提交 b6291333 编写于 作者: X Xin Pan

checkpoint runnable PyLayer

test=develop
上级 0d0bc612
...@@ -17,6 +17,9 @@ ...@@ -17,6 +17,9 @@
#include <map> #include <map>
#include <string> #include <string>
#include <vector> #include <vector>
#include "pybind11/pybind11.h"
#include "Python.h"
#include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/framework/var_desc.h"
...@@ -25,6 +28,8 @@ ...@@ -25,6 +28,8 @@
namespace paddle { namespace paddle {
namespace imperative { namespace imperative {
namespace py = ::pybind11;
class PreparedOp { class PreparedOp {
public: public:
PreparedOp(const framework::OperatorBase& op, PreparedOp(const framework::OperatorBase& op,
...@@ -152,10 +157,48 @@ class Layer { ...@@ -152,10 +157,48 @@ class Layer {
std::vector<VarBase> vars; std::vector<VarBase> vars;
return vars; return vars;
} }
};
virtual std::vector<VarBase> Backward(const std::vector<VarBase>& inputs) { static void CallPythonFunc(py::object* callable,
std::vector<VarBase> vars; const std::vector<framework::LoDTensor>& ins,
return vars; std::vector<framework::LoDTensor*>* outs) {
py::gil_scoped_acquire guard;
py::tuple in_args(ins.size());
for (size_t i = 0; i < ins.size(); ++i) {
in_args[i] = ins[i].IsInitialized() ? py::cast(ins[i]) : py::cast(nullptr);
}
auto ret = (*callable)(in_args);
auto ret_tuple = py::cast<py::tuple>(ret);
size_t ret_num = py::len(ret_tuple);
for (size_t i = 0; i < ret_num; ++i) {
try {
auto* py_out_tensor = py::cast<framework::LoDTensor*>(ret_tuple[i]);
PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
"Output tensor %d should not be nullptr", i);
outs->push_back(py_out_tensor);
} catch (py::cast_error&) {
PADDLE_THROW("The %d-th output must be LoDTensor", i);
}
}
}
class PyLayer {
public:
virtual ~PyLayer() {}
static std::vector<VarBase> Apply(py::object* callable,
const std::vector<VarBase>& inputs) {
std::vector<VarBase> outputs;
std::vector<framework::LoDTensor> tensor_inputs;
std::vector<framework::LoDTensor*> tensor_outputs;
for (const VarBase& in : inputs) {
tensor_inputs.push_back(in.var_->Get<framework::LoDTensor>());
}
CallPythonFunc(callable, tensor_inputs, &tensor_outputs);
return outputs;
} }
}; };
......
...@@ -31,12 +31,6 @@ class Layer : public imperative::Layer { ...@@ -31,12 +31,6 @@ class Layer : public imperative::Layer {
PYBIND11_OVERLOAD(std::vector<imperative::VarBase>, Layer, Forward, PYBIND11_OVERLOAD(std::vector<imperative::VarBase>, Layer, Forward,
inputs); // NOLINT inputs); // NOLINT
} }
std::vector<imperative::VarBase> Backward(
const std::vector<imperative::VarBase>& inputs) override {
PYBIND11_OVERLOAD(std::vector<imperative::VarBase>, Layer, Backward,
inputs); // NOLINT
}
}; };
class PyOpBase : public imperative::OpBase { class PyOpBase : public imperative::OpBase {
......
...@@ -172,15 +172,20 @@ PYBIND11_MODULE(core, m) { ...@@ -172,15 +172,20 @@ PYBIND11_MODULE(core, m) {
py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer"); py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
layer.def(py::init<>()) layer.def(py::init<>())
.def("forward", .def("forward", [](imperative::Layer &self,
[](imperative::Layer &self,
const std::vector<imperative::VarBase> &inputs) { const std::vector<imperative::VarBase> &inputs) {
return self.Forward(inputs); return self.Forward(inputs);
})
.def("backward", [](imperative::Layer &self,
const std::vector<imperative::VarBase> &inputs) {
return self.Backward(inputs);
}); });
py::class_<paddle::imperative::PyLayer>(m, "PyLayer")
.def(py::init<>())
.def_static("apply",
[](py::object *callable,
const std::vector<imperative::VarBase> &inputs)
-> std::vector<imperative::VarBase> {
return imperative::PyLayer::Apply(callable, inputs);
});
BindTracer(&m); BindTracer(&m);
py::class_<Tensor>(m, "Tensor", py::buffer_protocol()) py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
......
...@@ -20,7 +20,7 @@ from paddle.fluid import core ...@@ -20,7 +20,7 @@ from paddle.fluid import core
from paddle.fluid import framework from paddle.fluid import framework
from paddle.fluid.imperative import base from paddle.fluid.imperative import base
__all__ = ['Layer'] __all__ = ['Layer', 'PyLayer']
class Layer(core.Layer): class Layer(core.Layer):
...@@ -48,14 +48,24 @@ class Layer(core.Layer): ...@@ -48,14 +48,24 @@ class Layer(core.Layer):
raise ValueError("Layer shouldn't implement backward") raise ValueError("Layer shouldn't implement backward")
class PyLayer(core.Layer): # TODO(panyx0718): Inherit from C++ base class.
class PyLayer(core.PyLayer):
"""Layers composed of user-defined python codes.""" """Layers composed of user-defined python codes."""
def __call__(self, *inputs): def __init__(self):
pass super(PyLayer, self).__init__()
def forward(self, *inputs): @staticmethod
def forward(inputs):
raise NotImplementedError raise NotImplementedError
def backward(self, *inputs): @staticmethod
def backward(inputs):
raise NotImplementedError raise NotImplementedError
@classmethod
def __call__(cls, inputs):
inputs = map(base.to_variable, inputs)
inputs = [x._ivar for x in inputs]
sys.stderr.write('%s\n' % inputs)
return core.PyLayer.apply(cls.forward, inputs)
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
import contextlib import contextlib
import unittest import unittest
import numpy as np import numpy as np
import sys
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import core from paddle.fluid import core
...@@ -34,6 +35,24 @@ class MyLayer(fluid.imperative.Layer): ...@@ -34,6 +35,24 @@ class MyLayer(fluid.imperative.Layer):
return [x] return [x]
class MyPyLayer(fluid.imperative.PyLayer):
def __init__(self):
super(MyPyLayer, self).__init__()
@staticmethod
def forward(inputs):
sys.stderr.write('before forward\n')
ret = np.tanh(inputs[0])
sys.stderr.write('after forward: %s\n' % ret)
tensor = core.LoDTensor()
tensor.set(ret, core.CPUPlace())
return tuple([tensor])
@staticmethod
def backward(douts, outs):
return np.array(douts[0]) * (1 - np.square(np.array(outs[0])))
class MLP(fluid.imperative.Layer): class MLP(fluid.imperative.Layer):
def __init__(self): def __init__(self):
super(MLP, self).__init__() super(MLP, self).__init__()
...@@ -59,6 +78,13 @@ class TestImperative(unittest.TestCase): ...@@ -59,6 +78,13 @@ class TestImperative(unittest.TestCase):
l = fluid.imperative.Layer() l = fluid.imperative.Layer()
self.assertRaises(NotImplementedError, l.forward, []) self.assertRaises(NotImplementedError, l.forward, [])
def test_pylayer(self):
with fluid.imperative.guard():
my_py_layer = MyPyLayer()
out = my_py_layer([np.ones([2, 2], np.float32)])
sys.stderr.write('%s\n' % np.array(out))
# out.backward()
def test_layer_in_out(self): def test_layer_in_out(self):
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with fluid.imperative.guard(): with fluid.imperative.guard():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册