_high_level_api`.
Args: Args:
train_func(callable): A function which will return loss. The loss must be a scalar. train_func(callable): A function which will return loss. The loss must be
a scalar tensor.
optimizer_func(callable): A function that returns an Optimizer object. optimizer_func(callable): A function that returns an Optimizer object.
place: The device place of this trainer. place(CUDAPlace|CPUPlace): The device place of this trainer. If
:code:`parallel=True,` all CUDA Places will be used if :code:`place`
is a :code:`CUDAPlace`.
parallel(bool): True if use multiple devices.
checkpoint_config(CheckpointConfig): Configuration about how to save
checkpoints.
""" """
def __init__(self, def __init__(self,
...@@ -129,9 +237,6 @@ class Trainer(object): ...@@ -129,9 +237,6 @@ class Trainer(object):
checkpoint_config=None): checkpoint_config=None):
self.__stop = False self.__stop = False
self.parallel = parallel self.parallel = parallel
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
# config for checkpoint # config for checkpoint
# only chief worker will save variables # only chief worker will save variables
...@@ -145,6 +250,10 @@ class Trainer(object): ...@@ -145,6 +250,10 @@ class Trainer(object):
self.scope = core.Scope() self.scope = core.Scope()
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
self.startup_program = framework.Program() self.startup_program = framework.Program()
self.train_program = framework.Program() self.train_program = framework.Program()
...@@ -277,17 +386,18 @@ class Trainer(object): ...@@ -277,17 +386,18 @@ class Trainer(object):
def train(self, num_epochs, event_handler, reader=None, feed_order=None): def train(self, num_epochs, event_handler, reader=None, feed_order=None):
""" """
Train the model. Start the train loop to train the model.
Args: Args:
num_epochs: The number of epoch. An epoch will process all data in reader num_epochs(int): The number of epoch. An epoch will process all data in reader
event_handler: The event handler. A function with type (ev:Event)->void event_handler(callable): The event handler. A function with type (ev:Event)->void
reader: reader(callable): A reader creator object. See also
feed_order: Feeding order of reader. None will following the defining :ref:`api_guide_python_reader` .
feed_order(list): Feeding order of reader. None will following the defining
order in program order in program
Returns: Returns:
None
""" """
training_role = os.getenv("PADDLE_TRAINING_ROLE", "") training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
if training_role == "PSERVER": if training_role == "PSERVER":
...@@ -307,16 +417,24 @@ class Trainer(object): ...@@ -307,16 +417,24 @@ class Trainer(object):
Test the model on given test data Test the model on given test data
Args: Args:
reader: The reader that yields test data. reader(callable): The reader that yields test data.
feed_order: Feeding order of reader. None will following the defining feed_order(list): Feeding order of reader. None will following the
order in program defining order in program
""" """
return self._test_by_executor(reader, feed_order, return self._test_by_executor(reader, feed_order,
self.train_func_outputs) self.train_func_outputs)
def save_params(self, param_path): def save_params(self, param_path):
# reference: save_persistables in io.py """
Save all parameters into :code:`param_path`.
Args:
param_path(str): The path to save parameters.
Returns:
None
"""
with self._prog_and_scope_guard(): with self._prog_and_scope_guard():
exe = executor.Executor(self.place) exe = executor.Executor(self.place)
io.save_persistables(exe, dirname=param_path) io.save_persistables(exe, dirname=param_path)
......
...@@ -383,6 +383,16 @@ def memory_optimize(input_program, skip_opt_set=None, print_log=False, level=0): ...@@ -383,6 +383,16 @@ def memory_optimize(input_program, skip_opt_set=None, print_log=False, level=0):
def release_memory(input_program, skip_opt_set=None): def release_memory(input_program, skip_opt_set=None):
"""
Modify the input program and insert :code:`delete_op` to early drop not used
variables. The modification will be performed inplace.
Notes: This is an experimental API and could be removed in next few
releases. Users should not use this API.
Args:
input_program(Program): The program will be inserted :code:`delete_op`.
"""
cfgs = _get_cfgs(input_program) cfgs = _get_cfgs(input_program)
for cfg in cfgs: for cfg in cfgs:
cfg.release_memory(skip_opt_set=skip_opt_set) cfg.release_memory(skip_opt_set=skip_opt_set)
...@@ -16,7 +16,7 @@ import collections ...@@ -16,7 +16,7 @@ import collections
import contextlib import contextlib
import sys import sys
__all__ = ['generate', 'switch', 'guard', 'UniqueNameGenerator'] __all__ = ['generate', 'switch', 'guard']
class UniqueNameGenerator(object): class UniqueNameGenerator(object):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册