提交 b941865d 编写于 作者: Y Yu Yang

Merge branch 'feature/simplify_attr_parse' into feature/pybind_for_protobuf_desc

......@@ -31,47 +31,6 @@ ProgramDesc& GetProgramDesc() {
return *g_program_desc;
}
template <>
AttrType AttrTypeID<bool>() {
return BOOLEAN;
}
template <>
AttrType AttrTypeID<int>() {
return INT;
}
template <>
AttrType AttrTypeID<float>() {
return FLOAT;
}
template <>
AttrType AttrTypeID<std::string>() {
return STRING;
}
template <>
AttrType AttrTypeID<std::vector<bool>>() {
return BOOLEANS;
}
template <>
AttrType AttrTypeID<std::vector<int>>() {
return INTS;
}
template <>
AttrType AttrTypeID<std::vector<float>>() {
return FLOATS;
}
template <>
AttrType AttrTypeID<std::vector<std::string>>() {
return STRINGS;
}
template <>
AttrType AttrTypeID<std::vector<std::pair<int, int>>>() {
return INT_PAIRS;
}
template <>
AttrType AttrTypeID<BlockDesc>() {
return BLOCK;
}
Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
switch (attr_desc.type()) {
case framework::AttrType::BOOLEAN: {
......
......@@ -27,10 +27,11 @@ limitations under the License. */
namespace paddle {
namespace framework {
typedef boost::variant<boost::blank, bool, int, float, std::string,
std::vector<bool>, std::vector<int>, std::vector<float>,
std::vector<std::string>,
std::vector<std::pair<int, int>>, BlockDesc*>
// The order should be as same as framework.proto
typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>,
std::vector<float>, std::vector<std::string>,
std::vector<std::pair<int, int>>, bool,
std::vector<bool>, BlockDesc*>
Attribute;
typedef std::unordered_map<std::string, Attribute> AttributeMap;
......@@ -38,7 +39,10 @@ typedef std::unordered_map<std::string, Attribute> AttributeMap;
ProgramDesc& GetProgramDesc();
template <typename T>
AttrType AttrTypeID();
inline AttrType AttrTypeID() {
Attribute tmp = T();
return static_cast<AttrType>(tmp.which() - 1);
}
Attribute GetAttrValue(const OpDesc::Attr& attr_desc);
......
......@@ -72,20 +72,16 @@ bool operator==(const LoD& a, const LoD& b) {
return true;
}
void LoDTensor::SliceLevels(size_t level_begin, size_t level_end) {
void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) {
auto new_lod = framework::SliceLevels(lod_, level_begin, level_end);
lod_ = new_lod;
}
void LoDTensor::SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
size_t elem_end) {
PADDLE_ENFORCE_LT(level, NumLevels());
PADDLE_ENFORCE_LT(elem_begin, NumElements(level));
PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1);
auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end);
lod_ = new_lod;
......
......@@ -89,15 +89,15 @@ class LoDTensor : public Tensor {
}
/*
* Slice of levels[level_begin:level_end]
* Shrink levels[level_begin:level_end]
*/
void SliceLevels(size_t level_begin, size_t level_end);
void ShrinkLevels(size_t level_begin, size_t level_end);
/*
* Slice of elements of a level, [elem_begin: elem_end]
* Shrink elements of a level, [elem_begin: elem_end]
* @note: low performance in slice lod_.
*/
void SliceInLevel(size_t level, size_t elem_begin, size_t elem_end);
void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end);
private:
LoD lod_;
......
......@@ -56,11 +56,11 @@ TEST_F(LoDTensorTester, NumElements) {
ASSERT_EQ(lod_tensor_.NumElements(2), 8UL);
}
TEST_F(LoDTensorTester, SliceLevels) {
TEST_F(LoDTensorTester, ShrinkLevels) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 1);
new_lod_tensor.ShrinkLevels(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
......@@ -68,7 +68,7 @@ TEST_F(LoDTensorTester, SliceLevels) {
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 2);
new_lod_tensor.ShrinkLevels(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
......@@ -77,10 +77,10 @@ TEST_F(LoDTensorTester, SliceLevels) {
}
}
TEST_F(LoDTensorTester, SliceInLevel) {
TEST_F(LoDTensorTester, ShrinkInLevel) {
size_t level = 0;
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
new_lod_tensor.ShrinkInLevel(level, 0, 2);
EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
......@@ -89,7 +89,7 @@ TEST_F(LoDTensorTester, SliceInLevel) {
level = 1;
new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
new_lod_tensor.ShrinkInLevel(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
......
......@@ -60,8 +60,8 @@ std::string OperatorBase::Output(const std::string& name) const {
const std::vector<std::string>& OperatorBase::Outputs(
const std::string& name) const {
auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output %s", type_,
name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output called %s",
type_, name);
return it->second;
}
......
......@@ -80,7 +80,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL(stepnet_);
PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
if (seq_len_ > step_scopes->size()) {
for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
......@@ -129,8 +128,8 @@ const rnn::ArgumentName RecurrentOp::kArgName{
"memories", "pre_memories", "boot_memories"};
const rnn::ArgumentName RecurrentGradientOp::kArgName{
"step_net", "step_scopes", "outlink@grad", "inlink@grad",
"memories", "pre_memories", "boot_memories@grad"};
"step_net", "step_scopes@GRAD", "outlinks@GRAD", "inlinks@GRAD",
"memories", "pre_memories", "boot_memories@GRAD"};
RecurrentOp::RecurrentOp(const std::string& type,
const framework::VariableNameMap& inputs,
......@@ -226,13 +225,13 @@ RecurrentGradientOp::RecurrentGradientOp(
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
rnn::InitArgument(kArgName, &arg_, *this);
rnn::InitArgument(kArgName, &arg_, *this, true /*is grad*/);
alg_.Init(&arg_, &stepnet_);
}
} // namespace operators
} // namespace paddle
REGISTER_OP_WITHOUT_GRADIENT(
recurrent, paddle::operators::RecurrentOp,
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);
REGISTER_OP(recurrent, paddle::operators::RecurrentOp,
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker,
recurrent_grad, paddle::operators::RecurrentGradientOp);
......@@ -22,7 +22,7 @@ namespace paddle {
namespace operators {
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
// TODO(Yan Chunwei):
// TODO(Superjom)
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
......@@ -177,6 +177,9 @@ class RecurrentGradientOp : public framework::OperatorBase {
static const rnn::ArgumentName kArgName;
/*
* set a stepnet that is created according to a RecurrentOp's stepnet.
*/
void set_stepnet(std::unique_ptr<OperatorBase> net) {
stepnet_ = std::move(net);
}
......
......@@ -109,15 +109,14 @@ void LinkMemories(const std::vector<Scope*>& scopes,
}
void InitArgument(const ArgumentName& name, Argument* arg,
const framework::OperatorBase& op) {
arg->step_scopes = op.Output(name.step_scopes);
const framework::OperatorBase& op, bool is_grad) {
arg->step_scopes =
is_grad ? op.Input(name.step_scopes) : op.Output(name.step_scopes);
arg->inlinks = op.Inputs(name.inlinks);
arg->outlinks = op.Outputs(name.outlinks);
auto boot_memories = op.Inputs(name.boot_memories);
auto boot_memories =
is_grad ? op.Outputs(name.boot_memories) : op.Inputs(name.boot_memories);
// attributes
auto memories = op.Attr<std::vector<std::string>>(name.memories);
auto pre_memories = op.Attr<std::vector<std::string>>(name.pre_memories);
......
......@@ -78,7 +78,7 @@ void LinkMemories(const std::vector<Scope*>& step_scopes,
const int offset, bool infer_shape_mode);
void InitArgument(const ArgumentName& name, Argument* arg,
const framework::OperatorBase& op);
const framework::OperatorBase& op, bool is_grad = false);
} // namespace rnn
} // namespace operators
......
......@@ -3,6 +3,7 @@ import paddle.v2.framework.core as core
import unittest
import numpy as np
from paddle.v2.framework.op import Operator, RecurrentOp
from op_test import get_numeric_gradient
def py_sigmoid(x):
......@@ -47,7 +48,7 @@ class PySimpleRNN(object):
else:
pre_mem = self.h_boot
xW = np.matmul(x, self.W)
hU = np.matmul(mem, self.U)
hU = np.matmul(pre_mem, self.U)
sum = xW + hU
self.mems[step_id] = py_sigmoid(sum)
......@@ -68,7 +69,7 @@ def create_tensor(scope, name, shape, np_data):
return tensor
class TestRecurrentOp(unittest.TestCase):
class RecurrentOpTest(unittest.TestCase):
'''
Test RNNOp
......@@ -158,6 +159,42 @@ class TestRecurrentOp(unittest.TestCase):
print
print 'py_output', py_output
self.assertEqual(pd_output.shape, py_output.shape)
self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
class RecurrentGradientOpTest(unittest.TestCase):
def create_forward_op(self):
self.forward_op = RecurrentOp(
# inputs
inlinks=["x"],
boot_memories=["h_boot"],
step_net="stepnet",
# outputs
outlinks=["h"],
step_scopes="step_scopes",
# attributes
pre_memories=["h@pre"],
memories=["h@alias"])
# create a stepnet for RNN
stepnet = core.Net.create()
x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
sum_op = Operator("add", X="Wx", Y="Uh", Out="sum")
sig_op = Operator("sigmoid", X="sum", Y="h@alias")
for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
stepnet.append_op(op)
stepnet.complete_add_op(True)
self.forward_op.set_stepnet(stepnet)
def create_gradient_op(self):
a = set()
backward_op = core.RecurrentOp.backward(self.forward_op, a)
def test_grad(self):
self.create_forward_op()
self.create_gradient_op()
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册