Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b68f2d20
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
b68f2d20
编写于
10月 26, 2017
作者:
T
Tao Luo
提交者:
GitHub
10月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5049 from tensor-tang/mkldnn_bn
enable mkldnn_batch_norm
上级
97fcaef0
5ba1e1e1
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
603 addition
and
21 deletion
+603
-21
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
+318
-0
paddle/gserver/layers/MKLDNNBatchNormLayer.h
paddle/gserver/layers/MKLDNNBatchNormLayer.h
+138
-0
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+20
-9
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+4
-0
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+60
-0
paddle/math/MKLDNNMatrix.h
paddle/math/MKLDNNMatrix.h
+5
-0
paddle/trainer/tests/sample_trainer_config_branch_net.conf
paddle/trainer/tests/sample_trainer_config_branch_net.conf
+30
-0
paddle/trainer/tests/sample_trainer_config_simple_net.conf
paddle/trainer/tests/sample_trainer_config_simple_net.conf
+6
-1
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+10
-3
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+12
-8
未找到文件。
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
0 → 100644
浏览文件 @
b68f2d20
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNBatchNormLayer.h"
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
namespace
paddle
{
REGISTER_LAYER
(
mkldnn_batch_norm
,
MKLDNNBatchNormLayer
);
const
real
MKLDNNBatchNormLayer
::
EPS
=
1E-5
;
bool
MKLDNNBatchNormLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
MKLDNNLayer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
// first one is input layer
// the other two are created in config_parser.py saving moving mean and var
CHECK_EQ
(
inputLayers_
.
size
(),
3U
);
CHECK_EQ
(
inputLayers_
.
size
(),
parameters_
.
size
());
CHECK_EQ
(
inputLayers_
.
size
(),
size_t
(
config_
.
inputs_size
()));
const
ImageConfig
&
conf
=
config_
.
inputs
(
0
).
image_conf
();
ic_
=
conf
.
channels
();
ih_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
iw_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
iw_
==
0
&&
ih_
==
0
)
{
iw_
=
conf
.
img_size
();
ih_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
}
oc_
=
ic_
;
oh_
=
ih_
;
ow_
=
iw_
;
if
(
config_
.
has_use_global_stats
())
{
useGlobalStats_
=
config_
.
use_global_stats
();
}
movingAvgFraction_
=
config_
.
moving_average_fraction
();
VLOG
(
MKLDNN_BASE
)
<<
"--- "
<<
(
useGlobalStats_
?
"use"
:
"do not use"
)
<<
" --- global stats"
;
VLOG
(
MKLDNN_BASE
)
<<
"Moving average fraction: "
<<
movingAvgFraction_
;
initWeight
();
movingMean_
.
reset
(
new
Weight
(
oc_
,
1
,
parameters_
[
1
],
0
));
movingVar_
.
reset
(
new
Weight
(
oc_
,
1
,
parameters_
[
2
],
0
));
return
true
;
}
void
MKLDNNBatchNormLayer
::
initWeight
()
{
weight_
.
reset
(
new
Weight
(
1
,
oc_
,
parameters_
[
0
]));
if
(
biasParameter_
.
get
()
!=
NULL
)
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
oc_
,
biasParameter_
));
}
CHECK_EQ
(
weight_
!=
nullptr
,
biases_
!=
nullptr
)
<<
"only support have both weight and bias, or neither"
;
if
(
weight_
&&
weight_
->
getW
())
{
CHECK
(
biases_
&&
biases_
->
getW
());
valueScaleShift_
=
Matrix
::
create
(
2
,
oc_
,
false
,
false
);
valueScaleShift_
->
zeroMem
();
VectorPtr
scale
(
new
CpuVector
(
oc_
,
valueScaleShift_
->
getMemoryHandle
(),
0
));
VectorPtr
shift
(
new
CpuVector
(
oc_
,
valueScaleShift_
->
getMemoryHandle
(),
oc_
));
const
VectorPtr
&
wgt
=
parameters_
[
0
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
bias
=
biasParameter_
->
getBuf
(
PARAMETER_VALUE
);
scale
->
copyFrom
(
*
wgt
);
shift
->
copyFrom
(
*
bias
);
wgt
->
setData
(
valueScaleShift_
->
getData
());
bias
->
setData
(
valueScaleShift_
->
getData
()
+
oc_
);
}
if
(
weight_
&&
weight_
->
getWGrad
())
{
CHECK
(
biases_
&&
biases_
->
getWGrad
());
gradScaleShift_
=
Matrix
::
create
(
2
,
oc_
,
false
,
false
);
gradScaleShift_
->
zeroMem
();
const
VectorPtr
&
wgt
=
parameters_
[
0
]
->
getBuf
(
PARAMETER_GRADIENT
);
const
VectorPtr
&
bias
=
biasParameter_
->
getBuf
(
PARAMETER_GRADIENT
);
wgt
->
setData
(
gradScaleShift_
->
getData
());
bias
->
setData
(
gradScaleShift_
->
getData
()
+
oc_
);
}
}
void
MKLDNNBatchNormLayer
::
convertWeightsFromPaddle
()
{
if
(
hasInitedWgt_
)
{
return
;
}
// prepare mean and var if necessary
if
(
useGlobalStats_
)
{
CHECK
(
mean_
);
CHECK
(
var_
);
mean_
->
copyFrom
(
*
(
movingMean_
->
getW
()));
var_
->
copyFrom
(
*
(
movingVar_
->
getW
()));
}
hasInitedWgt_
=
true
;
}
void
MKLDNNBatchNormLayer
::
calMovingMeanAndVar
()
{
// calculating and saving moving mean and variance
CHECK_EQ
(
useGlobalStats_
,
false
);
movingMean_
->
getW
()
->
add
(
*
mean_
,
movingAvgFraction_
,
1.0
-
movingAvgFraction_
);
// here var is v^2
movingVar_
->
getW
()
->
add
(
*
var_
,
movingAvgFraction_
,
1.0
-
movingAvgFraction_
);
}
void
MKLDNNBatchNormLayer
::
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
{
reshapeInput
(
bs
,
ih
,
iw
);
oh
=
ih
;
ow
=
ow
;
// ic_ and oc can not be changed
CHECK_EQ
(
inputElemenCnt_
/
bs
/
ih
/
iw
,
(
size_t
)
ic
)
<<
"Input channel can not be changed"
;
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
void
MKLDNNBatchNormLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
// In training phase, it will always calculate mean and var,
// so useGlobalStats must be false.
// In scoring phase, it depends on useGlobalStats choice.
if
(
passType_
!=
PASS_TEST
&&
useGlobalStats_
==
true
)
{
LOG
(
WARNING
)
<<
"use_global_stats is invalid setting in training phase"
;
useGlobalStats_
=
false
;
}
resetFwdBuffers
(
in
,
wgt
,
out
);
resetFwdPD
(
fwdPD_
,
in
,
wgt
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD_
,
in
,
wgt
,
out
);
}
void
MKLDNNBatchNormLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>
pd
;
resetBwdBuffers
(
in
,
wgt
,
out
);
resetBwdPD
(
pd
,
in
,
wgt
,
out
);
resetBwdPipeline
(
pipeline
,
pd
,
in
,
wgt
,
out
);
}
void
MKLDNNBatchNormLayer
::
forward
(
PassType
passType
)
{
MKLDNNLayer
::
forward
(
passType
);
// calculate and save moving mean and variance
if
(
passType_
!=
PASS_TEST
)
{
calMovingMeanAndVar
();
}
}
void
MKLDNNBatchNormLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
MKLDNNBatchNormLayer
::
resetFwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
resetInValue
(
in
);
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
CHECK
(
in
);
auto
outPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
outDims
,
in
->
getFormat
(),
engine_
);
resetOutValue
(
out
,
outPD
);
if
(
valueScaleShift_
)
{
auto
pd
=
MKLDNNMatrix
::
createPrimitiveDesc
({
2
,
oc_
},
format
::
nc
,
engine_
);
resetWithMatrix
(
wgt
,
valueScaleShift_
,
pd
);
}
if
(
passType_
!=
PASS_TEST
||
useGlobalStats_
)
{
auto
pd
=
MKLDNNMatrix
::
createPrimitiveDesc
({
oc_
},
format
::
x
,
engine_
);
mean_
=
MKLDNNMatrix
::
create
(
pd
);
var_
=
MKLDNNMatrix
::
create
(
pd
);
}
}
void
MKLDNNBatchNormLayer
::
resetFwdPD
(
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
in
,
MKLDNNMatrixPtr
wgt
,
MKLDNNMatrixPtr
out
)
{
flags_
=
0u
;
prop_kind
pk
=
passType_
==
PASS_TEST
?
prop_kind
::
forward_scoring
:
prop_kind
::
forward_training
;
if
(
useGlobalStats_
)
{
flags_
=
(
flags_
|
batch_normalization_flag
::
use_global_stats
);
}
if
(
wgt
)
{
flags_
=
(
flags_
|
batch_normalization_flag
::
use_scale_shift
);
}
auto
fwdDesc
=
bn_fwd
::
desc
(
pk
,
in
->
getMemoryDesc
(),
EPS
,
flags_
);
pd
.
reset
(
new
bn_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
// TODO(TJ): use check macro
CHECK
(
out
);
CHECK
(
out
->
getPrimitiveDesc
()
==
pd
->
dst_primitive_desc
());
if
(
wgt
)
{
CHECK
(
wgt
->
getPrimitiveDesc
()
==
pd
->
weights_primitive_desc
());
}
if
(
passType_
!=
PASS_TEST
||
useGlobalStats_
)
{
CHECK
(
mean_
);
CHECK
(
mean_
->
getPrimitiveDesc
()
==
pd
->
mean_primitive_desc
());
CHECK
(
var_
);
CHECK
(
var_
->
getPrimitiveDesc
()
==
pd
->
variance_primitive_desc
());
}
}
void
MKLDNNBatchNormLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
if
(
passType_
==
PASS_TEST
)
{
if
(
useGlobalStats_
)
{
fwd_
.
reset
(
wgt
!=
nullptr
?
new
bn_fwd
(
*
pd
,
*
in
,
(
const
primitive
::
at
)(
*
mean_
),
(
const
primitive
::
at
)(
*
var_
),
*
wgt
,
*
out
)
:
new
bn_fwd
(
*
pd
,
*
in
,
(
const
primitive
::
at
)(
*
mean_
),
(
const
primitive
::
at
)(
*
var_
),
*
out
));
}
else
{
fwd_
.
reset
(
wgt
!=
nullptr
?
new
bn_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
out
)
:
new
bn_fwd
(
*
pd
,
*
in
,
*
out
));
}
}
else
{
CHECK_EQ
(
useGlobalStats_
,
false
)
<<
"useGlobalStats should be false in training"
;
fwd_
.
reset
(
wgt
!=
nullptr
?
new
bn_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
out
,
*
mean_
,
*
var_
)
:
new
bn_fwd
(
*
pd
,
*
in
,
*
out
,
*
mean_
,
*
var_
));
}
pipeline
.
push_back
(
*
fwd_
);
}
void
MKLDNNBatchNormLayer
::
resetBwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
inVal_
&&
outVal_
);
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
resetInGrad
(
in
,
inVal_
->
getPrimitiveDesc
());
if
(
gradScaleShift_
)
{
CHECK
(
wgtVal_
);
resetWithMatrix
(
wgt
,
gradScaleShift_
,
wgtVal_
->
getPrimitiveDesc
());
}
}
void
MKLDNNBatchNormLayer
::
resetBwdPD
(
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
pd
=
nullptr
;
if
(
in
==
nullptr
)
{
return
;
}
CHECK
(
out
);
CHECK
(
out
->
getPrimitiveDesc
()
==
in
->
getPrimitiveDesc
());
auto
md
=
in
->
getMemoryDesc
();
auto
bwdDesc
=
bn_bwd
::
desc
(
prop_kind
::
backward
,
md
,
md
,
EPS
,
flags_
);
pd
.
reset
(
new
bn_bwd
::
primitive_desc
(
bwdDesc
,
engine_
,
*
fwdPD_
));
// TODO(TJ): use check macro
CHECK
(
wgt
);
CHECK
(
wgt
->
getPrimitiveDesc
()
==
pd
->
diff_weights_primitive_desc
());
CHECK
(
pd
->
weights_primitive_desc
()
==
fwdPD_
->
weights_primitive_desc
());
CHECK
(
mean_
);
CHECK
(
mean_
->
getPrimitiveDesc
()
==
pd
->
mean_primitive_desc
());
CHECK
(
var_
);
CHECK
(
var_
->
getPrimitiveDesc
()
==
pd
->
variance_primitive_desc
());
}
void
MKLDNNBatchNormLayer
::
resetBwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
if
(
pd
==
nullptr
)
{
return
;
}
CHECK
(
inVal_
);
bwdData_
.
reset
(
wgt
&&
wgtVal_
?
new
bn_bwd
(
*
pd
,
*
inVal_
,
*
mean_
,
*
var_
,
*
out
,
*
wgtVal_
,
*
in
,
*
wgt
)
:
new
bn_bwd
(
*
pd
,
*
inVal_
,
*
mean_
,
*
var_
,
*
out
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNBatchNormLayer.h
0 → 100644
浏览文件 @
b68f2d20
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace
paddle
{
typedef
mkldnn
::
batch_normalization_forward
bn_fwd
;
typedef
mkldnn
::
batch_normalization_backward
bn_bwd
;
/**
* @brief A subclass of MKLDNNLayer BatchNorm layer.
*
* The config file api is mkldnn_batch_norm
*/
class
MKLDNNBatchNormLayer
:
public
MKLDNNLayer
{
protected:
// save forward primitive_desc, which can be used backward
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>
fwdPD_
;
// Epsilon value used in the batch normalization formula.
static
const
real
EPS
;
// weight and bias in paddle
std
::
unique_ptr
<
Weight
>
weight_
;
std
::
unique_ptr
<
Weight
>
biases_
;
// mkldnn use a large buffer store both scale and shift
// which are weight and bias in paddle corresponding.
MatrixPtr
valueScaleShift_
;
MatrixPtr
gradScaleShift_
;
// Moving average of mean.
std
::
unique_ptr
<
Weight
>
movingMean_
;
// Moving average of variance.
std
::
unique_ptr
<
Weight
>
movingVar_
;
// if useGlobalStats_ is true, will use the loaded mean and variance.
// otherwise, calculate mean and variance in every mini-batch.
bool
useGlobalStats_
;
// used in MKLDNN primitive desc
unsigned
flags_
;
// use to compute moving mean and variance.
real
movingAvgFraction_
;
// whether the weight has been init
bool
hasInitedWgt_
;
// local mean and variance
// when useGlobalStats_ they are loaded from moving mean and variance
// when do not useGlobalStats_ they are calculated from this mini-batch
MKLDNNMatrixPtr
mean_
;
MKLDNNMatrixPtr
var_
;
public:
explicit
MKLDNNBatchNormLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
),
useGlobalStats_
(
true
),
hasInitedWgt_
(
false
)
{}
~
MKLDNNBatchNormLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
override
;
void
resetFwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
resetBwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
updateWeights
(
const
UpdateCallback
&
callback
)
override
;
void
convertWeightsFromPaddle
()
override
;
protected:
void
initWeight
();
/**
* cal moving mean and variance.
* moving = moving * AvgFraction + local * (1 - AvgFraction)
*/
void
calMovingMeanAndVar
();
/**
* Forward functions: reset buffers(input, weight, output),
* reset primitive descriptor,
* reset pipeline.
*/
void
resetFwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
void
resetFwdPD
(
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
in
,
MKLDNNMatrixPtr
wgt
,
MKLDNNMatrixPtr
out
);
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
/**
* Backward functions: reset buffers(input, weight, output),
* reset primitive descriptor,
* reset pipeline.
*/
void
resetBwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
void
resetBwdPD
(
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
void
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
};
}
// namespace paddle
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
b68f2d20
...
...
@@ -91,10 +91,16 @@ void MKLDNNTester::setInputImgSize() {
// init randome parameters of ref, and copy to mkldnn
void
MKLDNNTester
::
randomWgtDatas
()
{
EXPECT_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
const
bool
isBN
=
refLayer_
->
getType
()
==
"batch_norm"
;
for
(
size_t
i
=
0
;
i
<
parameters_
[
REF
].
size
();
++
i
)
{
const
VectorPtr
&
dnnValue
=
parameters_
[
DNN
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
refValue
=
parameters_
[
REF
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
parameters_
[
REF
][
i
]
->
randomize
();
if
(
isBN
&&
i
==
2
)
{
// this param is moving average in batch norm, which must larger than 0
real
offset
=
fabs
(
refValue
->
getMin
())
+
1.0
;
refValue
->
add
(
offset
);
}
dnnValue
->
copyFrom
(
*
refValue
);
VLOG
(
MKLDNN_TESTS
)
<<
"Random weight "
<<
parameters_
[
DNN
][
i
]
->
getName
();
...
...
@@ -132,8 +138,7 @@ void MKLDNNTester::checkForward() {
void
MKLDNNTester
::
checkBackwardData
()
{
VLOG
(
MKLDNN_TESTS
)
<<
"Check Backward Data"
;
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
const
bool
isBN
=
refLayer_
->
getType
()
==
"batch_norm"
;
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
DNN
].
size
();
++
i
)
{
const
MatrixPtr
&
dnnDiff
=
dataLayers_
[
DNN
][
i
]
->
getOutputGrad
();
const
MatrixPtr
&
refDiff
=
dataLayers_
[
REF
][
i
]
->
getOutputGrad
();
...
...
@@ -144,11 +149,11 @@ void MKLDNNTester::checkBackwardData() {
double
delta
=
compareMatrix
(
dnnDiff
,
refDiff
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
// TODO(TJ): uncomment me when batch norm ready
// if (isBN) {
// // the other two inputs in batch norm are for moving mean and var
//
break;
//
}
if
(
isBN
)
{
// the other two inputs in batch norm are for moving mean and var
// do not have grad to compare
break
;
}
}
}
...
...
@@ -308,10 +313,14 @@ double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
void
MKLDNNTester
::
runOnce
()
{
// test forward
randomBotDatas
();
dnnLayer_
->
forward
(
PASS_TRAIN
);
refLayer_
->
forward
(
PASS_TRAIN
);
dnnLayer_
->
forward
(
passType_
);
refLayer_
->
forward
(
passType_
);
checkForward
();
if
(
passType_
==
PASS_TEST
)
{
return
;
}
// test backward
// simple updater
UpdateCallback
updateCallback
=
[](
Parameter
*
para
)
{
...
...
@@ -343,6 +352,7 @@ void MKLDNNTester::run(const TestConfig& dnn,
size_t
batchSize
,
size_t
inputImgH
,
size_t
inputImgW
,
PassType
passType
,
bool
printDetails
,
size_t
iter
,
float
epsilon
)
{
...
...
@@ -361,6 +371,7 @@ void MKLDNNTester::run(const TestConfig& dnn,
ih_
=
inputImgH
;
iw_
=
inputImgW
;
passType_
=
passType
;
log_
=
printDetails
;
iter_
=
iter
;
eps_
=
epsilon
;
...
...
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
b68f2d20
...
...
@@ -62,12 +62,15 @@ protected:
float
eps_
;
/// input image size, default 1
size_t
ih_
,
iw_
;
/// passType, PASS_TRAIN, PASS_TEST or PASS_GC (Gradient Check pass)
PassType
passType_
;
public:
explicit
MKLDNNTester
(
size_t
iter
=
3
,
float
epsilon
=
1e-4
)
{
iter_
=
iter
;
eps_
=
epsilon
;
log_
=
false
;
passType_
=
PASS_TRAIN
;
}
~
MKLDNNTester
()
{}
...
...
@@ -78,6 +81,7 @@ public:
size_t
batchSize
,
size_t
inputImgH
=
1
,
size_t
inputImgW
=
1
,
PassType
passType
=
PASS_TRAIN
,
bool
printDetails
=
false
,
size_t
iter
=
3
,
float
epsilon
=
1e-4
);
...
...
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
b68f2d20
...
...
@@ -212,6 +212,66 @@ TEST(MKLDNNLayer, PoolLayer) {
testPoolLayer
({
2
,
8
,
56
,
56
,
29
,
29
,
3
,
3
,
1
,
1
,
2
,
2
});
}
struct
testBatchNormDesc
{
int
bs
;
int
ic
;
int
ih
,
iw
;
};
static
void
getMKLDNNBatchNormConfig
(
TestConfig
&
cfg
,
const
testBatchNormDesc
&
pm
)
{
cfg
.
layerConfig
.
set_size
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
);
cfg
.
layerConfig
.
set_type
(
"mkldnn_batch_norm"
);
cfg
.
biasSize
=
pm
.
ic
;
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
/* size of input layer= */
size_t
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
),
/* size of weight= */
size_t
(
pm
.
ic
)});
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_1_moving_mean"
,
1
,
size_t
(
pm
.
ic
)});
cfg
.
inputDefs
.
back
().
isStatic
=
true
;
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_2_moving_var"
,
1
,
size_t
(
pm
.
ic
)});
cfg
.
inputDefs
.
back
().
isStatic
=
true
;
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
// TODO(TJ): uncomment me when refine and support comparing all zeroes vector
// cfg.layerConfig.set_active_type("relu");
cfg
.
layerConfig
.
add_inputs
();
cfg
.
layerConfig
.
add_inputs
();
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
img_conf
->
set_channels
(
pm
.
ic
);
img_conf
->
set_img_size_y
(
pm
.
ih
);
img_conf
->
set_img_size
(
pm
.
iw
);
}
void
testBatchNormLayer
(
const
testBatchNormDesc
&
pm
)
{
TestConfig
dnnConfig
;
getMKLDNNBatchNormConfig
(
dnnConfig
,
pm
);
TestConfig
refConfig
=
dnnConfig
;
refConfig
.
layerConfig
.
set_type
(
"batch_norm"
);
// for PASS_TRAIN, use_global_stats always should be false, and batchsize != 1
VLOG
(
MKLDNN_TESTS
)
<<
"check train phase"
;
dnnConfig
.
layerConfig
.
set_use_global_stats
(
false
);
refConfig
.
layerConfig
.
set_use_global_stats
(
false
);
MKLDNNTester
tester
;
tester
.
run
(
dnnConfig
,
refConfig
,
pm
.
bs
,
pm
.
ih
,
pm
.
iw
,
PASS_TRAIN
);
// for PASS_TEST, check use_global_stats true and false, and batchsize 1
VLOG
(
MKLDNN_TESTS
)
<<
"check test phase"
;
for
(
auto
useGS
:
{
false
,
true
})
{
dnnConfig
.
layerConfig
.
set_use_global_stats
(
useGS
);
refConfig
.
layerConfig
.
set_use_global_stats
(
useGS
);
MKLDNNTester
tester
;
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
dnnConfig
,
refConfig
,
bs
,
pm
.
ih
,
pm
.
iw
,
PASS_TEST
);
}
}
}
TEST
(
MKLDNNLayer
,
BatchNormLayer
)
{
testBatchNormLayer
({
4
,
10
,
6
,
6
});
testBatchNormLayer
({
16
,
32
,
16
,
16
});
}
struct
testActDesc
{
int
bs
,
ic
,
ih
,
iw
;
};
...
...
paddle/math/MKLDNNMatrix.h
浏览文件 @
b68f2d20
...
...
@@ -91,6 +91,11 @@ public:
const
MKLDNNMatrixPtr
&
dst
,
bool
checkData
=
true
);
void
copyFrom
(
const
Matrix
&
src
)
{
// TODO(TJ): reorder data if this format is not nchw or x
m_
->
copyFrom
(
src
);
}
public:
/**
* Reorder this MKLDNNMatrix from other format.
...
...
paddle/trainer/tests/sample_trainer_config_branch_net.conf
浏览文件 @
b68f2d20
...
...
@@ -89,6 +89,36 @@ tmp = img_pool_layer(input=tmp,
padding
=
1
,
pool_type
=
MaxPooling
())
tmp
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
(),
bias_attr
=
False
)
tmp
=
batch_norm_layer
(
input
=
tmp
,
use_global_stats
=
False
,
act
=
ReluActivation
())
c1
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
1
,
num_filters
=
32
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
c2
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
tmp
=
addto_layer
(
input
=[
c1
,
c2
],
act
=
ReluActivation
(),
bias_attr
=
False
)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
64
,
bias_attr
=
False
,
act
=
TanhActivation
())
...
...
paddle/trainer/tests/sample_trainer_config_simple_net.conf
浏览文件 @
b68f2d20
...
...
@@ -38,9 +38,14 @@ tmp = img_pool_layer(input=tmp,
tmp
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
64
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
(),
bias_attr
=
False
)
tmp
=
batch_norm_layer
(
input
=
tmp
,
use_global_stats
=
False
,
act
=
ReluActivation
())
tmp
=
img_pool_layer
(
input
=
tmp
,
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
b68f2d20
...
...
@@ -2420,6 +2420,7 @@ class BatchNormLayer(LayerBase):
# If not use is_static, even set learning_rate = 0, decay_rate = 0,
# these paras will change if set average_window in configure.
use_gpu
=
bool
(
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
)))
use_mkldnn
=
bool
(
int
(
g_command_config_args
.
get
(
"use_mkldnn"
,
0
)))
is_shared
=
True
if
not
use_gpu
else
False
for
i
in
xrange
(
2
):
inputs
.
append
(
...
...
@@ -2433,11 +2434,17 @@ class BatchNormLayer(LayerBase):
parallel_nn
=
bool
(
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
)))
cudnn_version
=
int
(
g_command_config_args
.
get
(
"cudnn_version"
,
0
))
# Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
# Also based on cudnn version.
# Automatically select cudnn_batch_norm for GPU, batch_norm for CPU
# and mkldnn_batch_norm for MKLDNN. Also based on cudnn version.
if
batch_norm_type
==
"mkldnn_batch_norm"
:
config_assert
(
use_mkldnn
,
"mkldnn_batch_norm only support MKLDNN"
)
use_cudnn
=
use_gpu
and
batch_norm_type
!=
"batch_norm"
and
\
not
use_mkldnn
and
batch_norm_type
!=
"mkldnn_batch_norm"
and
\
((
not
parallel_nn
)
or
self
.
config
.
device
>
-
1
)
self
.
layer_type
=
"cudnn_batch_norm"
if
use_cudnn
else
"batch_norm"
if
use_cudnn
:
self
.
layer_type
=
"cudnn_batch_norm"
else
:
self
.
layer_type
=
"mkldnn_batch_norm"
if
use_mkldnn
else
"batch_norm"
super
(
BatchNormLayer
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
b68f2d20
...
...
@@ -3014,16 +3014,19 @@ def batch_norm_layer(input,
:param input: batch normalization input. Better be linear activation.
Because there is an activation inside batch_normalization.
:type input: LayerOutput
:param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
supports both CPU and GPU. cudnn_batch_norm requires
cuDNN version greater or equal to v4 (>=v4). But
cudnn_batch_norm is faster and needs less memory
than batch_norm. By default (None), we will
automaticly select cudnn_batch_norm for GPU and
batch_norm for CPU. Otherwise, select batch norm
type based on the specified type. If you use cudnn_batch_norm,
:param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
requires cuDNN version greater or equal to v4 (>=v4).
But cudnn_batch_norm is faster and needs less
memory than batch_norm. mkldnn_batch_norm requires
enable use_mkldnn. By default (None), we will
automaticly select cudnn_batch_norm for GPU,
mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
Otherwise, select batch norm type based on the
specified type. If you use cudnn_batch_norm,
we suggested you use latest version, such as v5.1.
:type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
or "mkldnn_batch_norm"
:param act: Activation Type. Better be relu. Because batch
normalization will normalize input near zero.
:type act: BaseActivation
...
...
@@ -3063,6 +3066,7 @@ def batch_norm_layer(input,
else
:
num_channels
=
input
.
size
assert
(
batch_norm_type
is
None
)
or
(
batch_norm_type
==
"batch_norm"
)
or
\
(
batch_norm_type
==
"mkldnn_batch_norm"
)
or
\
(
batch_norm_type
==
"cudnn_batch_norm"
)
l
=
Layer
(
name
=
name
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录